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The efficacy of cancer therapies is l imited to a great extent by

immunosuppressive mechanisms within the tumor microenvironment (TME).

Numerous immune escape mechanisms have been identified. These include not

only processes associated with tumor, immune or stromal cells, but also

humoral, metabolic, genetic and epigenetic factors within the TME. The

identification of immune escape mechanisms has enabled the development of

small molecules, nanomedicines, immune checkpoint inhibitors, adoptive cell

and epigenetic therapies that can reprogram the TME and shift the host immune

response towards promoting an antitumor effect. These approaches have

translated into series of breakthroughs in cancer therapies, some of which

have already been implemented in clinical practice. In the present article the

authors provide an overview of some of the most important mechanisms of

immunosuppression within the TME and the implications for targeted therapies

against different cancers.

KEYWORDS
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1 Introduction

Tumor growth depends to a great extent on the tumor microenvironment (TME) and

the complex interactions between stromal, immune, and tumor cells. Growing evidence

points to the significance of immune cell infiltration in response, prognosis (1) and TME

characterization (2). The latest advances in therapies based on utilizing the host immune
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response has led to the development of new platforms to evaluate

the immune status in tumors. Omniseq INSIGHT, as an example, is

a next-generation sequencing technology utlizing DNA and RNA

sequencing to determine the mutational status of solid tumors and

their immune-phenotype. These assessments enable the

identification of potential treatment options for patients.

The presence of pre-existing immunity, defined as the

infiltration of immune cells into the tumor, seems to be crucial

for the response to immunotherapies (3). Based on the

histopathological localization of CD8 cytotoxic T lymphocytes

(CTLs) within the tumor, three categories of TME have been

proposed: (1) hot (inflamed) TME with pre-existing immunity,

(2) immunologically excluded TME (intermediate stage), and (3)

cold TME (non-inflamed, immunologically ignorant) (4).

Inflamed tumors are characterized by dense infiltration of

CTLs, increased interferon gamma (IFN-gamma) signaling,

expression of immune checkpoint markers (including PD-L1) (5),

and high TMB. Tumors with an excluded T cell phenotype are

characterized by the presence of T cells in the desmoplastic stroma

surrounding the tumor. Despite these cells being recruited to the

TME, there are obstacles hindering their infiltration into the tumor.

The barriers can be the result of high levels of transforming growth

factor beta (TGF-beta) (6), high hyaluronic acid levels (7), and/or

the presence of abnormal desmosomal proteins (8) (Figure 1).

Other factors limiting CTLs infiltration comprise cytokine and

chemokine gradients, vascular endothelial growth factor (VEGF)-

mediated immune suppression as well as numerous tumor-

associated immune and stromal suppressive mechanisms (9)
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(Figure 1). The effects of TGF-beta, produced by tumor, stromal

and immune cells within the TME, include promoting cancer-

associated fibroblasts (CAFs) differentiation, induction of chronic

tumor fibrosis and fibroblast to myofibroblast transition; moreover,

TGF-beta facilitates the development of T regulatory cells (Tregs)

and participates in extracellular matrix (ECM) remodeling (10)

(Figure 1). Immunologically naïve (non-inflamed, cold) tumors

tend to be genomically stable, contain fewer number of CTLs and

are characterized by rapidly proliferating tumor cells (4).

Some authors have added a fourth category to this classification,

“overheated” TME, to describe excessive inflammation that could

impair the cytolytic activities of CTLs, triggering immune escape.

This intense inflammation can be mediated by antitumor factors

such as type 1 IFN, which are able to stimulate the expression of T

cell inhibitory molecules on tumor cells, driving adaptive resistance

to immunotherapy (11).

There are several theories describing tumor differentiation and

growth. In the Darwinian clonal model, all cancer cell subclones

possess tumorigenic potential, whereas in other models only a small

subgroup of cancer cells, known as cancer stem cells (CSCs), can

generate new tumors (12). In the latter model, CSCs can indefinitely

self-renew or differentiate into multiple cancer cell types. CSCs

could be more drug-resistant than other cancer cells and could be

responsible for cancer recurrence and drug evasion (13). Increasing

evidence suggests that various cancer cells can convert to a CSC

state due to cell plasticity, e.g., due to epithelial-to-mesenchymal

transition (EMT). Different subsets of CSCs with variable EMT

phenotypes can coexist in tumors and switch from one to another
FIGURE 1

Tumor cell intrinsic and extrinsic mechanisms of resistance to immunotherapies. Schematic cartoon of some mechanisms of resistance to
immunotherapies highlighting 11 tumor cell-dependent relevant mechanisms (left), and 10 mechanisms dependent on the microenvironment
surrounding the tumor (right). Among the tumor extrinsic mechanisms, distinct immune cell types and stroma/endothelial cells are depicted which
play a contributing role - or are affected by the overall TME immunosuppression. PD-L1 - programmed death-ligand 1; MHC-I - major
histocompatibility complex class I; TAP - Transporter associated with antigen processing protein complex; ER, endoplasmic reticulum; CALR -
calreticulin; JAK1 - Janus kinase 1; JAK2 - Janus kinase 2; B2M - beta-2 microglobulin; IFN - interferon; PTEN- phosphatase and tensin homolog
protein; PI3K/AKT - phosphoinositide 3-kinase/Protein kinase B; HLA-G - human leukocyte antigen G; ILT2- Human inhibitory receptors Ig-like
transcript 2; ILT4 - Human inhibitory receptors Ig-like transcript 4; CCL5 - C-X-C motif chemokine ligand 5; CCL7 - C-X-C motif chemokine ligand
7; CXCL8 - C-X-C motif chemokine ligand 8; CCL4 - C-C motif chemokine ligand 2; VISTA - V-domain Ig suppressor of T cell activation; LAG3 -
lymphocyte-activation gene 3, TIM3 - T cell immunoglobulin and mucin domain-containing 3; TIGIT - T cell immunoreceptor with Ig and ITIM
domains; CTLA4 – cytotoxic T-lymphocyte associated protein 4; TGF-beta - transforming growth factor beta; Tregs – regulatory T cells; IL-10 –
interleukin10; IL-35 – interleukin 35; CXCL12 - C-X-C motif chemokine ligand 12; CCR4 - C-C chemokine receptor 4; PI3K gamma -
phosphoinositide 3-kinase gamma; MDSC, myeloid-derived suppressor cells; IDO1 - indoleamine 2,3-dioxygenase enzyme, PGE2 - prostaglandin
E2; CAF – cancer associated fibroblasts; NK – natural killer cells; N2 – neutrophil type 2; M2 macrophage – macrophages type 2; Breg – B
regulatory cells; Th17 – T helper 17 cells; Th2 – T helper 2 cells.
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(14). CSCs stemness and plasticity may be modulated by genetic,

epigenetic and TME factors (15). Stem cell features could be

acquired by cancer cells through clonal selection, however, we

would like to highlight that the clonal evolution and the CSCs

theories may not be mutually exclusive (16). Emerging data suggest

that tumors may follow different models of evolution sequentially or

simultaneously during the disease (17), but the full context of tumor

evolution is still to be explored (18).
2 Oncogenic mechanisms leading to
immune evasion and possibilities of
therapeutic approach

The mechanisms of tumor cell escape may be classified into

three main categories (19), namely reduced immune recognition,

resistance mechanisms against CTLs, and genomic alterations in

tumor-expressed tyrosine kinase pathways.
2.1 Reduced immune recognition

Reduced immune recognition includes loss of tumor antigens,

antigen presenting cells or lack of costimulatory molecules. In this

category decreased major histocompatibility complex class I (MHC-

I) expression on tumor cells (Figure 1), decreased priming and

activation of T cells and dendritic cells (DC), decreased expression

of tumor-associated antigens (TAAs) and tumor-specific mutant

antigens (TSMAs) can be observed. immune recognition could be a

result of decreased MHC-I expression on tumor cells, decreased

priming and activation of T and dendritic cells within the TME, or
Frontiers in Oncology 03
decreased expression of TAAs and TSMAs on tumor cells. This list

is not comprehensive, and newer mechanisms are being added by

current studies; moreover, these mechanisms could co-exist at a

given time.
2.1.1 Decreased MHC-I expression on tumor cells
Tumors can avoid tumor-associated antigen presentation and T

cell-mediated cytotoxicity via downregulation (20) or irreversible

loss of MHC class I expression (Figures 1, 2). HLA class I molecules

are heterodimers consisting of heavy and light (beta-2

microglobulin) chains. Alterations of the HLA class I phenotype

can result from mutations or deletions in genes encoding the HLA

class I heavy chains on chromosome 6p21 or the beta-2

microglobulin gene encoding the light chain located on

chromosome 15q21 (21). This may result in irreversible loss of

heterozygosity. It was found that loss of one copy of an MHC-I

heavy chain gene decreases MHC-I expression by 50% (22). In such

cancer cells an inactivating mutation in the remaining MHC-I gene

leads to a null phenotype (23). This phenotype could impair the

defense against tumors by CTLs, but also, it could decrease the

efficacy of immunotherapies restoring cytotoxic CTLs activity [e.g.,

checkpoint blockade (24) adoptive cell immunotherapy (25)].

When MHC-I is lost or downregulated, the absence of inhibitory

MHC-I signals leads to an increased host response and enhanced

natural killer (NK) cell cytotoxicity (26). However, cancer cells

hijack this mechanism by producing factors such as TGF-beta and

PGE2, impairing NK-cell function and blocking their infiltration

into the tumor (27). Again, malignant cells may temporarily

increase MHC-I expression, so they can avoid recognition by NK

and T cell-mediated cytotoxicity (28). Altogether, impaired MHC-I

antigen processing and presentation was found to be a predictor of
FIGURE 2

Schematic view of tumor microenvironment and the most important immunosuppression mechanisms, divided into epigenetic, tumor-cells
dependent, humoral, metabolic, stromal and others groups. Numbers show the main locations of the processes within TME. MHC-I - major
histocompatibility complex class I; TAAs- tumor-associated antigens; TSMAs - and tumor-specific mutant antigens; BCL-2 - B-cell lymphoma 2
protein; HER2 - human epidermal growth factor receptor 2; STAT3 - signal transducer and activator of transcription 3 pathway; BRAF - B-RAF
proto-oncogene serine/threonine kinase; EGFR - epidermal growth factor receptor; c-KIT - tyrosine-protein kinase; IL-4 – interleukin 4; IL-5 -
interleukin 5; IL-6 – interleukin 6; IL-9 – interleukin 9; IL-8 – interleukin 8; IL-10 - interleukin 10; IL-13 - interleukin 13; CCL2 - C-C motif
chemokine ligand 2; M-CSF - macrophage colony stimulating factor; GM-CSF - granulocyte-macrophage colony-stimulating factor; G-CSF –

granulocyte colony-stimulating factor; CXCL10 - C-X-C motif chemokine ligand 10; CXCL12 - C-X-C motif chemokine 12; VEGF-A - vascular
endothelial growth factor A, TGF-beta - transforming growth factor beta; M2 cells - M2 phenotype macrophages; Th2 cells - Th2 helper; MDSC
cells - myeloid-derived suppressor cells; CAFs – cancer associated fibroblasts; TECs – tumor associated endothelial cells; CAAs – cancer associated
adipocytes; CCR2-9 - CC-chemokine receptor 2-9; CXCR3/4 - C-X-C chemokine receptors 3 and 4; CCL28-CCR10 - chemokine C-C motif ligand
28/C-C chemokine receptor type 10; CCL5-CCR5 - C-C chemokine ligand 5/C-C chemokine receptor type 5; CCL22-CCR4 - C-C motif
chemokine ligand 22/C-C chemokine receptor 4; CXCL9/10/11-CXCR3 - CXC motif chemokine ligand 9/10/11 - C-X-C motif chemokine receptor
3; ECM – extracellular matrix; iNOS - inducible nitric oxide synthase; IDO1 - indoleamine 2,3-dioxygenase enzyme.
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acquired resistance to checkpoint inhibitors (CPI) therapy (29) and

adoptive cell therapy (30). Potential therapeutic strategies to

overcome this mechanism include inducing MHC-I expression in

cancer via nuclear factor kappa beta (NFkB) stabilization,

regulation of NFkB expression, or inducing MHC-I expression

via restored IFN signaling. At the beginning of 2023 there were

85 recruiting and not yet recruiting clinical trials assessing different

combinations of immunotherapy with no or low MHC antigen

expression in different indications (31).

2.1.2 Decreased priming and activation of T and
dendritic cells impairs cytotoxic activity within
the TME

Cytokines and growth factors present in the TME e.g., IL-6, IL-

10, M-CSF, VEGF and TGF-beta were found to negatively regulate

DC functions (32), inhibit DC differentiation from progenitors, and

promote DCs differentiation into immunosuppressive cells such as

MDSCs and tumor associated macrophages (TAMs) (33).

Additionally, matrix metalloproteinase 2 (MMP-2) can change

DC cells function to induce immunosuppressive Th2 (T helper 2

cells) responses (34). Signaling pathways such as beta-catenin,

mitogen-activated protein kinases (MAPK) and signal transducer

and activator of transcription molecules (STATs) play critical roles

in the crosstalk between tumor cells and DCs in the TME. For

example, increased beta-catenin signaling was shown to inhibit the

recruitment of T cells and DCs into tumors (35). Moreover,

melanoma-derived Wnt ligand (Wnt5alpha) was found to

increase the production of IDO1 by DCs, leading to increased

generation of Treg cells (36) (Figure 1).

2.1.3 Decreased expression of TAAs and TSMAs
by tumor cells

TAAs or TSMAs can be recognized by T cells, causing tumor

cell death or selection of tumor escape clones. Decreased expression

of TAAs and TSMAs enables faster tumor growth and inhibits

tumor cell destruction (37) (Figure 1). Tumor antigen-specific T

cells are present in progressively growing tumors, but they often

present an exhausted state. These cells can be reactivated following

treatment with anti-PD-1- and anti-CTLA-4 antibodies. TSMA and

TAAs can be utilized for the development of personalized cancer-

specific vaccines. Therapeutic approaches to overcome this immune

escape mechanism include induction of immunogenic cell death

(radiotherapy) adoptive cellular transfer therapy [e.g., chimeric

antigen receptor T cells (CAR-Ts)] or adjuvants (CD40, CD137

and OX-40 agonists) as single agents and in combination therapies.
2.2 Resistance mechanisms against
cytotoxic cells

Resistance mechanisms against CTLs, as well as increased

expression of survival proteins [e.g., B-cell lymphoma 2 protein

(BCL-2)] and tyrosine kinase receptors overexpression [e.g., human

epidermal growth factor receptor 2 (HER2/neu)] can be developed

by cancer cells (Figure 2). This leads to the survival of resistant
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tumor cells and an increase in the number of mutations [e.g., in

HER2, BCL-2, signal transducer and activator of transcription 3

pathway (STAT3), B-RAF proto-oncogene, serine/threonine kinase

(BRAF), epidermal growth factor receptor (EGFR), tyrosine-protein

kinase KIT (KIT) genes]; applicable therapeutic strategies include

targeting oncogenes and tyrosine kinase receptors e.g., BRAF

inhibitors or anti-HER2 antibodies, small molecules, antibody-

drug conjugates, and vaccines. Inhibiting cytotoxic cells could be

mediated via inhibiting death receptor-mediated cytotoxicity,

inhibiting granule-related cytotoxicity, tumor necrosis factor

alpha (TNF-alpha) mediated cytotoxicity or via inhibiting the

apoptotic pathway

2.2.1 Inhibiting death receptor-mediated
cytotoxicity: Fas ligand and tumor necrosis
factor-related apoptosis inducing ligand

Cytotoxic lymphocytes may destroy target cells via the

expression of death receptor ligands such as Fas and TRAIL.

These ligands are transmembrane proteins expressed on cytotoxic

immune cells (38). Both ligands trigger proapoptotic signaling. FasL

binds to the Fas receptor and TRAIL binds to the death receptors 4

and 5 (DR4/5) (39). After binding of FasL or TRAIL, the death-

inducing signaling complex (DISC) is created. DISC stimulates

signaling leading to the activation of the mitochondrial apoptosis

pathway, similar to granzyme B. This signaling can be inhibited by

the activity of FADD-like IL-1 beta converting enzyme (FLICE)-

inhibitory proteins (FLIPs), expression of decoy receptors, or

downregulation of death receptors by tumor cells.

2.2.2 Inhibiting TNF-mediated cytotoxicity
TNF-alpha is a cytokine capable of inducing both pro-survival

and pro-apoptotic signaling. The receptors for TNF-alpha, tumor

necrosis factor receptor 1 (TNF-R1) and tumor necrosis factor

receptor 2 (TNF-R2) belong to the same family as FasL and TRAIL

receptors, but the downstream signaling pathways are different.

TNF-R1 receptor is able to trigger cell death via the cytoplasmic

death domain, which recruits a TNF receptor-associated death

domain (TRADD) (40). On the contrary, both TNF-R1 and TNF-

R2 contain a TNFR-associated factor (TRAF) binding site that

recruits TRAF1/2, involved in triggering pro-survival signaling via

the NFkB and MAPK pathways. As both TNFR receptors are highly

expressed on Tregs, targeting TNFR was considered a promising

immunotherapeutic approach. Therefore, TNFR2 antagonists can

block both immunosuppressive cells and tumor cells.

2.2.3 Inhibiting granule-mediated cytotoxicity
Perforins and granzymes are secreted by cytotoxic T cells and

NK cells (41). Resistance mechanisms exploited by cancer cells

include reluctance to perforin pore formation in target cells

(reduced cell stiffness to prevent efficient perforin pore

formation), changes in the cell membrane lipid order in tumor

cells (42), changes in the glycosylation patterns of protein

components in the cancer cell membrane (glycocode) (Figure 1),

as well as secretion of cathepsin B to degrade perforins. Other

observed mechanisms of resistance to granzyme-mediated
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apoptosis encompass resistance to autophagy and to gasdermin-

induced pyroptosis (43).

2.2.4 Inhibiting apoptotic pathways
Prevention of cancer cell apoptosis may occur via

downregulation of pro-apoptotic mediators, including caspases or

pro-apoptotic BCL-2 family members, or up-regulation of

apoptosis inhibitors, such as inhibitor of apoptosis proteins

(IAPs) or anti-apoptotic BCL-2 family members. The BCL-2 gene

encodes a family of proteins critical for apoptosis regulation. This

family includes proteins promoting cell survival e.g., BCL-2 and B-

cell lymphoma-extra large (BCL-xL); initiating cell death e.g., BCL-

2-interacting mediator of cell death (BIM), p53 upregulated

mediator of apoptosis (PUMA), BCL-2-interacting domain (BID);

or activating the effector pathways of apoptosis (BAK) (44).

Therapeutic approaches inhibiting NK and CTL activity are being

extensively studied in cancer. There were 150 trials investigating the

TRAIL pathway as of the beginning of 2023 (31). BCL-2 inhibitors,

playinganespecially important role inhematologicalmalignancies, are

also intensively studied, which is reflected in a high number of studies

aiming to inhibit this pathway either in combination with other

immunotherapies or with chemotherapeutic agents.
2.3 Genomic alterations in tumor-
expressed tyrosine kinase pathways

A pro-tumor microenvironment can be established via the

secretion of pro-tumor cytokines, chemokines and growth factors

such as interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 8 (IL-

8), interleukin 10 (IL-10), C-C motif chemokine ligand 2 (CCL2)

(45); C-C motif chemokine 22 (CCL22); C-C motif chemokine

ligand 24 (CCL24); macrophage colony stimulating factor (M-CSF),

TGF-beta, C-X-C motif chemokine ligand 10 (CXCL10), C-X-C

motif chemokine 12 (CXCL12), VEGF-A and granulocyte colony-

stimulating factor (G-CSF), (46), as well as metabolic factors

including adenosine, prostaglandin E2 (PGE2), and indoleamine

2,3-dioxygenase (IDO1) (47) (Figure 2). These factors stimulate the

recruitment of regulatory T cells, myeloid-derived suppressor cells

(MDSCs) and regulatory B cells (Bregs) and enhance adaptive

immune resistance via an increase in the expression of inhibitory

receptors on CTLs e.g., cytotoxic T-lymphocyte antigen 4 (CTLA-

4); programmed cell death protein 1 (PD-1), T cell immunoglobulin

and mucin domain-containing 3 (TIM-3) (Figure 1). Possible

therapeutic strategies include checkpoint blockade, e.g., blockade

of CTLA-4, PD1, PD-L1; targeting angiogenesis, e.g., anti-VEGF

drugs; or inhibiting tumor-specific metabolic pathways, e.g., IDO1

inhibitors. A short description of each category is presented below

and graphically on Figure 1 and Figure 2, with the examples of the

current therapies in clinical trials shown in Table 1.

The analysis of human tumors has shown that tumorigenesis

can be driven by gain of function mutations in cell death antagonists

or loss of function mutations in cell death activators. These

mutations can serve as initiating events or as secondary

oncogenic events to promote tumor development and progression
Frontiers in Oncology 05
to metastatic disease (48). Oncogenic mutations causing

deregulated activation of receptor tyrosine kinases or their

downstream signaling pathways are frequent in human cancers

(49). As an example, presence of HER2 gene amplification was

found in 10%–34% of invasive breast cancers (50). Among other

crucial alterations, RAS (KRAS, NRAS, HRAS) gene mutations are

found in approximately 27% of all cancers, with high frequency of

KRAS mutations in pancreatic duct adenocarcinoma, lung

adenocarcinoma. Missense gain-of-function mutations in the RAS

genes occur with 98% of the mutations at one of three mutational

hotspots: G12, G13 and Q61 (COSMIC v75). Mutant RAS is

considered to negatively impact GTP hydrolysis, which results in

an accumulation of constitutively GTP-bound RAS proteins in cells

(51). Another important pathway is associated with activating

mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase

catalytic subunit alpha (PIK3CA) gene occurring in approximately

30–40% of patients with cancer (52). Analysis of this gene in human

tumor samples identified hotspot mutations in three sites, E542 and

E545 in the helical domain (exon 9) and H1047 in the kinase

domain (exon 20) (53), which induce activation of the alpha

isoform of PI3K. Another gene contributing to increased cancer

cell survival is BRAF, encoding a serine/threonine kinase protein

and engaged MAPK pathway. Somatic mutations of BRAF gene are

found in up to 15% of human tumors (54), including melanomas,

and papillary thyroid carcinomas (55). The most common BRAF

mutation is the V600E change in exon 15 which activates the BRAF

kinase activity via phosphorylation (56). The protein encoded by

the KIT gene, c-KIT, is a stem cell growth factor receptor, one of the

type III receptor tyrosine kinases known to play a critical role in the

onset and proliferation of cancer. Activating mutations in KIT are

considered the molecular drivers of gastrointestinal stromal tumors.

Most KIT mutations happen in exon 11, and the deletions are most

commonly found in codons 557 and 558 (57). Among other

pathways engaged in increased survival of cancer cells there are

STAT3 family of genes regulating cellular proliferation, apoptosis

and angiogenesis. Mutations leading to the constitutive activation of

STAT3, are important in oncogenesis in both solid and

hematological malignancies (58). Further pathway leading to

increased cancer cell survival are mutations associated to EGFR

overexpression, found in adenocarcinoma of the lung (59), and

colorectal cancer (60). Although these findings are not a complete

list, they confirm the view that, deregulated mitogenic signaling is a

major driver of cancer development (61).

Therapeutic approaches to overcome increased tumor cell

survival include the combination of histone deacetylases (HDAC)

and MAPK inhibition, selective BRAF inhibitors (e.g., vemurafenib

or dabrafenib), MEK1/2 pathway inhibition (trametinib) or a

BRAF/MEK inhibitors combination in patients with confirmed

mutations (62). Drugs targeting KRAS are being developed, with

the example of KRAS (G12C) inhibitors, which led to FDA approval

of sotorasib in 2021and adagrasib in 2022 (63) for patients with

KRAS-mutated non-small cell lung cancer (NSCLC) (64). Other

strategies are also assessed in clinical trials, including antibody-drug

conjugates [e.g., ado-trastuzumab emtansine (T-DM1)] designed to

target HER2 and release a cytotoxic drug in NSCLC patients with
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TABLE 1 Examples of current clinical trials targeting TME mechanisms.

Mechanism of
action

Name of
drug

target Phase
of trial

Type of
cancer

Concomitant
therapies

NCB identifier/
reference

inducing MHC-I
expression - NF-kappa

beta stabilization,
regulation of NF-kappa
beta expression restored

IFN signaling

Sodium
stibogluconate

SHP2 2 Myelodysplastic
Syndromes/Acute Myeloid
Leukemia With One of the
65 Defined p53 Mutations

NA NCT04906031

WNT/beta pathway
modulators

DKN-01 Dickkopf-1
(DKK1) is a

modulator of the
Wnt and PI3K/
AKT signaling

pathways

1, 2 patients with advanced
mismatch repair proficient
oesophagogastric cancer

Atezolizumab NCT04166721

STING agonists E7766 (eisai) highly potent
STING agonist

1/1b patients with advanced
solid tumors or lymphomas

NA NCT04144140

Inhibiting Death
Receptor-Mediated

Cytotoxicity

IGM-8444 DR5 (death
receptor 5)

1 patients with relapsed and/
or refractory solid cancers

FOLFIRI
Chemotherapy Regimen

NCT04553692

Inhibiting Granule-
Mediated Cytotoxicity

Pre-clinical studies NA NA NA NA NA

Inhibiting Apoptotic
Pathways Bcl-2

inhibitors

BGB-11417 highly selective
Bcl-2 inhibitor

1 patients with mature B-cell
malignancies

NA NCT04883957

mutations leading to
increased tumor
survival - HER2

pathway

pyrotinib pan-HER2
inhibitor

2 HER2-positive Advanced
Colorectal Cancer patients

trastuzumab NCT04380012

mutations leading to
increased tumor
survival - BRAF

mutations

HLX208 BRAF V600E
Inhibitor

2 metastatic colorectal cancer
patients

NA NCT05127759

mutations leading to
increased tumor
survival - EGFR

pathway

DZD9008 selective,
irreversible EGFR

inhibito

1/2 patients with advanced
non-small cell lung cancer

with EGFR or HER2
mutation

NA NCT03974022

mutations leading to
increased tumor
survival - c-KIT

pathway

Imatinib BCR-ABL, c-KIT,
PDGFRA

2 patients with stage III
unresectable and stage IV
melanoma with C-KIT

gene mutation

Toripalimab NCT05274438

targeting MDSC cells -
phosphatidylinositol 3-
kinase (PI3K) delta

IPI-549 specific PI3K
gamma inhibitor

2 Patients With Locally
Advanced HPV+ and
HPV- Head and Neck

Squamous Cell Carcinoma

NA NCT03795610

Adoptive cell therapies:
CAR-T

CEA CAR-T cells CAE + cancer
cells

1,2 patients with relapsed and
refractory CEA+ cancer

NA NCT04348643

Adoptive cell therapies:
CAR-NK

NKG2D CAR-NK NKG2D 1 patients with refractory
metastatic colorectal cancer

NA NCT05213195

Adoptive cell therapies:
CAR-P

No studies – pre-
clinical

NA NA NA NA NA

Cytokine based
therapies

NKTR-214
(Bempegaldesleukin)

CD122-
preferential IL2
pathway agonist

1 mCRPC patients who
received prior secondary

androgen receptor signaling
inhibitor therapy

Nivolumab, radiation,
Stereotactic body radiation
therapy (SBRT), CDX-301,
Poly-ICLC, INO-5151,

NCT03835533

Chemokine based
therapies

Rintatolimod selective TLR3
agonist, immune

1 patients with early stage
triple negative breast cancer

Drug:
CyclophosphamideDrug:

DoxorubicinDrug:

NCT04081389

(Continued)
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TABLE 1 Continued

Mechanism of
action

Name of
drug

target Phase
of trial

Type of
cancer

Concomitant
therapies

NCB identifier/
reference

response
modulator

Doxorubicin
HydrochlorideDrug:
PaclitaxelBiological:

Recombinant Interferon
Alfa-2b

inhibiting NO/iNOS
pathway

Pre-clinical NA NA NA NA NA

Inhibition of ARG1/2
activity

Arginase1 peptide:
ArgLong2 (169-206)
Peptide sequence

Arg-1 inhibitor 1,2 patients with polycythemia
vera, essential

thrombocythemia

Vaccine - PD-L1 peptide:
PD-L1 Long (19-27)

NCT04051307

blocking of adenosine
pathway - targeting
A2A adenosine

receptors

ILB2109 A2AR antagonist 1 patients with advanced
solid malignancies

NA NCT05278546

targeting the IDO
pathway

Epacadostat inhibitor of
indoleamine 2,3-
dioxygenase-1

(IDO1)

1,2 patients with metastatic or
locally recurrent breast

cancer patients

Retifanlimab, SV-BR-1-
GM, low dose

cyclophosphamide
Interferon Inoculation

NCT03328026

blockade of PGE2
pathway

CR6086 selective small
molecule

antagonist of the
prostaglandin E2
receptor, EP4

subtype

1, 2 patients with pretreated
mismatch-repair-proficient
and microsatellite stable

metastatic colorectal cancer

Balstilimab NCT05205330

Hypoxia - targeting
HIF pathway

DFF332 HIF-2 blockade 1 patients with advanced/
relapsed ccRCC and other
malignancies with HIF2a
stabilizing mutations

RAD001,
PDR001,
NIR178

NCT04895748

exosomes Mesenchymal
Stromal Cells-

derived Exosomes
with KRAS G12D

siRNA

KRAS mutation 1 patients with metastatic
pancreas cancer with
KrasG12D mutation

NA NCT03608631

Antibodies bi- and tri-
specific combinations

FS118 PD-L1, LAG-3 1, 2 patients with advanced
malignancies

NA NCT03440437

Anti-cancer vaccines ACIT-1 Stimulation of
tumour antigen-
specific T cells to
respond and kill
cancer cells

1, 2 patients with pancreatic
and other cancers

NA NCT03096093

radiation radiation therapy numerous targets 2 patients with unresectable
non-metastatic pancreatic

cancer

Gemcitabine, Capecitabine NCT01972919

nanoparticles WGI-0301 Lipid
Nanoparticle
Suspension of
Akt-1 Antisense
Oligonucleotide

1 patients with advanced
solid tumors

NA NCT05267899

Immune checkpoint
molecules - TIM-3

inhibitors

Cobolimab anti-TIM-3 2 melanoma stage IV patients TSR-042 NCT04139902

Immune checkpoint
molecules – LAG-3

inhibitors

INCAGN02385 Anti-LAG-3 1, 2 patients with selected
advanced malignancies

INCAGN02390
INCMGA00012.

NCT04370704

(Continued)
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HER2 mutations. The antibody-drug conjugate, 4C9-DM1, is an

example of a c-KIT targeting drug in development (65).

First generation EGFR tyrosine kinase inhibitors (EGFR-TKIs)

such as gefitinib and erlotinib or second-generation molecules such

as afatinib and dacomitinib are effective for the treatment of EGFR-

mutated NSCLC, mainly in patients with EGFR exon 19 deletions or

an exon 21 L858Rmutation. A compounding issue is that a majority

of patients face a cancer recurrence within 2 years due to acquired

therapy resistance, mostly associated with the EGFR T790M

mutation in exon 20. A third generation TKI, e.g., osimertinib

targeting the T790M mutation, was developed to overcome such

resistance and showed high clinical efficacy. However, resistance to

third generation TKIs was observed through a C797S mutation (66).

Current therapeutic options address patients with the so called

triple mutation: T790M, L858R or exon19 deletion, and C797S

mutation (fourth generation EGFR inhibitors), as well as patients

with non-resistant rare EGFR mutations, including L861Q, G719X

and S768I.

Both small molecule inhibitors and targeted antibodies used in

cancer immunotherapy have their advantages. Small molecule
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inhibitors usually bind a wider number of targets in comparison

to antibodies due to their smaller size. Antibodies are more specific

but they are characterized by poor tumor penetration and

immunogenic potential (67). However, small molecule inhibitors

and therapeutic antibodies can be considered complementary

strategies in cancer treatment, and can be combined to achieve

synergistic effects. Examples are monoclonal antibodies targeting

EGFR. These antibodies block the extracellular ligand binding

domain of the receptor and signal molecules cannot longer

activate the tyrosine kinase. These therapeutics include

cetuximab, panitumumab, nimotuzumab, zalutumumab, or

duligotuzumab, the novel humanized dual EGFR/HER3

monoclonal antibody. Drugs targeting mutations in receptor

tyrosine kinases, as well as in their downstream signaling

members, are one the most actively developed anti-tumor drugs.

This is reflected in the high number of trials ongoing at the

beginning of 2023, with 1004 studies targeting the HER2

pathway, 246 trials targeting BRAF mutations, 773 studies

targeting the EGFR pathway and 291 studies targeting the c-KIT

pathway (31).
TABLE 1 Continued

Mechanism of
action

Name of
drug

target Phase
of trial

Type of
cancer

Concomitant
therapies

NCB identifier/
reference

Immune checkpoint
molecules – TIGIT

inhibitors

COM902 TIGIT Inhibitor 1 subjects with advanced
malignancies

COM701 NCT04354246

Immune checkpoint
molecules - CTLA-4,

Tremelimumab human
monoclonal

antibody against
CTLA-4

1, 2 patients with
gastroesophageal cancer

and other
gastrointestinalmalignancies

Cabozantinib,
Durvalumab

NCT03539822

Immune checkpoint
molecules - PD-1

GLS-010
(zimberelimab)

Fully Human
Anti-PD-1
Therapeutic
Monoclonal
Antibody

2 patients with recurrent or
metastatic cervical cancer

NA NCT03972722

Epigenetic mechanisms
- HDAC Inhibitors

(HDACi)

Chidamide selective histone
deacetylase

(HDAC) inhibitor

1, 2 patients with advanced
cervical cancer

Toripalimab NCT04651127

Epigenetic mechanisms
- Histone

Methyltransferase
Inhibitors (HMTi/

EZH2i

tazemetostat EZH2 inhibitor
or - histone

methyltransferase
inhibitor

2 subjects with relapsed/
refractory follicular

lymphoma

rituximab NCT04762160

Epigenetic mechanisms
- Histone Reader
Protein Inhibitors
(bromodomain and

extra-terminal domain
proteins - BETi)

ZEN-3694 BET
bromodomain

inhibitor

2 patients with metastatic
castration resistant prostate

cancer

enzalutamide;
pembrolizumab

NCT04471974

Epigenetic mechanisms
- DNA

methyltransferase
inhibitors

Azacitidine,
decitabine

demethylation
agents

2 patients with newly
diagnosed acute myeloid

leukemia

Several concomitant drugs NCT03164057

Stromal mechanisms -
CAFs targeted therapies

Pritumumab ecto-domain of
vimentin on the
surface of cancer

cells

1 patients with brain cancer NA NCT04396717
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The mutations leading to increased cancer cell survival,

discussed earlier, are engaged in the activation of oncogenic

pathways, including WNT/beta-catenin, STAT3, PI3K/PTEN/

AKT/mTOR, RAS/RAF/MAPK or NFkB (68). These signaling

pathways can influence exclusion and dysfunction of cytotoxic

cells in the TME (69) (Figure 1). There were 13 trials assessing

different combinations of immunotherapy with novel WNT

pathway modulators, including DKN-01or LGK974 in various

forms of cancers at the beginning of 2023 (31).
2.4 The immunosuppressive TME

The mutual interactions of immune and non-immune cells,

humoral, metabolic and other factors present in the TME lead to an

immunosuppressive environment outlined below.

2.4.1 Immune-cell dependent mechanisms
Several myeloid and lymphoid cell types in the TME play

important roles in immune suppression mechanisms (70). M2

macrophages are abundant (up to 50% of tumor mass) (71)

and they are probably the most important population of

immunosuppressive cells in the TME secreting scavenger receptors,

pro-tumorigenic cytokines, chemokines and pro-angiogenic factors

(72). Another cell population, MDSCs, contribute to tumor growth

via regulating the adenosine metabolism, expression of negative

immune checkpoint molecules, and a shift towards the

immunosuppressive Th2 response. Pro-tumor N2 neutrophils are

known to influence cancer progression by the secretion of C-X-C

motif chemokine ligand 1 (CXCL1), matrix metallopeptidase 9 (MMP-

9), VEGF, and TNF-alpha (73), as well as ROS and NO (74). Another

crucial population of lymphoid cells, Tregs, mainly inhibit tumor-

specific T cell responses. Th17 cells are characterized by the secretion of

immunosuppressive interleukin 17F (IL-17F), interleukin 17A (IL-

17A), IL-6, interleukin 21 (IL-21), interleukin 22 (IL-22), and IL-23

(75). Th2 cells contribute to immune tolerance mainly by the secretion

of protumor Th2 cytokines. The protumor action of Bregs involve

secretion of IL-10 (76) as well as production of granzyme B and TGF-

beta (77). The immune cells’ phenotype shows plasticity and may

depend on TME polarization into pro- or antitumor immunity (i.e.

already differentiated M2 macrophages and N2 neutrophils cells could

change their phenotype into antitumor M1 or N1 respectively) (78)

(Figure 1, 2). Various therapeutic approaches addressing the immune

cell-dependent immunosuppression within the TME have been

identified. These include among others including turning cold

tumors into hot, targeting MDSCs, reprogramming of TAMs, or

adoptive cell therapies.

2.4.1.1 Turning immunologically cold tumors into hot

According to the previously described “cold” and “hot” TME

phenotype, it seemed reasonable that “heating up” the TME, namely

increasing immune infiltration in the TME, could enhance

antitumor immunity. This therapeutic approach is not exclusively

an immune-cell dependent mechanism, as humoral and metabolic

factors can influence this process (79) (Figure 1). Several attempts

have been implemented to turn cold tumors into hot, including the
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activation of the innate immune system using stimulators of

interferon genes (STING) agonists, increasing cross-presentation

of DCs to promote tumor-antigen-specific T cell infiltration into the

TME, targeting the cellular metabolism or transferring within the

TME certain metabolites to reduce Tregs, MDSCs or TAMs

infiltration (80) as presented in Figure 2. An additional

therapeutic approach has been to promote cytotoxic T cell

activity or re-educate TAMs, MDSCs, and Tregs to support CTLs

effector functions. Further attempts included creating an inflamed

TME via oncolytic viruses or nanoparticle delivery of immune-

modulatory factors (81).

2.4.1.2 MDSCs targeting options

Blocking the immunosuppressive function of MDSCs could be

achieved in several ways: by depleting MDSCs, through inhibition of

their immunosuppressive potential, by decreasing MDSC cell

recruitment to the tumor, or by modulating myelopoiesis. It has

been shown that targeting phosphatidylinositol 3-kinase (PI3K) delta

and PI3K gamma leads to the inhibition of NFkB and activation of

CCAAT/enhancer-binding protein beta (CEBPbeta), which results in

an inhibition of the MDSCs immunosuppressive activity (82)

(Figure 1). Targeting both isoforms of PI3K in combination with a

PD-L1 blocking antibody delayed tumor growth and prolonged

survival in tumor models of head and neck cancer, indicating a

beneficial effect of this treatment combination (83).

2.4.1.3 Reprogramming/repolarization of TAMs

As mentioned previously, the immunosuppressive M2 TAMs

can be repolarized into a M1 phenotype under certain

circumstances. Another way to reprogram M2 TAMs is to use

genetic engineering to enhance their antitumor activity (80). The

TME immunosuppressive status was altered in vitro by genetically

modified macrophages, which once transplanted into patients (84)

enabled the stimulation of the cytotoxic activity of T cells in vivo

and inhibited the immunosuppressive status of the TME (69).

2.4.1.4 Advances in adoptive cell therapies

This treatment modality is a fast-developing field of cancer

immunotherapy (85). Cells collected from a patient are genetically

engineered, multiplied ex-vivo and infused back into the patient. The

benefits of ACT could be enhanced by adding small-molecule drugs

or epigenetic modulators to enhance T-cell expansion, and has been

reviewed elsewhere in detail (86). The PI3K inhibitor idelalisib has

been shown to inhibit human T reg functions (87). Inhibition of PI3K

gamma and delta with duvelisib reprogramed differentiation and the

metabolism of CAR-T cells, improving their expansion and anti-

tumor cytotoxicity (88). Among tyrosine kinase inhibitors dasatinib

showed promising activity of reversing T cell exhaustion, which

translated into enhanced therapeutic efficacy (89).

Adding epigenetic modulators represent another strategy to

improve T-cell function. DNA methyltransferases and histone

deacetylases are activated during T-cell differentiation, resulting

in high levels of DNA and histone methylation in exhausted T cells

(90). It was shown, that decitabine, a DNA methylation inhibitor,

enhances anti-tumor activities, cytokine production, and CAR-T

cell proliferation in non-Hodgkin lymphoma models (91).
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Additionally, treatment of CAR-T cells with a BET inhibitor (92) or

immune modulator drugs like lenalidomide, showed to enhance

CAR T-cell response in hematological malignancies models (93).

Despite promising efficacy in hematological malignancies, the

results of CAR-Ts in solid tumors remain unsatisfactory. Compared

to hematological malignancies, solid tumors show higher tumor

antigen heterogeneity, associated with effective escape mechanisms

against mono-antigen-specific CAR-T cells. Another factor is a

presence of the immunosuppressive TME demonstrating physical

and molecular barriers preventing CTLs infiltration, driving their

dysfunction and hypoproliferation (94).

Next-generation bi-specific CAR-Ts are being developed to

overcome these challenges (95), these include fourth and fifth

generation CAR-Ts delivering drugs able to modify the TME

through the release of transgenic immune modulators (96).

Chimeric antigen receptor macrophage-cells (CAR-M) can

destroy tumor cells or alter the TME creating a niche of tumor

and immune cells. Transduced human macrophages with an anti-

HER2 CAR could be an example of such therapy. CAR-Ms were

able to perform antigen-specific phagocytosis in vitro, leading to

reduced tumors and prolonged overall survival in murine solid

tumor models. An assessment of the effects of CAR-Ms on M2

macrophages found that CAR-Ms induced a phenotypic shift in M2

macrophages towards a M1 phenotype and activated cytotoxic T

cells. As a result, CAR-Ms reprogrammed the TME, showing

potential efficacy in solid tumors (97).

Alternative promising strategies are CAR-NKs based therapies.

Compared to CAR-Ts, chimeric antigen receptor natural killers

(CAR-NKs) have shown improved safety with few cases of cytokine

release syndrome (CRS) and no graft versus host disease (GvHD)

reported (98). In addition to their effectiveness in blood cancers,

CAR-NKs are being investigated in solid tumors such as pancreatic,

ovarian and prostate cancers. CAR-NKs therapies with their

favorable cytotoxicity, short lifespan and lower manufacturing

costs are considered the alternative to CAR-Ts (99).

2.4.1.5 Clinical benefits of tumor infiltrating lymphocytes
adoptive cell therapy

As CAR-T cell therapy has not yet shown convincing clinical

benefit in the treatment of solid tumors, application of autologous

TIL-ACT (tumor infiltrating lymphocytes adoptive cell therapy) is

being explored as an alternate approach. TIL-ACT therapy starts

with isolating the natural infiltrating lymphocytes from the tumor

tissues, expanding them in vitro, and then infusing these cells back

with a high dose of IL-2 to ensure anti-tumor efficacy. Prior to

infusion of the TIL cells, patients receive a non-myeloablative

lymphodepletion regimen. This therapy has shown efficacy in

several indications including metastatic melanoma (100), cervical

cancer (101), and breast cancer (102).

2.4.1.6 Perspective of T cell receptor transduced
T cell therapy

Another promising therapeutic alternative is therapy with T

cells expressing an engineered T cell receptor (TCR-T cells). This

approach could overcome a CAR-T cells limitation of targeting
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surface protein antigens only, frequently not expressed on solid

tumors. In addition to surface antigens, TCR-T cells can target the

intracellular antigens of solid tumors, ensuring enhanced anti-

tumor efficacy (103). Autologous T-cell receptor (TCR)-based

adoptive therapy is based on genetically modified lymphocytes

against specific tumor markers. Ongoing clinical trials will

determine the ultimate role of TCR-based therapies in patients

with solid tumors (104). TCR-T cell therapy developed so far rely

on engineering of autologous T cells. However, implementation of

allogeneic TCR-T cell therapies could offer multiple advantages

including immediate availability, standardization, and reduced cost

compared to conventional CART cell therapies (105). By deleting

both endogenous TCR alpha and TCR beta chains, insertion of the

transgenic TCR would decrease the risk of graft-versus-host disease.

This approach can be combined with strategies to limit the rejection

of the allogeneic T cells by the host immune system, such as partial

HLA matching or gene editing (HLA class I deletion combined with

natural killer cell inhibition) to generate universal T cells (106). The

first TCR-based therapy was recently approved by the US

FDA (107).

Another related approach is the development of bispecific T cell

engagers (BiTE) with a TCR component recognizing a tumor

specific peptide antigen in the context of a particular HLA

haplotype on one end, and a CD3 component to attract CTL

effector cells to the tumor on the other end. BiTE therapeutics are

small and flexible, easily diffusible to lesions, redirecting cytotoxic

lymphocytes to cancer cells with high affinity (108). Monitoring

HLA expression under these therapeutic treatments becomes a

requirement, as tumors frequently evolve downregulating HLA

expression as a mechanism of tumor immune evasion, limiting

peptide antigen recognition by CTLs.

Adoptive cell therapies are gaining significant research attention

reflected in the number of ongoing clinical studies. There are at least

197 TIL-ACT trials and 601 TCR-T cell trials ongoing. Moreover,

there were 642 studies assessing CAR-Ts therapies in different

combinations and 32 trials assessing CAR-NKs therapies at the

beginning of 2023 (31).

Additional TME reprogramming possibilities include: the use of

ligands for toll-like receptors (TLRs), such as the TLR7 agonist

imiquimod; TLR9 agonists; CpG oligodeoxynucleotides or whole

microorganism-based adjuvants, such as BCG (109).

2.4.1.7 The role of immune checkpoint inhibitors

ICIs modulate innate or adaptive immune responses. They can

be divided into two classes: ICIs that co-stimulate [TNF family

members, CD27, 4-1BB (CD137), OX40 (CD134), herpesvirus

entry mediator (HVEM), CD30, and glucocorticoid-induced

TNFR-related protein (GITR)] (110) and ICIs that inhibit

immune responses (111) such as PD-1, PD-L1, CTLA-4, VISTA,

TIM-3, TIGIT, HLA-G and LAG-3 (Figure 1). ICIs form ligand-

receptor pairs with other molecules, the receptors are mostly

expressed on immune cells, while the ligands are mostly

expressed on antigen-presenting cells, tumor cells, or other cell

types, (112). Overexpression of these ligands on tumor cells can be

the result of cell-autonomous stimuli or of stimuli from the TME.
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The activation of inhibitory ICIs causes the inhibition of cytotoxic T

cells (113), NK and NKT cell functions. Exhausted cytotoxic T cells

are unable to lyse tumor cells, they have impaired effector functions

and they show an inability to product pro-inflammatory cytokines

(e.g., TNF-alpha, IFN-gamma, IL-2). They express co-inhibitory

receptors including CTLA-4, PD-1, TIM-3, TIGIT or LAG-3 (114).

Ongoing research has helped discover novel checkpoint inhibitors

such as B7-H3, B7-H4 transmembrane proteins, NKG2A proteins,

PVRIG/PVRL2 (poliovirus receptor-related immunoglobulin

domain), as well as inhibitory targets beyond immune

checkpoints including carcinoembryonic antigen-related cell

adhesion molecules 1, 5, 6 (CEACAM1, CEACAM5, CEACAM6),

and focal adhesion kinase (FAK) (115).

2.4.1.7.1 The role of TIM-3

TIM-3 is a transmembrane receptor expressed by CTLs, Tregs,

B cells, macrophages, NK cells, DCs and tumor cells (116). The

main ligands are galectin-9, phosphatidyl serine, and CEACAM1

(117). TIM-3 acts as an immune checkpoint promoting immune

tolerance (Figure 1). Stimulation of TIM-3 by ligands causes T cell

exhaustion and expansion of MDSCs within the TME. Finding that

TIM-3 can be an immune checkpoint in the malignant TME came

from the observation that TIM-3 was present on the suppressed

CTLs in preclinical models of tumors, and the CD8 TIM-3+ T cells

expressed also PD-1 (118). Moreover, TIM-3+ Tregs are rarely

found in peripheral blood and lymphoid tissues. This indicates that

TIM-3 can be specific to tissue Tregs and these cells could play more

important role in suppressing anticancer immunity in tumor tissue

(119). High TIM-3 levels correlated with poor prognosis in prostate,

renal cell, colon, and cervical cancers. TIM-3 blockade results in

decreased MDSCs and increased proliferation and cytokine

production by T cells (120). Given its expression in a variety of T

cells and its synergistic effects with other anti-PD-1 agents, TIM-3

blockade was assessed as an attractive therapeutic target, which was

investigated in 43 clinical trials early in 2023 (31).

2.4.1.7.2 The role of LAG-3 (CD223)

LAG-3 is another promising immune checkpoint therapeutic

target together with PD-1 and CTLA-4. LAG3 interacts with MHC

class II and it is expressed on CD4+ T cells, CD8 T cells, NK cells,

NKT cells, Tregs (121), B cells and DCs (122). LAG3 has several

ligands including MHC class II, lymph node sinusoidal endothelial

cell C-type lectin, Galectin-3, alpha-synuclein, fibrinogen-like

protein 1 and 2 (FGL1, FGL2) (123), all of which inhibit T cell

activation through binding to LAG-3. LAG3 interaction with MHC

class II causes a decrease of CTLs cytokine production, CD4 and

CD8 T cell expansion, and supports a Treg phenotype

differentiation to prevent tissue damage and autoimmunity (124)

(Figure 1). Tumor-infiltrating lymphocytes can overexpress LAG-3,

which contributes to their dysfunction and immune exhaustion

(117). High LAG-3 and FGL1 expression has been shown to

support tumor growth via accelerating T cell exhaustion and

blocking T cell proliferation (125). LAG-3 has been also identified

as a mechanism of resistance to some immunotherapies, including

anti-PD-1 therapies. LAG-3 blockade stimulates immune activation

against tumor cells and enhances the effect of other immune
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checkpoint inhibitors (126). In March 2022, relatlimab, the first

monoclonal antibody targeting LAG-3 in combination with

nivolumab, was approved by the FDA for the treatment of

untreated/unresectable or metastat ic melanoma. The

RELATIVITY-047 (127) study demonstrated that this

combination doubled the progression free survival (PFS) time

compared to nivolumab alone. Other anti-LAG-3 agents are

currently in development, including favezelimab, fianlimab, the

bispecific tebotelimab, ieramilimab or INCAGN-2385. Numerous

trials assessing LAG-3 across different cancer indications and in

combinations could change the exist ing strategy for

immunotherapies. There were 64 studies targeting LAG-3 in

cancer patients at the beginning of 2023 (31).

2.4.1.7.3 The role of TIGIT

T-cell immunoglobulin and ITIM domain (TIGIT) is expressed

on dysfunctional T cells, Tregs and NK cells (117). TIGIT shows

immunosuppressive functions by directly binding to tumor cells,

which commonly express CD155, leading to T and NK cell

inhibition (Figure 1). TIGIT acts also indirectly via stimulation of

immunosuppressive DCs and Tregs after CD155/CD226 molecule

recognition (128). Overexpression of TIGIT was associated with

poor prognosis in many cancers (129). TIGIT expression is

considered a marker of T cell exhaustion in liver cancer (130).

Encouraging results presented in 2021 suggested that the

combina t ion of ant i -TIGIT and ant i -PD-L1 cancer

immunotherapies could represent a novel approach in cancer

(131). The recent failure of the tiragolumab trial was announced

(132) in which tiragolumab was unable to demonstrate additional

benefit in PFS over atezolizumab alone in a phase 3 trial in NSCLC

patients. However, the data are still not mature and there are several

other compounds in development across a range of indications,

including EOS-448, vibostolimab, domvanalimab, ociperlimab,

BMS-986207 or etigilimab, bringing the hope that a new class of

checkpoint inhibitors would offer therapeutic benefits for cancer

patients. TIGIT inhibition was assessed in 65 clinical studies at the

beginning of 2023 (31).

2.4.1.7.4 The role of CTLA-4 (CD152)

The anti-CTLA-4 antibody ipilimumab was the first immune

checkpoint inhibitor approved in 2011 by the U.S. Food and Drug

Administration for the treatment of late-stage melanoma (133),

paving the way for the further research of immune checkpoint

blockade. Recently, another CTLA-4 antagonist, tremelimumab,

received priority review in the US FDA, supporting the combination

of anti-CTLA4 antibody, tremelimumab, and the anti-PDL-1

antibody durvalumab for the treatment of patients with

unresectable hepatocellular carcinoma. CTLA-4 and CD28 are co-

receptors that bind to CD80 (B7-1) and CD86 (B7-2) to regulate T

cell activation. CD28 co-stimulation is required for T cell activation,

whereas CTLA-4 inhibits T cell responses by opposing the actions

of CD28-mediated co-stimulation (Figure 1). CTLA-4 is highly

expressed on activated and exhausted CD4 T cells, Tregs, activated

and exhausted CD8 T cells, and in some tumor cells (134). A

correlation has been observed between high levels of CTLA-4

expression and poor cancer prognosis (135). Blocking Treg
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function and the CTLA-4 pathway could constitute an effective

synergistic mechanism to enhance antitumor activity by increasing

the immune response. CTLA-4 blockade was assessed in 239

ongoing studies in different therapeutic combinations as of early

2023 (31).

2.4.1.7.5 The role of PD-1 (CD279)

PD-1 is another membrane-bound co-inhibitory receptor

expressed across hematopoietic and non-hematopoietic cells. The

PD-1 receptor was described in the 1990s (136). PD-1 binds its

ligands, PD-L1 and PD-L2 which are found on APCs, endothelial

cells, cancer cells, mast cells and lymphocytes (137). PD-1 negatively

regulates T cell-mediated responses via PD-L1 (138) (Figures 1, 2).

Moreover, PD-1 signaling can reduce secretion of IL-2, IFN-gamma,

and TNF-alpha cytokines as well as reduce cell proliferation (139).

PD-1-expressed on tumor-infiltrating T cells can bind to PD-L1 on

the surface of cancer cells or other cells; blockade of PD-1 signaling is

considered to be an effective way to restore T cell cytotoxic activity

(140). Several IgG1 anti-PD-L1 antibodies, including atezolizumab

(141) and avelumab (142) are able to induce cytotoxic or phagocytic

effects, including antibody-dependent cellular cytotoxicity (ADCC),

in addition to their PD-L1 blockade action. Initial studies targeting

PD-1 and PD-L1 in advanced solid tumors allowed for the

development of the first PD-1 inhibitors, nivolumab and

pembrolizumab (143). Since the approval of pembrolizumab in

2014, the clinical development of PD-1 and PD-L1 inhibitors has

been significantly widened. So far three PD-1 (pembrolizumab,

nivolumab, and cemiplimab) and three PD-L1 (atezolizumab,

avelumab, and durvalumab) inhibitors have been approved for

cancer therapy, with numerous molecules in development (144).

Lack of sustained response and development of resistance

mechanisms remains a clinical issue during anti-CTL-A4 and anti-

PD-1/anti-PD-L1 therapy. Key mechanisms underlying resistance to

PD-L1 therapies include: loss of PD-L1 expression, the expression of

soluble forms of the receptor, non-canonical WNT ligand-activation

inhibiting T cell function, loss-of-function mutations in JAK1/2

leading to the decreased expression of PDL-1 or activation of

alternative immune checkpoints, e.g., TIM-3 and LAG-3 (145)

(Figure 1). Anti-PD-1/anti PD-L1 blockade was assessed across

different indications and combinations in 1665 studies at the

beginning of 2023 (31).

2.4.2 Humoral mechanisms
The immunosuppressive TME is influenced by several

metabolic, humoral and regulatory pathways. A deeper

understanding of these mechanisms enables the development of

novel possibilities for therapeutic intervention. Some of these

mechanisms and their importance are discussed below and shown

on Figures 1, 2.

2.4.2.1 Cytokine shift into Th2 profile

Immunosuppression within the TME is characterized by a shift

from a Th1 anti-inflammatory to a Th2 immunosuppressive

cytokine profile (Figures 1, 2). Cytokine-based therapies are being

widely investigated in clinical trials – there were 805 registered
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studies assessing cytokines in different clinical settings at the

beginning of 2023 (31).

2.4.2.2 The role of chemokines in the TME

CTLs do not express chemokine receptors and therefore have

difficulty infiltrating the TME. A recent proof of concept report

showed promising results for a tumor re-programming therapy,

which selectively enhanced local CTLs infiltration in patients with

metastatic triple negative breast cancer. Patients received a

chemokine-modulating regimen consisting of rintatolimod,

selective TLR3 ligand, IFN-alpha, and concomitant therapy with

cyclooxygenase-2 (COX-2) inhibitor celecoxib during their follow

up pembrolizumab therapy. Significant increases of intratumoral

type 1 immune antitumor markers upon treatment were observed,

including granzyme B, ratios of CD8alpha/FOXP3 and granzyme/

FOXP3, as well as CXCL10 and CCL5. In contrast, neither the Tregs

marker Foxp3, nor Tregs attractants CCL22 or CXCL12 were

enhanced. Three out of six patients had stable disease and an

additional patient had a partial response (146). Chemokine based

therapies are broadly assessed in clinical trials with 101 trials

assessing chemokines in combination with other therapies (31)

2.4.2.3 Inhibition of type 1 IFNs function

Type 1 IFNs are indispensable to the development of antitumor

immunity by enhancing intratumoral CTL-DC crosstalk (147), and

increasing of NK and M1 macrophages activity in the TME (148).

Moreover, the efficacy of radiotherapy, chemotherapy and

immunotherapy rely to a great extent on type 1 IFN signaling

within tumors (149). Drugs inducing type 1 IFN responses are used

widely as adjuvants for existing therapies (150). There is some

evidence that type 1 IFN signaling also exerts a negative effect on

antitumor immunity. Namely, chronic type 1 IFN signaling

stimulates the immune response leading to an exhaustion state

(151). These events lead to a defective pro-inflammatory cytokine

production, adaptive resistance to therapy, and decreased activity of

antigen-specific cells. In early 2023, there were 18 studies assessing

type 1 IFN in cancer patients (31).

Moreover, in cancer, the cGAS-STING path appears to be a

major innate immune pathway that can stimulate DC activation

and T cell priming against tumor antigens due to stimulation of IFN

genes. It has been shown, that radiotherapy-induced DNA damage

leads to the formation of double-stranded DNA fragments

recognized by cGAS in the cytosol. Indeed, irradiated tumor cells

can activate this pathway stimulating the immune response and

enhancing radiation efficacy (152, 153). Defects in cGAG/STING

signaling induced by mutations, epigenetic control, or silencing,

affect this mechanism and diminish the antitumor immune

response in several malignancies (154). Therapeutic strategies

engaging this pathway include the use of STING agonists (155).

These modalities could be an attractive clinical approach to initiate

de novo inflammation, DC activation, and T cell priming, especially

in non-T cell-inflamed tumors. At the beginning of 2023, there were

13 trials assessing different combinations of immunotherapy with

novel STING agonists in various indications, including TAK-500,

or GSK3745417 (31).
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2.4.3 TME-dependent metabolic mechanisms
2.4.3.1 The role of the NO/iNOS pathway

Along with arginase, iNOS is considered to be a regulator of

immune suppression in the TME. However, the activation of these

two regulators is competitive and depends on the polarization of the

macrophages. M1 macrophages express iNOS, which metabolizes

arginine to NO (nitric oxide) and citrulline, whereas M2

macrophages express arginase 1 and arginase 2 enzymes, which

hydrolyze arginine to ornithine and urea. The M2 arginase pathway

limits arginine availability for NO synthesis. The suppressive effects

of NO on T cell function are mediated by the inhibition of the

JAK3/STAT5 pathway, the reduction of MHC class II expression,

and the induction of T cell apoptosis (156). Furthermore, NO can

induce T cell anergy (157)and recruit MDSCs, Tregs, M2

macrophages and Th2 cells to the TME, to develop “cold” tumors

(97). Additionally, NO inhibits the production of IL-12 by DCs and

M1 macrophages (158). At the beginning of 2023 there were 13

studies targeting the NO/iNOS pathway in cancer patients (31).

2.4.3.2 Impact of arginase-1 and arginase-2 pathway

This pathway promotes the catabolism of arginine into urea and

ornithine in tumors, which further utilize these metabolites for

collagen biosynthesis (159). M2 macrophages and MDSCs are

considered the regulators of arginine metabolism in the TME via

ARG1 expression (160). The expression of this enzyme is increased

in response to Th2 and immunosuppressive cytokines (e.g., IL-4,

IL-13, IL-10, TGF-beta) contributing to the resolution of

inflammation. Deprivation of arginine has a negative effect on

tumor growth via autophagy, apoptosis, and cell cycle arrest

(161). In addition, it decreases T cell signaling, proliferation, and

IFN-gamma production (162). ARG1 expression by MDSCs favors

the generation of IDO1-expressing, immunosuppressive DCs (163).

The inhibition of ARG1 and ARG2 activity has shown positive

results across numerous cancer models by reducing myeloid-driven

immune suppression (164), however, there were only 2 studies

assessing ARG1 and ARG2 in cancer patients at the beginning of

2023 (31).

2.4.3.3 The role of the adenosine pathway

The cell surface ectonucleotidases, CD39 and CD73 regulate the

conversion of extracellular adenosine triphosphate (eATP) to

adenosine. Elevated levels of hypoxia-inducible factor -1 alpha

(HIF-1 alpha), IL-1 beta, IL-6, TNF-alpha, TGF-beta were shown

to raise CD39 and CD73 levels (165) (Figure 1). Adenosine supports

immunosuppression via the adenosine A1 receptor (A1R),

adenosine A2A (A2AR), adenosine A2B (A2BR) and adenosine

A3 (A3R) receptors (166) expressed on immune cellss (167), and

some tumor cells. The A2A receptor promotes the proliferation and

immunosuppressive function of Tregs (168) while inhibiting CTLs

proliferation, cytotoxicity and ant-tumor cytokine production

(169). High adenosine level may stimulate macrophage

differentiation into M2 phenotype and enhance their VEGF, IL-6

and IL-10 synthesis (170). Another population of highly

immunosuppressive cells, MDSCs, produces extracellular

adenosine in the TME after TGF-beta-induced expression of
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CD39 and CD73 (171). Additionally, adenosine can stimulate the

accumulation of MDSCs within TME and promote MDSCs

expansion (172). Moreover, activation of A2AR on neutrophils,

M1 macrophages, NK cells, Th1 cells and DCs inhibited antitumor

cytokines and chemokines production (173). Finally, the adenosine

stimulated cancer cells result in enhanced proliferation, migration

and metastasis in enhanced proliferation, migration and metastasis

(174). With all this data, blocking adenosine signaling is considered

to be a feasible approach to change the immunosuppressive TME.

Clinical trials targeting the A2A receptor in patients with refractory

renal cell cancer and other indications are in progress (175). A

completed phase 1 study in metastatic castration resistant prostate

cancer (mCRPC) showed that mCRPC can be sensitive to A2AR

blockade with ciforadenant. Furthermore, the cytokine changes

observed provided evidence of treatment-induced inflammatory

response (176). The potential advantage of this therapy is, that it

is suitable for combination with other anti-adenosine agents

targeting the pathway at a different level (e.g., A2AR with anti-

CD73), and with other types of immunotherapies. The main

limitations of these agents are the short half-lives, limited efficacy

in monotherapy, and uncertainty regarding the best combination

approaches. At the beginning of 2023, the blocking of the adenosine

pathway was assessed in 85 clinical trials (31).

2.4.3.4 The role of IDO1/tryptophan and the
kynurenine pathway

IDO1 is an enzyme catalyzing tryptophan, in the initial step of

the kynurenine pathway. IDO1 is expressed by tumor cells,

tolerogenic DC cells, MDSCs cells and fibroblasts (177).

Tryptophan deprivation leads to T cell cycle arrest and induces T

cell anergy (178) (Figure 1). Its immunosuppressive catabolite,

kynurenine, mediates the differentiation of CD4+ T cells into

Tregs (179), and inhibits CTLs survival and proliferation (180).

Kynurenine was also reported to dampen NK cell function and

proliferation (181). Drugs targeting the IDO1 pathway are currently

in early-phase clinical trials or in preclinical development. IDO1

pathway-inhibiting drugs in trials include indoximod, NLG919

and INCB024360. Ongoing trials combine indoximod with

conventional chemotherapy. Other trials assess the combination

of INCB024360 or indoximod with checkpoint inhibitor therapies.

There were 23 studies investigating agents blocking the IDO1

pathway at the beginning of 2023 (34).

2.4.3.5 Hypoxia-associated mechanisms

The presence of hypoxic conditions in the TME is associated

with rapid tumor growth and influences significantly the immune

status within the tumor (Figure 1). The relationship between

hypoxia and immune suppression in the TME is linked to an

impairment of type 1 IFN signaling, upregulation of immune

checkpoint molecules, and the extracellular TGF-beta and

adenosine levels (182). The response to hypoxia is driven by

HIF-1 alpha, HIF-2 alpha, HIF-3 alpha, which are oxygen-

sensitive transcription factors. One of the most important

immunosuppressive mechanisms promoted by hypoxic conditions

is the effect on TGF-beta levels. It has been shown, that under
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hypoxic conditions, the HIF-1 alpha level correlated with the

activated TGF-beta signaling pathway (183). Moreover, HIF-1

alpha-mediated the switch in TGF-beta function from inhibiting

to promoting glycolysis (184). Additionally, HIF-1 alpha-dependent

induction of FoxP3, a key transcriptional regulator for Tregs was

sufficient to drive Tregs abundance and activity (185). This implies,

that increased levels of TGF-beta could accentuate the

immunosuppressive impact of Tregs in the TME. An additional

link between the PI3K/AKT/mTOR pathway and hypoxia can

promote metabolic reprogramming of tumor cells. This process of

aerobic glycolysis called the Warburg effect (186) relies on the

predominant diversion of pyruvate to lactate. Although the genetic

events leading to the Warburg effect are not fully known, the PI3K/

AKT/mTOR pathway plays an important role in this process.

Activation of AKT promotes aerobic glycolysis (187) and

expression of constitutively activated AKT results in a growth

factor-independent increase in glucose uptake and glycolytic rate

(188). The release of lactic acid contributes to acidity, which further

promotes the recruitment of Tregs into the TME. This effect further

suppresses anticancer immunity and represents one of the main

causes of anticancer immunotherapy failure (189). Hypoxia-

activated prodrugs are designed to target tumor cells resistant to

conventional therapies. Evofosfamide and tarloxotinib are currently

in active clinical development. A different approach targeting the

HIF pathway include the HIF-2 allosteric inhibitor belzutifan (190).

At the beginning of 2023, there were 102 trials registered targeting

hypoxia in cancer patients (31).

2.4.4 Other mechanisms
2.4.4.1 The role of PGE2

PGE2 is a lipid derivative generated by the effects of the enzyme

COX-2 following the enzymatic conversion from arachidonic acid.

In the TME, PGE2 is synthesized by myeloid, stromal and

cancer cells (191). In cancer, PGE2 is considered as a key

immunosuppressive mediator inhibiting CTLs, NK cells and the

type 1 inflammation response, while promoting Tregs, MDSCs

expansion and type 2 inflammation (Figure 1) (192). Targeting

the production, degradation and responsiveness to PGE2, provides

tools to modulate the patterns of immunity in a wide range of

malignancies. There were 11 ongoing studies investigating the

inhibition of this pathway in cancer patients reported at the

beginning of 2023 (31).

2.4.4.2 The emerging role of extracellular vesicles

Extracellular vesicles (EVs) consist of variety of subtypes,

including: exosomes, microvesicles, ectosomes, oncosomes, and

apoptotic bodies (193). Exosomes are nanosized vesicles actively

secreted by fibroblasts as well as endothelial, epithelial, neuronal,

immune and cancer cells (194). Exosomes secreted by tumor cells

can play important roles in cancer progression and invasion,

including TME remodeling, tumor metastasis and tumor-

associated immunosuppression (195). Tumor cells can release

growth factors, glycans, lipids, metabolites, microRNAs (miRNA)

(196) and DNA (197) as soluble molecules but also encapsulated or

bound to extracellular vesicles (198). Tumor-derived EVs can

contain immunosuppressive molecules such as PD-L1, TGF-beta
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1, FasL, TRAIL, and NKG2D ligands, which make them important

mediators of tumor immune evasion (199). Among the different

types of EVs, one group is classified as small extracellular vesicles

(sEVs). These are small membrane vesicles of a diameter

approximately 100 nm (200). sEV might be involved in genetic

exchange between cells by transfer of mRNAs and miRNAs (201).

They may be also engaged in remodeling the ECM of pre-metastatic

niches and facilitate the formation of immunosuppressive

environments in distant organs. Exosomal PD-L1 may become

targe t s for ant i -PD-1/PD-L1 ant ibody therapy and

chemotherapeutic drug carriers (202) helping to reprogram the

immunosuppressive TME. Recently, it was shown that PD-L1 levels

from EVs predict a durable response to immune checkpoint

inhibitors and survival in patients with NSCLC (203). Several

production and pharmacokinetic challenges have to be overcome

to enable wide therapeutic usage of sEVs (204). The FDA has not

approved to date any exosome products, but exosome based

therapies were investigated in 50 clinical trials in cancer patients

in the beginning of 2023 (31).

2.4.5 Tumor intrinsic immune
escape mechanisms

Cancer cells express various cytokines, chemokines, and growth

factors. These include, but are not limited to IL-6, IL-8, CCL2, M-CSF,

granulocyte-macrophage colony-stimulating factor (GM-CSF),

CXCL10, CXCL12, VEGF-A, TGF-beta and G-CSF (205) among

others. These molecules contribute to a variety of functions related to

systemic inflammation and cancer progression (Figure 1). Another way

of influencing tumor cell-dependent immune escape mechanisms is

offered via epigenetics. Several studies revealed a pivotal role of

epigenetics in tumor cell regulation. Epigenetic mechanisms in the

TME are involved in the upregulation of IL-6 and G-CSF and the

downregulation of CXCL9 and CXCL10 via EZH2. These changes can

increase MDSCs recruitment into the TME and decrease T cells and

DC infiltration (206). It has been shown, that the expression of CCL2

and CCL20 could be increased by miRNA molecules (207). This

promotes immune escape, as CCL2 enhances the recruitment of

TAMs and Tregs into the TME. Increased expression of CCL20

plays a role in the recruitment of Th17 cells. Moreover, tumor cells

can secrete TGF-beta (Figures 1, 2), which suppresses M1

macrophages, NK cells, DCs and T cells immunity by regulating the

expression of miRNAs in tumor and NK cells (208). Another way of

immune escape is the expression of immune checkpoint molecules by

cancer cells such as PD-1, PD-L1, lymphocyte-activation gene 3

(LAG3), TIM3, T cell immunoreceptor with Ig and ITIM domains

(TIGIT), V-domain Ig suppressor of T cell activation (VISTA) and

human leukocyte antigen G (HLA-G) (Figure 1). Immune checkpoint

mechanisms help to maintain self-tolerance and protect against auto-

immunity in physiological conditions. However, in tumorigenesis,

these mechanisms are adopted by tumors to achieve immune escape

(209), as discussed below and as presented on Figures 1 and 2.

2.4.5.1 The emerging role of the glycocode

Many authors indicate that cancer-induced glycan signatures

called the “glycocode” could be considered a novel type of immune

checkpoint (210) (Figure 1). Cancer transformation causes altered
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glycosylation processes within tumor cells and within the TME.

One of such modifications is the expression of altered glycan

structures or lectin receptors on the cancer cell surface. Modified

glycan structures can bind the lectin receptors expressed on

monocytes, macrophages, DCs, TAMs and NK cells. Examples of

such modified glycan structures include sialic acid end-standing

glycans, N-acetylgalactosamine glycans (GalNAc) or Lewis X glycan

(211). Altered glycan responses can promote immune suppression

by modification of antigen-presenting cell functions, increasing

differentiation of M2 TAMs, diminishing CTLs differentiation

and decreasing NK cells activity (212). This results in enhanced

immune evasion within the TME, including stimulation of

immunosuppressive cytokines, decreased secretion of inflammatory

cytokines (213), and the induction of Th2 cells (214) and Tregs (215).

Changes in themetabolismof glycans canbe regulatedby transcription

factors, genetic and epigenetic changes or an altered metabolism

contributing to tumor cell proliferation and invasiveness (216).

Moreover, altered glycosylation of tumor proteins can create cancer

neo-antigens, which can be recognized by tumor-specific cytotoxic T

cells (217). The first clinical attempts at targeting the glycocode in the

TME showed encouraging results. Improved analytical methods and

the development of novel strategies for targeting the tumor glycocode

antigens could present a promising therapeutic strategy in the future.

2.4.5.2 Metabolic reprogramming – a hallmark of cancer

Metabolic reprogramming appears to be a key immunosuppressive

mechanism within the TME 293 (Figures 1, 2). The most

characteristic feature of metabolic reprogramming in cancer cells

is the induction of hypoxia, in addition to the existing hypoxia

present in TME, already discussed in one of the previous sections.

In summary, in cancer cells hypoxia regulates the expression of

multiple key genes involved in immunosuppression via HIF-1

alpha, TGF-beta secretion, increase of EMT, and the activation of

signaling pathways enhancing the recruitment ofMDSCs andTregs

into TME (218). Moreover, hypoxia impacts metabolic

reprogramming via the PI3K/AKT/mTOR pathway. It has been

shown that mTOR (mTORC1) regulates the expression of HIF-

1alpha (219), which can stimulate glucose uptake via enhancing the

expression of glucose transporters and glycolytic enzymes (220). As

we already mentioned above, oxidative glycolysis, known as the

Warburg effect, provides substrates for metabolic pathways to

produce protein, lipids, and nucleotides required for cell growth

and proliferation (221). The activity of the CDK8 kinase is also

considered a significant factor for metabolic reprograming as it

regulates the glucose transporter expression, glucose uptake,

glycolytic processes, as well as cell cancer proliferation and

growth, both in normoxia and hypoxia (222). Reprogrammed

pathways aid supporting the needs of rapid cell proliferation,

survival, migration, metastasis and resistance to cancer

treatments (223). In addition to the metabolic reprogramming of

tumor cells and immune cells in TME, the metabolism of the gut

microbiome has recently gained increasing attention on the anti-

tumor immune regulation. Microbiota-derived short-chain fatty

acids, such as sodium butyrate, promote the formation of memory

T cells and modulate Tregs function (224). Moreover, sodium
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butyrate promotes the proliferation of normal colon cells and

serving as a histone deacetylase inhibitor, epigenetically

suppresses the proliferation of cancerous colon cells undergoing

the Warburg effect (225).

2.4.5.3 The role of epigenetic mechanisms

Epigenetics examines mechanisms modifying the expression of

genes, without changing the DNA nucleotide sequence, reversibly,

heritably and adaptively (226). Epigenetic changes in genes

encoding tumor suppressors or antitumor cytokines, could lead to

an impaired anti-cancer immunity, immune escape, and drug

resistance, which results in tumor growth, progression and

metastasis (227). The best known epigenetic mechanisms

responsible for these processes are modifications of histone marks

and chromatin structures, alteration of DNA methylation and

changes in miRNA expression levels (228). The importance of

epigenetic mechanisms in cancer led to the development of new

molecules used as anticancer therapies (229).

2.4.5.3.1 Epigenetic modifications of histones and
modifications of chromatin structures

These include fixation to DNA of methyl groups and chemical

histone-post translational modifications. Histone-post translational

modifications can influence the chromatin structure via the

recruitment of regulatory proteins, and/or altering the charge of

histones (through acetylation). Histone deacetylases (HDACs),

histone methyltransferases (HMTs) and the family of bromodomain

and extra-terminal domain (BET) proteins, all three seem to be the

most involved factors in the cancerogenesis process (230)

involving epigenetic modifications, and as such, they are the target

of cancer therapies: inhibitors of histone deacetylases (HDACi),

histone methyltransferase inhibitors (HMTi), and histone reader

protein inhibitors (bromodomain and extra-terminal domain

proteins – BETi).

2.4.5.3.2 The role of HDACi

HDAC inhibitors can reduce tumor growth and promote

apoptosis (231). Treatment with HDACi was shown to increase

the expression of MHC-I molecules on tumor cells and the

expression of tumor antigens, enhancing the effects of cytotoxic

lymphocytes (232). HDACi can also increase the NK cell activity by

increasing the upregulation of NKG2D 397. It has been shown that

HDAC inhibitors can restore TP53 protein transcription and allow

resistant cancer cells to undergo apoptosis (233). There were 68

trials reported assessing HDAC inhibitors in different oncology

indications early in 2023 (34).

2.4.5.3.3 The role of HMTi/inhibitors of EZH2

EZH2 is a chromatin mark involved in gene silencing and

developmental regulation (234). Overexpression of EZH2 has been

observed in breast cancer, bladder cancer, prostate cancer and

melanoma (235). EZH2 is also activated in lymphomas through

several mutations (236). EZH2 inhibitors restore the secretion of

Th1-type chemokines, increase CTLs-tumor infiltration, inhibit

tumor progression, and they can improve the efficacy of anti-PD-

L1 agents (237). EZH2 inactivation reversed the resistance to anti-
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CTLA-4 and IL-2 immunotherapy and suppressed melanoma

growth in mice models (238). There were 22 trials assessing

EZH2 inhibitors in different cancer indications early in 2023 (31).

2.4.5.3.4 The role of BETi

Histone reader proteins bind to the histone structure and

interpret the histone code into functional outcomes. The BET

family of proteins are histone reader proteins binding acetylated

histones and modulating immune-response gene transcription

(239). In cancer cells, inhibition of the BET family reduces

cytokine production, NFkB activity, PD-L1 expression, and

increases natural killer cell-activating ligands (240). Furthermore,

BET proteins regulate chromatin remodeling and promote tumor-

associated inflammation. The inhibition of BET proteins stimulates

an anti-inflammatory effect within the TME (241). Bromodomain

proteins are considered an attractive target for anticancer

treatments. At the beginning of 2023 Bromodomain proteins

targeting drugs were assessed in 18 clinical trials (31).

2.4.5.3.5 Impact of DNA methylation

This process relies on the addition of a methyl group to cytosine

bases creating 5-methylcytosine at CpG sequences in gene-

promotor regions (242). These DNA methylation marks block

transcription, lead to long-term transcription repression and they

are associated with gene silencing. DNA methylation is carried out

by DNA methyltransferase enzymes. DNA methyltransferase

inhibitors (DNMTi) increase expression of tumor antigens

through the enhanced expression of MHC molecules and tumor

antigens (243). In addition, DNMTi can reactivate retroviruses

normally suppressed by DNA methylation in somatic cells (244).

This increases the recruitment of CTLs in the TME, the stimulation

of antitumor cytokine production, and it can also increase IFN

signaling (245). Targeting DNA methylation and EZH2 activity can

overcome melanoma resistance to immunotherapy via modulating

PD-L1 expression and/or T cell infiltration (246). Azacitidine,

decitabine or guadecitabine (247) with the newer molecule CC-

486, are examples of DNMTi drugs which are used in combination

with immunotherapy, and they could provide additional benefits to

patients with low PDL-1 expression (248). At the beginning of 2023,

there were 375 trials assessing these compounds in different cancer

indications and combinations (31).
2.4.5.3.6 Emerging role of miRNAs

miRNAs are single-stranded, noncoding small ribonucleic acid

(RNA) fragments. They can negatively regulate gene expression at

the posttranscriptional level (249). Pairing of miRNA with a target

messenger RNA (mRNA) can lead to the inhibition of translation

and to mRNA degradation (250). MiRNA-based drugs (miRNA

mimics or miRNA antagonists) are considered to be a promising

strategy for cancer therapy (251). There were 123 trials assessing

miRNA in different cancers early in 2023 (31).

2.4.6 Stroma dependent mechanisms
As described previously, stromal factors contribute to the

immunosuppressive TME (20). The tumor stroma consist mainly
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of cancer-associated fibroblasts (CAFs), endothelial cells, cancer

associated adipocytes (CAAs) and multipotent stem cells (MSCs);

in addition, collagen bundles and dense ECM characterize this

milieu with poor oxygen and nutrient availability (252).

CAFs contribute to tumor immune escape by promoting cancer

cell proliferation via the secretion of growth factors, the induction of

angiogenesis and through the remodeling of the ECM, which

supports tumor cell invasion (253). CAFs mediate tumor-

promoting inflammation via the secretion of cytokines and

chemokines, which in turn enhance the recruitment of immune

cells (254). Endothelial cells (ECs) constitute another subpopulation

of stromal cells (255). Tumor-associated ECs (TECs) form the

vascular inner layer of tumors (256). TECs are known to be

particularly important for T cell recruitment and activation,

tumor cell growth and invasion (257), as well as influencing

antitumor cell immune responses.

CAAs play an important role in tumorigenesis, tumor growth,

and metastasis (258). CAAs can support cancer cells by storing

energy as triacylglycerol and act as a source of lipids. Another

population of stromal cells in cancers are MSCs, which are found in

most cancers playing a central role in tumor growth, invasion, and

metastasis. These cells are able to interact directly with tumor and

immune cells in the TME (259). A dense stroma inhibits the

infiltration of immune cells into the TME (Figure 1). It was been

shown that the immature myxoid stroma was associated with lower

densities of tumor intraepithelial memory cytotoxic T cells and

stromal M1-like macrophages (260). Collagen density is relatively

large in the TME, which can affect the phagocytotic ability of

macrophages (261). In addition, an increase in interstitial

pressure in the stroma due to hyaluronan deposits contributes to

the inhibition of immune cell penetration into the TME, posing a

mechanism of resistance to immunotherapies and a sign of poor

disease prognosis in some indications such as pancreatic

cancer (Figure 1).

Targeting the pro-fibrotic function of CAFs in clinical settings

was performed using pirfenidone, an antifibrotic agent and TGF-

beta antagonist, as well as tranilast. It was noted that the antitumor

effects were enhanced when targeting CAFs in combination with

effector-stimulatory immunotherapy such as dendritic cell-based

vaccines (262). CAFs targeted therapies are being assessed in 63

clinical trials (31).
3 Therapeutic possibilities targeting
multiple immunosuppression
mechanisms in the TME

3.1 The role of polyspecific
antibody combinations

Polyspecific monoclonal antibodies (PsMabs) are genetically

engineered proteins that can simultaneously engage two or more

different types of epitopes (263). They show several advantages over

monoclonal antibodies. They can redirect specific polyclonal

immune cells such as T and NK cells to tumors and
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simultaneously block two different pathways with unique or

overlapping functions in pathogenesis. This reduces the cost of

development in comparison to multiple single epitope-based

antibodies in combination therapy, or compared to the

production of CAR-Ts (264). PsMabs antibodies may also be

conjugated to biomaterials or nanoparticles, to achieve prolonged,

local release (265). Improving antibodies by pH activation and

glycosylation (266) could enhance the specificity and potency of

immunotherapies and limit unwanted toxicity.
3.2 Vaccines as a promising tool to
overcome immunosuppression

Anticancer vaccines can be divided into four categories: cell-

based vaccines, peptide-based vaccines, viral-based vaccines, and

nucleic acid-based vaccines (267). Cell-based cancer vaccines are

prepared from whole cells or cell fragments, containing tumor

antigens and inducing a broad antigen immune response. DCs

vaccines is an example of a cell-based vaccine category (268).

Personalized neoantigen cancer vaccines based on DCs showed a

promising antitumor effect. However, long preparation process and

the high cost are factors limiting development of these type of

vaccines. Engineered virus vaccines can carry tumor antigens to

activate the immune response. In the case of oncolytic viruses, they

can lyse the tumor cells, releasing additional tumor antigens, further

increasing the vaccine’s effectiveness, and contributing to long-term

immune memory. Again, the clinical application of these vaccines is

limited by the complex preparation process. Peptide-based vaccines

induce a robust immune response against tumor antigens. For

example, virus-like particles (VLP) vaccines, containing viral

protein complexes that mimic the native virus structure without

being infectious, showed promising antitumor activity activating

cellular immune responses (269). Nucleic acid vaccines induce

strong MHC-I mediated CTLs responses (270). Nucleic acid

vaccines can simultaneously deliver multiple antigens to trigger

humoral and cellular immunity. Additionally, they can encode full-

length tumor antigens, allowing antigen presenting cells (APCs) to

present various epitopes and antigens simultaneously. The nucleic

acid vaccine preparation is simple and fast, which facilitate

development of personalized anticancer vaccines. Nanoparticle

systems have shown promising results as delivery vectors for

anticancer vaccines in preclinical research. In addition, neo-antigen

vaccines in combination with checkpoint blockade therapies using

anti-PD-1 and anti-PD-L1 antibodies showed potent therapeutic

effects in patients with advanced cancer, however this therapy is in

the early stages of development (271). Early in 2023, there were 495

clinical trials assessing anticancer vaccines (31).
3.3 Radiation as an additional tool to
stimulate anti-tumor responses

The immunosuppressive TME contributes to poor antigen

presentation and protects the tumor from immune defense.

Radiation may reveal tumor antigens, thus modifying the TME and
Frontiers in Oncology 17
improving innate and adaptive immune responses (272). Radiation

therapy can promote an immunogenic form of cell death stimulating

the activation of a tumor-targeting immune response (273) and it is

frequently used in combination with other forms of targeted therapy

or immunotherapy. There were more than 4000 trials assessing usage

of radiotherapy and radiation in cancer patients in different regimens

and settings at the beginning of 2023 (31).
3.4 The emerging role of nanomedicine
and nanoparticle applications

Nanomedicine can be defined as a use of nanotechnology

materials of a size between 1 and 200 nm for medical purposes

(274). Nanomedicines, due to their small size, plasticity, and

heterogeneous properties, can selectively reach the tumor tissue,

they can be used as carriers of drugs, to improve bioavailability and

to extend the half-life of molecules, or they can be used to release

therapeutic agents in answer to stimuli. Examples of nanomedicines

undergoing research are: lipid-based (liposome, solid lipids, stealth

liposomes), polymer-based, inorganic (metal, silica, hafnic oxide

nanoparticles), viral, and drug-conjugated nanoparticles (antibody

drug conjugates, polymer drug conjugates, polymer protein

conjugate). Nanocarrierrs can change the properties of compounds,

for example coating the nanoparticles with polyethylene glycol

(PEG), a hydrophilic and non-ionic polymer, increases their

solubility and stability (275). Several formulations are approved for

clinical usage, including liposomal danorubicin and doxorubicin,

nanoparticle albumin bound paclitaxel, liposomal PEGylated

irinotecan, polyethylene glycol–polylactide (PEG–PLA), polymeric

micelle (276). Nanoparticles could be delivered to the tumor tissue in

several ways. Passive targeting relies on the leaky vasculature within

tumors, allowing nanoparticles to reach cancer cells via the

fenestrations. Active targeting uses ligands on nanoparticles’ surface

which recognize and bind receptors overexpressed on tumor cells.

Triggered release allows nanoparticles to act if exposed to an external

stimulus such as a magnetic field or light. Changes in pH, redox, ionic

strength, and stress in target tissues are examples of internal stimuli
306. An emerging method is the use of theranostics, which combines

both, the ability to diagnose and treat cancers. In theranostics, not

only can the release of the drug be monitored, but the effects of the

drugs in the tumor tissue can also be visualized (277). Nanoparticles

could improve the administration and efficacy of immunotherapies

and contribute to the further progress of cancer treatment.

Nanoparticles are able to overcome physical and biological

obstacles in the delivery of immunomodulating therapies to the

TME, and they are able to modify the TME to increase tumor

immune infiltration (278). The exceptional heterogeneity of

nanoparticles places this field at the top of the research interest,

with 54 trials assessing nanoparticles in clinical settings (31).
4 Conclusions

The immune host response can effectively eliminate cancer

cells, or on the contrary, support cancer growth. The final
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outcome of the immune response depends on mutual interactions

between immune, stromal, and tumor cells involved in the TME.

Numerous immune escape mechanisms have been identified within

tumors. These mechanisms can be associated with tumor, immune,

and stromal cells, and they can present a variety of components

including humoral, metabolic, epigenetic, and genetic factors

among others. The knowledge of tumor-escape mechanisms

enables targeted interventions, as well as the implementation of

combination therapies to overcome them. However, the limitations

in the use of combination therapies depend on the onset of adverse

effects and toxicities in patients, limiting the therapeutic efficacy of

these combinations. These limitations pose a clear barrier to the use

of newly-discovered drugs, able to counteract pro-tumorigenic

pathways. Therefore, additional efforts in oncology research and

clinical development strategies should be implemented in the future

to mitigate drug toxicities, and to enable more complex

combinations of therapeutic agents.

As shown in this article, the application of modern technologies,

including nanomedicines, ICIs, adoptive cell, and epigenetic

therapies can in some situations reprogram the TME and shift

the host response into an antitumor response. These events

translate into series of breakthroughs in cancer therapies

currently observed in clinical practice. As we mentioned above,

joined efforts between scientists and clinicians offer the potential to

create even greater hopes for the identification and clinical

application of new TME-targeting drugs in the near future while

maintaining low toxicities.
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