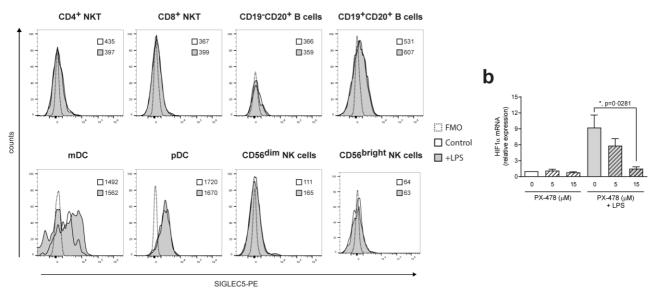
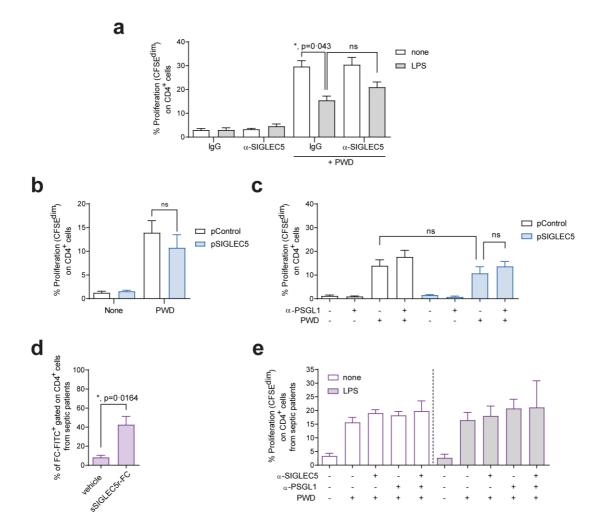
1 SUPPLEMENTARY MATERIAL


2

5


3 SUPPLEMENTARY FIGURES

4 Figure Supplementary 1

6Figure S1. SIGLEC5 expression after LPS stimulation in some immune cells and PX-478 inhibits HIF1α expression7in human monocytes. (a) SIGLEC5 expression on the cell surface of a wide panel of blood circulating immune populations8stimulated (grey filled line) or not (black clear line) with lipopolysaccharide (LPS), including B lymphocytes, Natural9Killer (NK) cells, and myeloid and plasmacytoid dendritic cells (DC). (b) Relative expression (mRNA) by RT-qPCR of10HIF1α on CD14+ cells from HV, pre-treated or not with different concentrations of a specific inhibitor of HIF1α (PX-478)11for 3 hours, and then challenged (grey filled columns) or not (black clear columns) with LPS (10 ng/mL) for 16 hours is12shown (n=7). Data shown as mean ± SEM. Statistical analysis was performed using paired t-test (**p<0.01).</td>

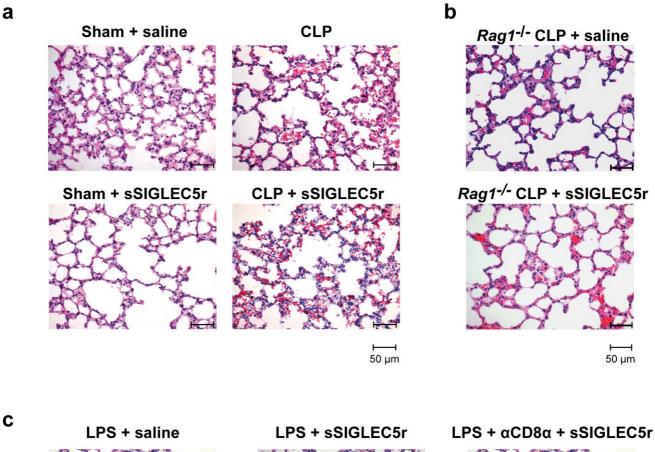
15 Figure S2. Effect of the SIGLEC5/PSGL1 axis in CD4⁺ T cell proliferation. (a) Proliferation levels (CFSEdim) of CD4⁺ 16 cells from HVs, stimulated or not with PWD and co-cultured for 5 days with autologous monocytes pre-challenged (grey 17 filled columns) or not (black clear columns) with 10 ng/mL of LPS for 16 hours. In some indicated conditions, a blocking antibody against SIGLEC5 (a-SIGLEC5) or an unspecific IgG was added (n=3, left panel). (b) Proliferation levels 18 19 (CFSEdim) of CD8+ cells from HVs, stimulated or not with PWD and co-cultured for 5 days with autologous monocytes 20 pre-nucleofected (blue filled column) or not (black clear column) with an expression vector of SIGLEC5 (pSIGLEC5) (n=4). (c) Proliferation levels (CFSE^{dim}) of CD4⁺ cells from HVs in presence or not of PWD and co-cultured for 5 days 21 22 with autologous monocytes pre-nucleofected with an expression vector of SIGLEC5 (pSIGLEC5, blue filled columns) or 23 an empty vector (pControl, black clear columns) (n=6). In some conditions, a blocking antibody against PSGL1 (α -PSGL1) 24 was added. (d) Quantification of the binding of sSIGLEC5r-FC to CD4⁺ cells from septic patients (n=4). The binding was 25 revealed by an antibody (α -FC-FITC). (e) Proliferation levels (CFSE^{dim}) of CD4⁺ cells from septic patients in presence or 26 not of PWD and co-cultured for 5 days with autologous monocytes pre-challenged (grey filled columns) or not (black clear 27 columns) with 10 ng/mL of LPS for 16 hours. In some conditions, the α -PSGL1 and α -SIGLEC5 antibodies were added 28 (n=6). Data shown as mean \pm SEM. Statistical analysis was performed using paired t-test (*p<0.05; **p<0.01).

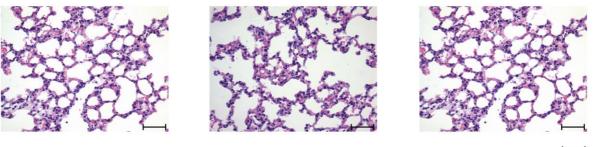
30 Suplementary Figure 3

Binain	g Site to Sialic Ac	id					TM do	main	ITI mo		SLAN mo	
Ig-like V-type		Ig-like C2-type	e 1	lg-like (C2-type	2	_		_			
19	136 146	6	229	236		330	442	462	518	523	542	547
b												
	PVYELQVQKSVTV										3	
	FKVATPYSI	-									7	
	FTVTVPKDI				~						6	
PD-L2		LYIIEHGSNVT									0	
	DTQEKE						~				3 1	
	VIHVTK						~				2	
	LEVQVPEDE										6	
	HSITVTTVA										4	
	HVAOPAV										0	
	LOVTVPDKF										7	
PD-L1 PD-L2 ICOSL CD80 D86 B7-H3 B7-H4	VQTCSERF IQF MM LNE LVH		-VH- -YHI: -VY-: -VH- -EFKI	P	GEE QNS S GKE SFA GKD	DLKVQH KVENDJ SLENVI GDMNIV KFDSVH EGQDQQ ELSEQI GNELTH	ISSYF ISPHF DSRYF VPEYK ISKYM GSAYA DEMFF FLDDS	QRARLI ERATLI NRALMS GRTSFI NRTALI GRTAVI GRTAVI	LKDQ LEEQ SPAG TIF DSD- FPDL FADQ TGT	7 5 7 5 7 7 6	1 3 9 2 9 9 1 3 8 02	
CTLA-4 ILDR2												
ILDR2	VQKKN <mark>C</mark> SLSIGDA								18			
ILDR2 Siglec5 VISTA	DHHGNFSITMRNI	LTLL <mark>DSGLYC</mark> C	LVVE	IRHHHSEH	RVHGAM	ELQV		1	36			
ILDR2 Siglec5 VISTA PD-L1	DHHGNFSITMRNI LSLGNAALQITDV	LTLL <mark>DSGLYC</mark> /KLQDAGVYRC	LVVE: MISY(IRHHHSEHI GGA-DYKR-	RVHGAM	ELQV T		1 1	36 09			
ILDR2 Siglec5 VISTA PD-L1 PD-L2	DHHGNFSITMRNI LSLGNAALQITDV LPLGKASFHIPQV	LTLL <mark>DSGLYC</mark> /KLQDAGVYRC /QVR <mark>DEGQYQ</mark> C	LVVE MISY IIIY	IRHHHSEHI GGA-DYKR- GVAWDYKY-	RVHGAM I L	ELQV T TLK		1 1 9	36 09 8			
ILDR2 Siglec5 VISTA PD-L1 PD-L2 ICOSL	DHHGNFSITMRNI LSLGNAALQITDV LPLGKASFHIPQV MLRGDFSLRLFNV	LTLLDSGLYCC /KLQDAGVYRC /QVRDEGQYQC /TPQDEQKFHC	LVVE MISY IIIY LVLS	IRHHHSEH GGA-DYKR- GVAWDYKY- QSL-GFQE-	RVHGAM I VL	ELQV T TLK SVE		1 1 9 1	36 09 8 11			
ILDR2 Siglec5 VISTA PD-L1 PD-L2 ICOSL CD80	DHHGNFSITMRNI LSLGNAALQITDV LPLGKASFHIPQV MLRGDFSLRLFNV DITNNLSIVILAI	LTLLDSGLYCC /KLQDAGVYRC /QVRDEGQYQC /TPQDEQKFHC LRPSDE <mark>GTYEC</mark>	LVVE MISY LVLS VVLK	IRHHHSEHF GGA-DYKR- GVAWDYKY- QSL-GFQE- YEKDAFK	RVHGAM I VL -REHLA	ELQV T TLK SVE EVT		1 1 9 1 1	36 09 8 11 01			
ILDR2 Siglec5 VISTA PD-L1 PD-L2 ICOSL CD80 CD86	DHHGNFSITMRNI LSLGNAALQITDV LPLGKASFHIPQV MLRGDFSLRLFNV DITNNLSIVILAI SWTLRLHNI	LTLLDSGLYCC /KLQDAGVYRC /QVRDEGQYQC /TPQDEQKFHC LRPSDEGTYEC LQIKDKGLYQC	LVVE: MISY(LVLS(VVLK IIHH)	IRHHHSEHI GGA-DYKR- GVAWDYKY- QSL-GFQE- YEKDAFK KKPTGMIR-	RVHGAM I VL -REHLA IH	ELQV T TLK SVE EVT QMNS-E	 ELS	1 1 9 1 1 9	36 09 8 11 01 9			
Siglec5 VISTA PD-L1 PD-L2 ICOSL CD80 CD86 B7-H3	DHHGNFSITMRNI LSLGNAALQITDV LPLGKASFHIPQV MLRGDFSLRLFNV DITNNLSIVILAI SWTLRLHNI LAQGNASLRLQRV	LTLLDSGLYC VKLQDAGVYR VQVRDEGQYQC VTPQDEQKFHC LRPSDEGTYEC LQIKDKGLYQC VRVADEGSFTC	LVVE: MISY(IIIY(LVLS(VVLK IIHH) FVSI)	IRHHHSEHI GGA-DYKR- GVAWDYKY- QSL-GFQE- YEKDAFK KKPTGMIR- RDF-GSAA-	RVHGAM I VL -REHLA IH V	ELQV T TLK SVE EVT QMNS-F SLQVAQ	 ELS 2VA	1 1 9 1 1 9	36 09 8 11 01			
Siglec5 VISTA PD-L1 PD-L2 ICOSL I CD80 CD86 B7-H3 B7-H4	DHHGNFSITMRNI LSLGNAALQITDV LPLGKASFHIPQV MLRGDFSLRLFNV DITNNLSIVILAI SWTLRLHNI	LTLLDSGLYC VKLQDAGVYRC VQVRDEGQYQO VTPQDEQKFHC LRPSDEGTYEC LQIKDKGLYQC VRVADEGSFTC VQLTDAGTYKC	LVVE: MISY(LVLS(VVLK IIHH) FVSI) YIIT;	IRHHHSEHI GGA-DYKR- GVAWDYKY- QSL-GFQE- YEKDAFK KKPTGMIR- RDF-GSAA- SKGKGNAN-	RVHGAM I VL -REHLA IH V	ELQV T SVE EVT QMNS-F SLQVAQ EYK	 ELS 2VA	1 9 1 1 9 1 1	36 09 8 11 01 9			

	۶	

	% Identity	% Similarity
VISTA	15.4	33.6
PD-L1	25.2	38.2
PD-L2	15.1	27.7
ICOSL	18·2	26.6
CD80	16.3	30.4
CD86	16.5	32.2
B7-H3	19	31
B7-H4	15.8	33.8
CTLA-4	14.1	22.5
ILDR2	18.8	30.5

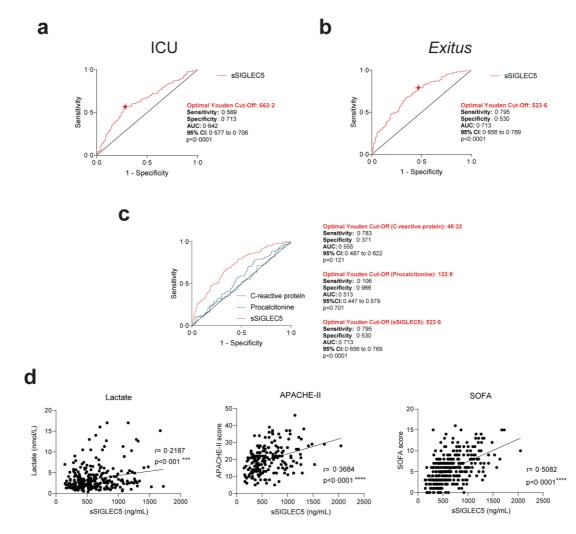

31


32 Figure S3. Human SIGLEC5 exhibits Ig-like-V-type regions and high similarity to other immune checkpoints. (a)

33 Schematic representation of human SIGLEC5 protein primary structure. Black and grey boxes represent the main domains,

- 34 interconnecting lines represent disulphide bridges, red ticks on the Ig-like-V-type domain represent the amino acids
- 35 responsible for the sialic acid binding. The transmembrane domain (TM) is also displayed. (b) Multiple sequence alignment
- 36 of the Ig-like-V-type domains of SIGLEC5 and other proteins postulated and confirmed as immune checkpoints.
- 37 DxGxYxC motifs are highlighted in blue and the amino acids responsible for the sialic acid binding are highlighted in red.
- 38 Canonical and non-canonical cysteine implicated on the inter-disulphide bridge are represented in green and yellow,
- 39 respectively. (c) Percentages of identity and similarity between the Ig-like-V-type domains of SIGLEC5 and other proteins
- 40 postulated and/or confirmed as immune checkpoints.
- 41

42 **Suplementary Figure 4**



43

50 µm

Figure S4. SIGLEC5 induced a acute lung injury in endotoxemia in vivo mice models in a CD8α-dependent manner. 44 45 (a) A set of representative images of Haematoxylin/Eosin stained lung sections from CLP-mice and Sham-mice in presence 46 or not of sSIGLEC5r at 400x magnification are shown; scale bar 50 µm. b) A set of representative images of 47 Haematoxylin/Eosin stained lung sections from Rag1-/- CLP-mice in presence or not of sSIGLEC5r at 400x magnification 48 are shown; scale bar 50 µm. (c) A set of representative images of Haematoxylin/Eosin stained lung sections from LPS-49 mice depleted or not with an anti-mouse CD8a in presence or not of sSIGLEC5r at 400x magnification are shown; scale 50 bar 50 µm.

54 Figure S5. Soluble SIGLEC5 levels on plasma act as a better predictor of *exitus* than the admission to ICU in septic patients, C-reactive protein and procalcitonine and correlates with clinical prognosis indicators. (a) Receiver-55 56 operating-characteristic (ROC) curve describing the predictive performance of plasmatic sSIGLEC5 concentration at sepsis diagnosis (red line; area under the curve [AUC] of 0.642 [95% CI, 0.577 to 0.706], p<0.0001), to identify which patients 57 58 of the cohort (n=346) would go to the ICU at the time of admission. (b) Receiver-operating-characteristic (ROC) curve 59 describing the predictive performance of plasmatic sSIGLEC5 concentration at sepsis diagnosis (red line; area under the 60 curve [AUC] of 0.713 [95% CI, 0.656 to 0.769], p<0.0001), to identify which patients of the cohort (n=346) would be 61 dead within 60 days after diagnosis. (c) Receiver-operating-characteristic (ROC) curves describing the predictive 62 performance of plasmatic sSIGLEC5, C-reactive protein and procalcitonine concentrations (red line as sSIGLEC5 with area under the curve [AUC] of 0.713 [95% CI, 0.656 to 0.769], p<0.0001; green line as procalcitonine with area under the 63 64 curve [AUC] of 0.513 [95% CI, 0.447 to 0.579], p=0.701; and blue line as C-reactive protein with area under the curve [AUC] of 0.555 [95% CI, 0.487 to 0.622], p=0.121), to identify which patients of the cohort (n=346) would be dead within 65 60 days after diagnoses. (d) Correlations of sSIGLEC5 levels in septic patients with Lactate, APACHE-II and SOFA 66 scores. (a-c) ROC analysis by Clopper-Pearson (****p<0.0001). (d) Spearman Pearson to quantitative correlations 67 (***p<0.001; ****p<0.0001). 68

70 SUPPLEMENTARY TABLES

72 Table S1. Baseline characteristics of SIRS and septic patients included in the study separated by sex.

Characteristic*	All Female Patients (n=186)	All Male Patients (n=240)	Female Sepsis (n=82)	Male Sepsis (n=106)	Female Septic Shock (n=69)	Male Septic Shock (n=89)	Female SIRS ^{**} (n=35)	Male SIRS** (n=45)
Age - yr	67·5±17·5	67·2±15·1	68·2±18·6	66·4±16·1	68·3±16·6	69·3±13·9	64·4±16·8	65·3±15·0
APACHE II	$17 \cdot 6 \pm 8 \cdot 1$	$18 \cdot 3 \pm 7 \cdot 1$	16·1±6·3	18·7±6·1	22·4±9·4	22·0±7·9	12·9±3·8	13·6±4·9
Score								
SOFA Score	4·7±3·3	5.8±3.2	3·1±2·3	4·7±2·4	7·3±3·1	7.6±3.6	3·5±2·0	4·4±2·2
Lactate, nmol/L	3·2±3·7	3·3±2·8	2·8±2·3	3.1±2.5	4·5±4·3	4·5±4·3	1·8±0·7	1.5±0.8
CRP, mg/L	81·1±104·3	66·4±105·5	76·6±91·6	77·3±114·2	86·9±118·6	56·8±97·0	-	-
PCT, ng/mL	27·9±53·3	21·5±48·6	15·9±50·0	23·9±52·7	29·6±47·6	33·7±54·3	-	-

- ^{*}Data are presented as mean±SD, or number (%).
- 75 **Non-infectious SIRS.
- 76 † P values were calculated by ANOVA test.

APACHE II: Acute Physiology and Chronic Health Evaluation II; CRP: C-reactive protein; INR, International Normalized
Ratio; PCT: Procalcitonin; SIRS, Systemic Inflammatory Response Syndrome; SOFA: Sequential Organ Failure
Assessment.

89 Table S2. Description of the patients with Aneurysm or Stroke, and Healthy Volunteers.

n	r	٦
9	ι	

Characteristic*	Aneurysm	Stroke	Healthy Volunteers
	(N=11)	(N=16)	(N=100)
Age (years)	62±6·88	70±13·61	50±11·98
Male sex – n (%)	5(38·46)	10(58-82)	54(54)
АРАСНЕ П	11·08±7·68	-	-
CRP, mg/L	18·19±30·70	9·56±11·36	-
INR	1.02±0.06	1.08±0.26	

91

92 * Data are presented as mean±SD

93 APACHE II: Acute Physiology and Chronic Health Evaluation II; CRP: C-reactive protein; INR: international normalized

94 ratio.

Table S3. List of fluorochrome-conjugated antibodies to the SIGLEC5 characterization in the main circulating immune populations

Marker	Fluorochrome	Source	Clone	Reference (RRID)
CD3	BV510	Biolegend	OKT3	317332 (AB_2561943)
CD4	cFluor-YG584	Cytek Biosciences	SK3	R7-20041 (AB_2885083)
CD8	BUV805	BD	SK1	612889 (AB_2833078)
CD11c	BUV661	BD	B-Ly6	612967 (AB_2870241)
CD14	Spark Blue™ 550	Biolegend	63D3	367148 (AB_2832724)
CD16	BUV496	BD	3G8	612944 (AB_2870224)
CD19	Spark NIR [™] 685	Biolegend	HIB19	302270 (AB_2832581)
CD20	Pacific Orange	ThermoFisher Scientific	2H7	MHCD2030 (AB_10375578)
CD24	PE/Dazzle TM 594	Biolegend	ML5	311134 (AB_2566349)
CD38	APC-Fire [™] 810	Biolegend	HIT2	303550 (AB_2860784)
CD45	PerCP	Biolegend	2D1	368506 (AB_2566358)
CD56	BUV737	BD	NCAM 16.2	612766 (AB_2813880)
CD123	Super Bright 436	ThermoFisher Scientific	6H6	62-1239-42 (AB_2662727)
HLA-DR	APC/Fire [™] 750	Biolegend	L243	307658 (AB_2572101)

103 Table S4. Sequence of primers used for Hypoxia Response Elements (HRE) amplification by PCR.

HRE sites	Forward primers (5'-3')	Reverse primers (5'-3')	Amplicon (bp)
HRE1	AGAAGGGGAACTTGGGCATC	TCAGTATCTTCACCTGCGGC	99
HRE2	CTGGGTCTCTGGCTTCACTC	CCAAGTTCCCCTTCTGTGCG	497
HRE3	GGTGAGTGAGAGCTGTGGAC	TCCCTGACAACTTGCCTTCC	398
HRE4	TCATGTCTCCAGAGGAGGCT	ATCCCTCCTGTGGTCTGGTT	236

106 Table S5. Sequence of primers used in RT-pPCR.

Gene	Forward primers (5'-3')	Reverse primers (5'-3')
β-ACTIN	GTGGGGCGCCCCAGGCACCA	CTCCTTAATGTCACGCACGATTTC
HIF1a	TTCCAGTTACGTTCCTTCGATCA	TTTGAGGACTTGCGCTTTCA
SIGLEC5	CAAGGGAGATCGAACCTCGG	TGCGGGCTTTCACTATTAAAAAGA