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A B S T R A C T   

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are the current recommended option 
for the first-line treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC). Resistance to first- 
generation TKIs led to the development of second- and third-generation TKIs with improved clinical outcomes. 
However, sequential administration of TKIs has led to the emergence of new EGFR resistance mutations and 
persistent tumor cell survival. This evidence highlights the potential role of EGFR in transducing growth signals 
in NSCLC tumor cells. Therefore, dual inhibition of EGFR using combinations of anti-EGFR monoclonal anti
bodies (mAbs) and EGFR-TKIs may offer a unique treatment strategy to suppress tumor cell growth. Several 
clinical studies have demonstrated the benefits of dual blockade of EGFR using anti-EGFR mAbs coupled with 
EGFR-TKIs in overcoming treatment resistance in patients with EGFR-mutated NSCLC. However, a single 
treatment option may not result in the same clinical benefits in all patients with acquired resistance. Biomarkers, 
including EGFR overexpression, EGFR gene copy number, EGFR and KRAS mutations, and circulating tumor 
DNA, have been associated with improved clinical efficacy with anti-EGFR mAbs in patients with NSCLC and 
acquired resistance. Further investigation of biomarkers may allow patient selection for those who could benefit 
from anti-EGFR mAbs in combination with EGFR-TKIs. This review summarizes findings of recent studies of anti- 
EGFR mAbs in combination with EGFR-TKIs for the treatment of patients with EGFR-mutated NSCLC, as well as 
clinical evidence for potential biomarkers towards personalized targeted medicine.   

Introduction 

Non-small cell lung cancer (NSCLC) is the most common type of lung 
cancer, accounting for 80–90 % of all lung cancer diagnoses, with 
approximately 60 % of patients having advanced/metastatic disease at 
diagnosis [1,2]. NSCLC is a heterogeneous disease with respect to its 
molecular profile and tumor histology [3,4]. Heterogeneity between the 
NSCLC tumor genome and microenvironment, as well as between pri
mary and metastatic tumors, results in diverse responses to treatment 
[4]. Historically, platinum-based chemotherapy was the only choice for 

first-line treatment of NSCLC. However, the identification of epidermal 
growth factor receptor (EGFR)-activating mutations and overexpression 
of EGFR protein in epithelial malignancies led to the development of 
targeted treatment options against EGFR that were hypothesized to be 
effective [5]. 

Tyrosine kinase inhibitors (TKIs) have been assessed and recom
mended by current treatment guidelines, including the National 
Comprehensive Cancer Network (NCCN), as a first-line treatment option 
for patients with EGFR-mutant NSCLC [2,6]. EGFR-TKIs have shown 
improved clinical outcome compared with standard of care (SoC) 
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chemotherapy in patients with EGFR-mutant NSCLC, and all are 
currently approved as first-line treatment regimens [7–20]. The trig
gering of acquired resistance to first-generation EGFR-TKIs (gefitinib, 
erlotinib) in EGFR-mutant NSCLC tumors led to the development of 
second- (afatinib, dacomitinib) and third-generation (osimertinib) 
agents [21–23]. 

Sequential administration of first-, second-, and third-generation 
EGFR-TKIs is associated with the evolution of EGFR mutations and 
development of treatment resistance in NSCLC [24]. The T790M EGFR 
mutation within exon 20 is the most common resistance mechanism in 
patients with NSCLC who received prior first- or second-generation 
EGFR-TKIs [25–27]. The third-generation EGFR-TKI, osimertinib, has 
been approved by both the US FDA and European Commission for pa
tients with T790M-positive NSCLC who have progressed following 
EGFR-TKI therapy [28], as well as for treatment-naïve patients with 
sensitive EGFR mutations. The use of osimertinib has also led to the 
emergence of new EGFR mutations conferring treatment resistance (e.g., 
C797S) [29–31]. The mechanism of acquired resistance due to C797S 
mutation is long-term and occurs approximately one year after initiation 
of osimertinib administration [32]. There is currently no treatment 
strategy for C797S-mediated resistance; however, several novel treat
ment strategies are under investigation, including combining first- and 
third-generation EGFR-TKIs [33], and approaches using antibody-drug 
conjugates [34]. Additionally, a Phase I clinical trial of a fourth- 
generation EGFR-TKI targeting acquired EGFR resistance mutations 
such as C797S is ongoing (NCT05256290). 

The high frequency of EGFR mutations, including the diversity of 
molecular subtypes and incidence rates, in patients with acquired 
resistance to EGFR-TKIs in NSCLC highlighted the critical role of 
signaling through the EGFR pathway for the survival of EGFR-mutated 
lung cancer cells [35–37]. This observation shaped the hypothesis that 
dual EGFR blockade using anti-EGFR monoclonal antibodies (mAbs) 
coupled with an EGFR-TKI may suppress EGFR signaling and trigger 
cancer cell apoptosis [38]. Several clinical studies have reported the 
potential benefits of dual inhibition of EGFR with anti-EGFR mAbs, such 
as cetuximab or panitumumab, in combination with TKIs, such as afa
tinib and brigatinib, in overcoming EGFR-TKI resistance in EGFR- 
mutated NSCLC [39–42]. This review summarizes the current clinical 
evidence for anti-EGFR mAbs in combination with TKIs for the treat
ment of patients with EGFR-TKI-resistant advanced NSCLC. In addition, 
the predictive value of potential biomarkers for subgroups of patients 
with NSCLC who may benefit from dual EGFR inhibition is discussed. 

The role of anti-EGFR mAbs in lung cancer treatment 

Anti-EGFR mAbs, such as cetuximab, necitumumab and pan
itumumab, have shown activity in advanced NSCLC in combination with 
SoC chemotherapy or anti-vascular endothelial growth factor (VEGF) 
therapy [43–45]. Cetuximab is an anti-EGFR mAb currently indicated 
for the treatment of EGFR-expressing RAS wild-type (wt) metastatic 
colorectal cancer (mCRC) and squamous cell carcinoma of the head and 
neck [46,47]. Evidence from clinical trials [39–41,48,49] has shown 
that cetuximab combinations demonstrate potential beneficial activity 
in the treatment of advanced NSCLC. Phase II and III clinical trials have 
evaluated the efficacy and safety of adding cetuximab to SoC chemo
therapy or anti-VEGF therapy in the first-line setting. These studies have 
also identified potential predictive biomarkers associated with treat
ment outcomes with cetuximab-based regimens [45,50–53]. 

In the Phase III FLEX study, cetuximab plus platinum-based chemo
therapy prolonged survival outcomes in patients with EGFR-expressing 
advanced NSCLC, with an acceptable safety profile [54]. Moreover, 
meta-analyses pooling data from FLEX and other Phase II and III ran
domized trials (LUCAS, BMS100, BMS099) confirmed a modest but 
statistically significant overall survival (OS) with cetuximab plus 
platinum-based chemotherapy [55–57]. However, the regimen has not 
gained regulatory approvals and is not currently used in routine clinical 

practice [6,58]. 
Both necitumumab and panitumumab have been investigated in 

combination with platinum-based chemotherapy as first-line treatments 
in advanced NSCLC in several clinical studies [44,59–62]. However, no 
Phase III study of panitumumab in NSCLC has been conducted due to its 
toxicity profile and limited impact on efficacy observed in early-phase 
studies [59]. In the SQUIRE trial, the combination of necitumumab 
with gemcitabine and cisplatin improved OS (p = 0.01) and PFS (p =
0.006) compared with chemotherapy alone. These results confirmed the 
potential role of agents targeting the EGFR pathway in the treatment of 
NSCLC [63]. In light of the SQUIRE outcomes, necitumumab in combi
nation with gemcitabine and cisplatin was approved by the US FDA in 
2015 as a first-line treatment for squamous metastatic NSCLC. However, 
necitumumab is not recommended by the NCCN Guidelines® because of 
its toxicity, cost, and limited improvement in efficacy compared with 
gemcitabine/cisplatin [6]. A Phase I study of necitumumab in combi
nation with osimertinib in patients with advanced EGFR-mutated 
NSCLC demonstrated anti-tumor activity, which may suggest a poten
tial future therapeutic role for this regimen [64]. 

Efficacy of cetuximab–TKI combinations 

Of the EGFR mAbs, cetuximab has been the most widely explored in 
combination with chemotherapy or EGFR-TKIs in preclinical and clin
ical trials of EGFR-TKI-resistant advanced NSCLC. In an open-label, 
Phase Ib study, patients with EGFR-mutant NSCLC and acquired resis
tance to erlotinib/gefitinib were treated with 40 mg afatinib daily until 
disease progression, and then continued with cetuximab 500 mg/m2 

plus afatinib every 2 weeks (combination phase) [41]. Median PFS and 
median duration of response in the combination group were 2.9 months 
(95 % confidence interval [CI]: 1.8–4.8) and 5.7 months (range 3.7–8.3), 
respectively. Disease control rate (DCR) in these patients was 50.0 % 
(Table 1). Notably, patients who received afatinib monotherapy for ≥12 
weeks prior to combination treatment showed an improvement in me
dian PFS (4.9 vs 1.8 months; p = 0.0354), objective response rate (ORR; 
15.8 % vs 5.9 %), and DCR (57.9 % vs 41.2 %), compared with those 
who received afatinib monotherapy for <12 weeks [41]. Sequential 
blockade of EGFR family receptors with afatinib followed by cetuximab 
plus afatinib showed activity in heavily pretreated patients with ac
quired resistance to erlotinib or gefitinib, with a predictable safety 
profile. Another open-label, Phase 1b trial of cetuximab plus afatinib in 
12 patients with squamous NSCLC also suggested potential benefits of 
this combination in the treatment of squamous cell carcinoma, including 
NSCLC [65]. The best overall response was stable disease, which was 
reported in 75 % of patients. Median PFS was 2.7 months (Table 1). 

The SWOG S1403 randomized Phase II study investigated first-line 
treatment of cetuximab plus afatinib versus afatinib alone in patients 
with EGFR-mutant NSCLC harboring EGFR mutations exon 19 deletion 
or L858R. Patients received 40 mg afatinib daily plus cetuximab 500 
mg/m2 every 2 weeks, or afatinib alone (40 mg daily). There was no 
improvement in median PFS (11.9 vs 13.4 months) and 2-year OS rate 
(67 % vs 70 %) in the combination group, compared with the afatinib 
monotherapy group (Table 1) [40]. Similarly, the ACE-Lung trial was a 
randomized Phase II study that evaluated first-line treatment with 
cetuximab plus afatinib in patients with advanced EGFR-mutant NSCLC 
[39]. Patients in the combination group received afatinib (40 mg daily) 
and cetuximab (250 mg/m2 on Day 15 of Cycle 1, followed by 500 mg/ 
m2 every 2 weeks for 6 months). Patients in the monotherapy group 
received 40 mg afatinib once daily. There was no significant difference 
in the proportion of patients who reported treatment failure at 9 months 
between the groups (59.3 % vs 64.9 %). The median time to treatment 
failure was 11.1 (95 % CI: 8.5–14.1) and 12.9 (95 % CI: 9.2–14.5) 
months in the monotherapy and combination groups, respectively 
(Table 1) [39]. 

In a single-arm, Phase II trial, 37 patients with NSCLC harboring an 
EGFR-exon 20 insertion mutation received cetuximab 500 mg/m2 every 
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Table 1 
Studies of cetuximab in combination with TKIs in patients with NSCLC.  

Study Design N Treatment Setting Primary 
endpoints 

Secondary endpoints Results 

Horn 2017  
[41] 

Phase Ib,  

open label 

171 Afatinib + cetuximab vs 
afatinib 

Second line DLTs Safety, PKs, PFS, ORR, DCR  • Median PFS was 2.9 months (95 % 
CI: 1.8–4.8) in the combination arm 

PFS was longer in patients with 
prior afatinib monotherapy (4.9 vs 
1.8 months; p = 0.0354) 

ORR was numerically higher in 
patients with prior afatinib 
monotherapy (15.8 % vs 5.9 %, p =
0.3630) 

Median DOR was 5.7 months 
(range 3.7–8.3) in the combination 
arm 

DCR was 50 % in the combination 
arm 

DCR was higher in patients with 
prior afatinib monotherapy (57.9 % 
vs 41.2 %) 

Veggel 2018  
[67] 

Retrospective 4 Afatinib + cetuximab – – –  • Median PFS was 5.4 months (95 % 
CI: 0.0–14.2) 

3 patients showed PR according to 
RECIST 1.1 

Gazzah 2018  
[65] 

Phase 1b, open 
label 

12 Afatinib + cetuximab vs 
afatinib 

≤Second line MTD Safety and tolerability at the 
MTD, anti-tumor activity 
ORR, (CR, PR), DCR (CR, 
PR, SD) according to RECIST 
1.1.  

• Afatinib 40 mg + cetuximab 250 
mg/m2 was the MTD and approved 
dose 

SD was reported in 9 (75.0 %) 
patients 

DCR was reported in 9 (75 %) 
patients 

Mean duration of DC was 4.1 
months 

Median PFS was 2.7 months (95 % 
CI: 1.2–4.4) 

Goldberg 
2020/ 
SWOG 
S1403 [40] 

Phase II, 
randomized 

168 Afatinib + cetuximab vs 
afatinib 

First line PFS ORR, TTD, OS, toxicity  • No improvement in PFS with 
afatinib + cetuximab compared with 
afatinib alone (HR 1.01, 95 % CI: 
0.72–1.43; p = 0.94; median 11.9 vs 
13.4 months) 

No improvement in OS with 
afatinib + cetuximab compared with 
afatinib alone (HR 0.82, 95 % CI: 
0.50–1.36; p = 0.44) 

Cortot 2021/ 
ACE-Lung  
[39] 

Phase II, 
randomized, 
open label 

117 Afatinib + cetuximab vs 
afatinib 

First line TTF rate at 
9 months 

EGFR ctDNA in plasma  • Percentage of patients without 
treatment failure at 9 months was 
similar for both groups (59.3 % for 
group A vs 64.9 % for group A + C) 

No improvement on PFS, OS, and 
12-month survival rate between 
groups 

Wang 2020  
[42] 

Retrospective 15 Cetuximab + brigatinib 
(n = 5) vs chemotherapy 
± bevacizumab (n = 10) 

Second- or 
subsequent 
-lines 

– –  • 2 patients, developed into PD, with a 
PFS of 15 and 13 months 

Median PFS of patients who 
received combined targeted therapy 
was 14 months compared with 3 
months for those treated with 
chemotherapy 

Veggel 2023  
[66] 

Phase II, single 
arm 

37 Afatinib + cetuximab First line DCR after 
18 weeks 

Safety, RR, DOR, PFS  • The primary endpoint was met, with 
DCR achieved by 54 % of patients 

Best responses were partial (n =
16), stable (n = 16) or progressive (n 
= 2) disease 

ORR was 43 % with confirmed 
ORR rate of 32 % 

Median PFS was 5.5 months 
Median OS was16.8 months 

Abbreviations: CI, confidence interval; CR, complete response; ctDNA, circulating tumor DNA; DC, disease control; DCR, disease control rate; DLT, dose-limiting 
toxicities; DOR, duration of response; EGFR, epidermal growth factor receptor; HR, hazard ratio; MTD, maximum tolerated dose; NSCLCL, non-small cell lung can
cer; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PK, pharmacokinetics; PR, partial response; RECIST, 
response evaluation criteria in solid tumors, RR, response rates; SD, stable disease; TKI, tyrosine kinase inhibitor; TTD, time to treatment discontinuation; TTF, time to 
treatment failure. 
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2 weeks plus afatinib 40 mg daily [66]. Overall, twenty (54 %) patients 
achieved the primary endpoint of DCR at 18 weeks. Median PFS and 
median OS were 5.5 and 16.8 months, respectively. Overall response 
rate was 43 % and the best response rates were: partial (n = 16) and 
stable (n = 16), with progressive disease in two patients (Table 1) [66]. 
In a prior retrospective study of four patients with EGFR-mutant NSCLC 
and exon 20 insertion, those who received cetuximab in combination 
with afatinib achieved a median PFS of 5.4 months, and three patients 
showed partial response according to the response evaluation criteria in 
solid tumors (RECIST) version 1.1 [67]. These results suggest some 
clinical potential for the combination of cetuximab and afatinib in pa
tients with EGFR-TKI-resistant NSCLC and exon 20 insertion. The com
bination of cetuximab plus afatinib is now recommended by NCCN 
Guidelines® as a treatment option for patients experiencing disease 
progression following treatment with EGFR-TKIs [6]. 

The combination of anti-EGFR mAbs with other TKIs, such as anti- 
anaplastic lymphoma kinase (ALK), has also demonstrated evidence of 
clinical efficacy in patients with osimertinib resistance mediated by 
EGFR cis-C797S. In a retrospective study by Wang et al. cetuximab plus 
brigatinib demonstrated efficacy in overcoming osimertinib resistance 
in patients who had progressed on second and subsequent treatments 
with osimertinib [42]. Of the 15 patients who progressed from these 
lines of treatment with osimertinib, five received anti-EGFR/ALK com
bination therapy, and the remaining patients were treated with SoC 
chemotherapy [42]. Median PFS for patients in the combination group 
was 14 months, compared with 3 months for those who received 
chemotherapy alone (Table 1) [42]. This study provided strong evidence 
for the efficacy of the anti-EGFR mAb/ALK combination in overcoming 
acquired resistance; however, these findings were limited by their 
retrospective nature and small sample size of patients enrolled [42]. 

Safety of cetuximab–TKI combinations 

Combining an anti-EGFR mAb with an EGFR-TKI following EGFR- 
TKI resistance in NSCLC has resulted in expected safety findings, with 
studies suggesting a manageable safety and tolerability profile 
[39–41,65–67]. 

In an open-label, Phase Ib study by Horn et al. in 36 patients with 
EGFR-mutant advanced NSCLC who received second-line afatinib plus 
cetuximab, grade 3/4 adverse events (AEs) were reported in 50 % of 
patients, with rash as the most frequently reported event (22.2 %) [41]. 
Notably, the most frequently reported treatment-related AEs (TRAEs) of 
any grade were rash (69 %), paronychia (39 %), dry skin (36 %), and 
diarrhea (33 %). Dose reduction and treatment discontinuation due to 
TRAEs were reported in 8 (22 %) and 3 (8 %) of patients, respectively 
(Table 2) [41]. 

In the Phase II randomized SWOG S1403 trial in patients with first- 
line advanced NSCLC harboring EGFR mutation (exon 19 deletion or 
L858R), the rates of grade ≥ 3 AEs were higher in 78 patients receiving 
cetuximab plus afatinib than in those receiving afatinib alone. The most 
frequently reported TRAEs were acneiform rash (27 %), maculopapular 
rash (13 %) and diarrhea (15 %). Dose reduction to afatinib 30 mg and 
treatment discontinuation were observed in 44 (56.7 %) and 12 (14 %) 
patients, respectively (Table 2) [40]. 

Similarly, in the Phase II randomized ACE-Lung trial in 58 patients 
with advanced EGFR-mutant NSCLC who received first-line cetuximab 
plus afatinib, the most common TRAEs were digestive and skin disor
ders, in accordance with the known safety profile of EGFR inhibitors. 
The rates of grade 3 TRAEs were slightly higher in the cetuximab plus 
afatinib combination than with afatinib monotherapy. No grade 4 
TRAEs were reported in the combination group compared with 5.1 % in 
the afatinib monotherapy group. Treatment discontinuation due to 
TRAEs was reported in 9 (15.8 %) of patients (Table 2) [39]. 

This pattern was reflected in smaller clinical trials and retrospective 
studies investigating the combination of cetuximab plus afatinib in pa
tients with EGFR-TKI-resistant NSCLC, with 31–54 % of patients 

Table 2 
Safety of cetuximab–TKI combination treatments in patients with NSCLC.  

Study Treatment N Grade 3/4 AEs Other AEs 

Horn 2017 
[41] 

Afatinib +
cetuximab 

36  • Grade 3 AEs were 
reported in 16 
(44.4 %) patients, 
with rash (19.4 %) 
as the most 
frequent event 

Grade 4 AEs were 
reported in 2 (5.6 
%) patients  

• Most frequent 
TRAEs (any grade) 
were rash (69 %), 
paronychia (39 %), 
dry skin (36 %), 
and diarrhea (33 
%) 

8 (22 %) of 
patients 
experiences AEs 
that led to dose 
reduction 

3 (8 %) of 
patients 
experiences TRAEs 
that led to 
treatment 
discontinuation 

Veggel 
2018  
[67] 

Afatinib +
cetuximab 

4  • NR  • Safety profile was 
acceptable and in 
line with known 
toxicity profile of 
afatinib +
cetuximab therapy 

2 patients 
required 
appropriate skin 
management and 
dose reduction 

Gazzah 
2018  
[65] 

Afatinib +
cetuximab 

58  • 18 (31.0 %) 
patients 
experienced grade 
3 AEs 

Most frequent 
grade 3 AEs were 
acneiform 
dermatitis and rash 
(each n = 3; 5.2 %) 

2 (3.4 %) patients 
experienced grade 
4 AEs 

Most frequent 
grade 4 TRAEs were 
hypersensitivity 
and hyperlipasemia 
(each n = 1; 1.7 %)  

• Treatment-related 
SAEs were reported 
in 8 (13.8 %) 
patients 

14 (24.1 %) 
patients 
experienced AEs 
that led to dose 
reduction 

19 (32.8 %) 
patients 
experienced AEs 
that led to 
treatment 
discontinuation 

7 (12.1 %) 
patients 
experienced TRAEs 
leading to 
discontinuation 

Goldberg 
2020/ 
SWOG 
S1403  
[40] 

Afatinib +
cetuximab 

78  • More patients in 
afatinib +
cetuximab arm 
presented grade ≥ 3 
TRAEs compared 
with group A (72 % 
vs 40 %; p = 0001)  

• Most frequent 
grade ≥ 3 TRAEs 
were acneiform 
rash (27 %), 
maculopapular 
rash (13 %), and 
diarrhea (15 %) 

44 (56.7 %) of 
patients 
experienced dose 
reduction of 
afatinib to 30 mg 

12 (14 %) pf 
patients 
experienced AEs 
that led to 
treatment 
discontinuation 

Cortot 
2021/ 
ACE- 
Lung  
[39] 

Afatinib +
cetuximab 

58  • Grade 3 TRAEs was 
slightly higher in 
the afatinib +
cetuximab group 
compared with 
afatinib group 
(52.6 % vs 37.3)  

• Diarrhea was 
reported in 93.2 % 
of patients in the 
afatinib group and 
in 89.5 % of 
patients in afatinib 
+ cetuximab group 

(continued on next page) 
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experiencing grade 3 AEs or TRAEs, and the most frequently reported 
event were rash, diarrhea, and dry skin. Overall, 24–68 % of patients 
experienced dose reduction and 12–16 % of patients experienced 
treatment discontinuation (Table 2) [65–67]. 

Similar safety findings have been reported with the combination of 
anti-EGFR and anti-ALK. In the retrospective study by Wang et al. of five 
patients with advanced NSCLC who received cetuximab plus brigatinib 
after progression on osimertinib, four (80 %) patients reported grade 1/ 
2 AEs, most frequently with diarrhea (40 %) and skin reactions (40 %). 
No grade 3/4 AEs were reported (Table 2) [42]. 

Emerging data for anti-EGFR mAbs in NSCLC: biomarkers and 
personalized therapy 

These clinical findings emphasize the potential of EGFR-targeting 
mAbs in targeted combination regimens for the treatment of advanced 
EGFR-resistant NSCLC [45,54,63]. Several potential biomarkers associ
ated with better survival outcomes in patients with NSCLC treated with 

anti-EGFR mAbs have been identified, including EGFR overexpression, 
EGFR gene copy number, EGFR and KRAS mutations, and circulating 
tumor (ct)DNA analysis. 

EGFR overexpression 

In a retrospective analysis of the FLEX trial, EGFR overexpression, 
assessed using immunohistochemistry (IHC), was associated with 
improved clinical responses in patients receiving cetuximab in combi
nation with chemotherapy (cisplatin and vinorelbine), compared with 
chemotherapy alone [54]. Cetuximab in combination with chemo
therapy extended the median OS in patients with squamous (HR 0.62) 
and non-squamous (HR 0.73) NSCLC in the EGFR-overexpressing group 
(H-score ≥ 200) [54]; whereas for patients in the low EGFR-expressing 
group (H-score 〈200), no difference was observed in median OS be
tween treatment groups (HR 0.99) (Table 3) [54]. 

In the SQUIRE trial in patients with first-line squamous NSCLC, OS 
for necitumumab plus gemcitabine and cisplatin versus gemcitabine and 
cisplatin was more favorable in patients with EFGR-overexpressing tu
mors (Table 3) [63]. However, the ’interaction tests’ did not show a 
difference in OS HRs between the high versus low EGFR-expressing 
groups [63]. Similarly, in a parallel trial, INSPIRE, no differences were 
observed in OS or PFS between patients with high and low EGFR- 
expressing tumors in either treatment group (necitumumab plus peme
trexed and cisplatin vs pemetrexed and cisplatin) [62]. Notably, further 
analyses of the SQUIRE results across the range of EGFR IHC (without 
considering cut-off for IHC level, i.e., EGFR > 0 and EGFR = 0) suggested 
that patients with detectable EGFR protein benefited from the addition 
of necitumumab to chemotherapy, regardless of the level of EGFR pro
tein expression (Table 3) [44]. 

EGFR gene copy number 

Several trials have investigated the correlation between EGFR copy 
number (measured by fluorescence in situ hybridization [FISH]) and 
efficacy outcomes to evaluate its potential role as a candidate biomarker 
for selecting personalized targeted therapy in NSCLC [44,45,53,68]. In 
the retrospective analysis of clinical outcomes in the SQUIRE trial, the 
association of EGFR FISH-positive status with efficacy outcomes was not 
statistically significant; however, OS was longer in EGFR FISH-positive 
patients who received necitumumab compared with those receiving 
chemotherapy (Table 3) [44]. 

In the SWOG S0819 trial, EGFR FISH was evaluated as a predictive 
biomarker for cetuximab in patients with advanced NSCLC (Table 3) 
[45]. In this study, 1313 patients were randomly assigned to receive 
first-line cetuximab in combination with carboplatin and paclitaxel, 
with or without bevacizumab. This study hypothesized that EGFR FISH 
positivity could be associated with increased OS or PFS [45]. Adding 
cetuximab showed no improvement in OS or PFS in patients with non- 
squamous NSCLC and EGFR FISH-positive status (HR 0.88, p = 0.34 
and HR 0.99, p = 0.96, respectively) [45]. However, EGFR FISH-positive 
patients with squamous NSCLC who received cetuximab showed an 
improvement in median OS (HR 0.58, 95 % CI: 0.39–0.86; p = 0.007), 
compared with the EGFR FISH-negative group (HR 1.04, 95 % CI: 
0.78–1.40; p = 0.77). OS in this group was numerically in favor of 
cetuximab; however, it was not statistically significant (HR 0.68, 95 % 
CI: 0.46–1.01; p = 0.055) (Table 3) [45]. Although no statistically sig
nificant differences were observed in clinical outcomes for the unse
lected (squamous and non-squamous together) patient populations with 
positive EGFR FISH, observations in the subgroup of patients with EGFR 
FISH-positive squamous NSCLC suggested the need to further charac
terize subpopulations of patients who may benefit from anti-EGFR 
therapies [45]. 

A further analysis of SWOG S0819 introduced a combination index 
by considering the dual association of FISH and IHC (FISH±/IHC±) 
[53]. OS for unselected NSCLC patients with dual-positive FISH and IHC 

Table 2 (continued ) 

Study Treatment N Grade 3/4 AEs Other AEs 

Grade 4 TRAEs 
were reported only 
in the afatinib 
group (5.1 %) 

Grade 3/4 
diarrhea was higher 
in the afatinib 
group than afatinib 
+ cetuximab group 
(18.7 % vs 12.3 %) 

Grade 3/4 skin 
rash was higher in 
the afatinib +
cetuximab group 
than group A (21.1 
% vs 10.2 %) 

Incidence of skin 
rash (any grade) 
was higher in the 
afatinib +
cetuximab group 
than group A (94.7 
% vs 79.7 %) 

9 (15.8 %) of 
patients experience 
TRAEs that led to 
treatment 
discontinuation 

Wang 
2020  
[42] 

Brigatinib 
+

cetuximab 

15  • NR  • 4 patients from the 
brigatinib +
cetuximab group 
experienced grade 
1/2 AEs 

Diarrhea and 
skin reactions were 
the most frequent 
grade 1/2 AEs (40 
% each) 

No grade 3/4 
AEs were reported 

Veggel 
2023  
[66] 

Afatinib +
cetuximab 

37  • Grade 3 TRAEs 
were reported in 54 
% of patients 

Grade 3 TRAEs 
in ≥ 10 % were 
diarrhea (n = 5; 14 
%), rash (n = 5; 14 
%) and dry skin (n 
= 5; 14 %) 

No grade 4 TRAE 
was observed  

• Most frequent 
TRAEs were 
diarrhea (70 %), 
rash (65 %), dry 
skin (59 %), 
paronychia (54 %), 
and erythema (43 
%) 

25 (68 %) of 
patients required 
dose reduction 

6 (16 %) of 
patients experience 
AEs that led to 
treatment 
discontinuation 
(one grade 3 
allergic reaction 
after the first 
infusion of 
cetuximab) 

Abbreviations: AE, adverse event; NSCLC, non-small cell lung cancer; NR, not 
reported; SAE, serious adverse event; TKI, tyrosine kinase inhibitor; TRAE, 
treatment-related adverse event. 
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Table 3 
Potential biomarkers for selecting targeted therapy in NSCLC.  

Study N* Setting Treatment Results Comments 

EGFR overexpression/IHC 
FLEX 2012  

[54] 
1121 First 

line†
Cetuximab + CT 
(cisplatin–vinorelbine) vs CT  

Median OS HR 
EGFR-high (H-score ≥ 200), n = 345 
NSCLC: 12.0 vs9.6 (HR 0.73; 95 % CI: 0.58–0.93; p 
= 0.011) 
SqCLC: HR 0.62; 95 % CI: 0.43–0.88 
EGFR-low (H-score 〈200), n = 776 
NSCLC: 9.8 vs 10.3 (HR 0•99, 95 % CI: 0.84–1.16; 
p = 0.88) 
SqCLC: HR 0⋅98; 95 % CI: 0⋅73–1⋅30  

• High EFGR expression was associated with 
survival benefits from the addition of cetuximab to 
first-line CT, and could be a predictive biomarker 
for personalized targeted treatment 

SQUIRE 
2015, 2016  

[44,63] 

982 First 
line‡

Necitumumab + CT 
(cisplatin–gemcitabine) vs CT  

Median OS HR 
EGFR-high (H-score ≥ 200), n = 374 
HR 0.75; 95 % CI: 0.60–0.94 
EGFR-low (H-score 〈200), n = 608 
HR 0.90; 95 % CI: 0.75–1.07 
Further analysis: 
EGFR > 0 
OS: 11.7 vs10.0 (stratified HR 0.79, 95 % CI: 
0.69–0.92;  

p = 0.002) 
PFS: 5.7 vs 5.5 (stratified HR 0.84, 95 % CI: 
0.72–0.97;  

p = 0.018)  

• No significant difference in EGFR-expressing 
groups, although higher EFGR expression rates are 
in favor of necitumumab 

Further analysis of SQUIRE results suggested 
expression of EGFR, with no cut-off, as a predic
tive biomarker 

EGFR gene copy number/FISH 
SQUIRE 2016 

[44] 
557 First 

line‡
Necitumumab + CT 
(cisplatin–gemcitabine) vs CT  

Median OS 
EGFR FISH-positive 
Median OS: 12.6 vs 9.2 months; HR 0.70, 95 % CI: 
0.52–0.96 
EGFR FISH-negative 
Median OS: 11.1 vs 10.7 months; HR 1.02, 95 % CI: 
0.80–1.29  

• No significant difference in EGFR-FISH subgroups 
(p = 0.066), although OS rates in these patients 
with EGFR-FISH-positive status 

are in favor of necitumumab 

SWOG 0819 
2018, 2022  

[45,53] 

976 First line Cetuximab + CT 
(carboplatin–paclitaxel) vs CT 

FISHþ
Median OS 
SqCLC: 11.8 vs 6.4 (HR 0.58; p = 0.0071) 
Non-SqCLC: 14.3 vs 12.1 (HR 0.88; p = 0.34) 
Unselected: 13.4 vs 9.8 (HR 0.81; p = 0.054) 
Median PFS 
SqCLC: 4.5 vs 2.8 (HR 0.68; p = 0.055) 
Non-SqCLC: 5.7 vs 5.5 (HR 0.99; p = 0.96) 
Unselected: 5.4 vs 4.8 (HR 0.92; p = 0.40) 
FISHþ/IHCþ
OS 
SqCLC: 12.6 vs.4.6 (HR 0.32, p = 0.0002) 
Non-SqCLC: (HR 0.9) 
Unselected: (HR 0.63, p = 0.01)  

• Higher OS for patients with positive FISH/IHC 
combination index indicated the predictive value 
of combination index for personalized targeted 
treatment 

Mutations (EGFR, KRAS) 
SWOG 0819 

2022 [53] 
627 First line Cetuximab + CT 

(carboplatin–paclitaxel) vs CT 
KRAS mt vs KRAS wt 
OS: HR (95 % CI): 
0.86 (0.61–1.20) vs 0.86 (0.70–1.05) 
PFS: HR (95 % CI): 
0.99 (0.72–1.37) vs 0.94 (0.78–1.14)  

• KRAS mutation status was not associated with a 
treatment benefit 

Horn 2017  
[41] 

73 Second 
line§

Cetuximab + afatinib vs 
afatinib 

T790M þ vs T790M¡
PFS: 4.8 vs 1.8 months, p = 0.1306 
ORR: 20.0 % and 0.0 %, p = 0.0823 
DCR: 60.0 % and 37.5 %, p = 0.0512  

• Although the difference between clinical 
outcomes in the subgroups are non-significant, 
due to the association of T790M + with better 
survival outcomes, T790M status could be a pre
dictive biomarker for anti-EGFR targeted therapy 
with cetuximab 

ctDNA 
Cortot 2021/ 

ACE-Lung  
[39] 

81 First line Cetuximab + afatinib vs 
afatinib  

• Allele frequency of the EGFR gene mutation in 
ctDNA at baseline was associated with shorter 
PFS, regardless of the treatment received 

A bR|| was observed in 49 (66.2 %) patients: 
22/35 (62.9 %) in the afatinib group and 27/39 
(69.2 %) in afatinib + cetuximab group. 
However, this bR was not associated with an 
improved PFS or OS  

• Baseline ctDNA could help identify different 
patient profiles that would benefit from EGFR 
inhibition 

Mack 2022/ 
S1403 [70] 

106 First line Cetuximab + afatinib vs 
afatinib 

Median PFS at baseline 
Detectable mEGFR in ctDNA: 10.2 months, 95 % 
CI: 7.3–13.0 
Non-detectable mEGFR in ctDNA: 11.2 months, 95 
% CI: 8.2–15.0 
HR 1.46, 95 % CI: 0.90–2.38; p = 0.12  

• ctDNA clearance was associated with longer PFS 
and OS, and could be used for monitoring 
treatment progress. However, further 
investigation in a larger patient population is 
warranted 

(continued on next page) 

F. Ciardiello et al.                                                                                                                                                                                                                               



Cancer Treatment Reviews 122 (2024) 102664

7

was in favor of cetuximab (HR 0.63, 95 % CI: 0.44–0.91; p = 0.01) 
(Table 3) [53]. Additionally, median OS with cetuximab in patients with 
squamous NSCLC and a positive combination index (FISH+/IHC+) (HR 
0.32, 95 % CI: 0.18–0.59; p = 0.0002) was 12.6 months (95 % CI: 
7.9–15.9), compared with 4.6 months for the control arm (95 % CI: 
3.4–7.3) [53]. PFS also improved with the addition of cetuximab in the 
same group of patients (HR 0.49, 95 % CI: 0.28–0.88; p = 0.02) [53]. 

Mutations in EGFR and KRAS 

The potential correlation between mutations in EGFR and KRAS with 
clinical responses to treatment with anti-EGFR mAbs has been investi
gated in several studies on NSCLC [41,53,68]. KRAS mutation is 
regarded as a negative predictive biomarker for clinical outcomes and 
personalized treatment of mCRC patients with anti-EGFR mAbs [69]. 
However, further analyses of clinical data from the BMS099 and SQUIRE 
trials in patients with NSCLC did not find any association between KRAS 
mutation status and treatment benefit of anti-EGFR mAbs [53,68]. In the 
SWOG 0819 trial, adding cetuximab to first-line chemotherapy was not 
associated with any improvement in survival outcomes among either 
KRAS-mutant or KRAS-wt NSCLC patients (Table 3) [53]. 

In the trial by Horn et al. the efficacy of cetuximab plus afatinib was 
also assessed according to EGFR T790M mutation. Treatment responses 
in patients harboring EGFR T790M were in favor of cetuximab, although 
these were not statistically significant [41]. PFS, ORR, and DCR were 
numerically higher in patients with T790M-positive versus T790M- 
negative mutations (4.8 vs 1.8 months, 20.0 % vs 0.0 %, and 60.0 % 
vs 37.5 %, respectively) (Table 3) [41]. Further analysis of responses to 
cetuximab treatment in a larger study population is required to clarify 
the predictive potential of EGFR T790M mutation status in NSCLC 
patients. 

ctDNA 

In the ACE-Lung trial, ctDNA was present at baseline, but was not 
predictive of objective response or improved PFS (Table 3) [39]. How
ever, patients with an allele frequency greater than the median value 
(4.3 %) had a shorter PFS compared with patients with a frequency 
below the median value (HR 1.95, 95 % CI: 1.11–3.41; p = 0.02) [39]. 
ctDNA decreased in 62.9 % of patients in the afatinib monotherapy 

group and by 69.2 % in the afatinib plus cetuximab group. However, this 
was not associated with an improved PFS or OS in the afatinib plus 
cetuximab group compared with the afatinib monotherapy group [39]. 

Recent findings from the S1403 trial revealed that approximately 90 
% (80/98) of patients had undetectable ctDNA after 3 cycles; ctDNA 
clearance relative to residual ctDNA (after 60 days) was associated with 
significantly longer PFS (p < 0.0001) and OS (p = 0.02) [70]. Monitoring 
ctDNA as part of routine clinical care may therefore provide a valuable 
platform for evaluating the effectiveness of treatment and may help to 
identify patients less likely to respond to initial EGFR-TKI therapy. 
ctDNA can potentially drive precision medicine in the future treatment 
of NSCLC by reflecting the evolution of EGFR mutations during therapy 
to inform appropriate treatment selection as new mutations arise [24]. 

In summary, EGFR overexpression, EGFR gene copy number, EGFR 
and KRAS mutations, and circulating tumor (ct)DNA are biomarkers 
associated with improved survival outcomes in patients with advanced 
NSCLC receiving treatment with anti-EGFR mAbs. These biomarkers 
may support individualized treatment decisions. Positive combination 
index (FISH+/IHC+) can be considered an appropriate assessment 
strategy for selecting anti-EGFR mAbs. 

Future perspectives 

While the current clinical evidence supports the survival benefits of 
anti-EGFR mAbs, such as cetuximab, in combination with EGFR-TKIs, 
large prospective Phase II studies are needed to strengthen these find
ings in hard-to-treat patient populations. Available evidence also sug
gests that the combination of anti-EGFR mAbs with EGFR-TKIs has an 
acceptable safety profile in patients with EGFR-TKI-resistant advanced 
NSCLC [39–41,65–67]. Noting the improved toxicity profile of osi
mertinib compared with chemotherapy and other EGFR-TKIs [2,71], 
combining cetuximab with osimertinib may provide a more favorable 
safety profile due to the potential lower incidence of skin toxicity 
associated with osimertinib. In addition, further exploration of the role 
of EGFR amplification as a predictive biomarker (e.g., using FISH, 
ctDNA, or next-generation sequencing [72]) may identify a specific 
patient population that will benefit most from an EGFR-targeted com
bination therapeutic regimen that includes cetuximab. 

Other emerging concepts and treatment strategies in the manage
ment of EGFR-TKI- resistant NSCLC include: (1) natural killer (NK) cell- 

Table 3 (continued ) 

Study N* Setting Treatment Results Comments 

Median PFS after treatment 
mEGFR ctDNA clearance group|||: 15.1 months (95 
% CI:10.6–17.5) 
Residual mEGFR ctDNA group||||: 4.6 months (95 
% CI: 1.7–7.5) 
HR 0.23, 95 % CI: 0.12–0.45; p < 0.0001 
Median OS at baseline 
Detectable mEGFR in ctDNA: 30.2 months, 95 % 
CI: 25.0–40.8 
Non-detectable mEGFR in ctDNA: NR, 95 % CI: 
25.2–NR 
HR 2.16, 95 % CI: 1.02–4.58; p = 0.04 
Median OS after treatment 
mEGFR ctDNA clearance group|||: 32.6 months (95 
% CI: 23.5–NE) 
Residual mEGFR ctDNA group||||: 15.6 months (95 
% CI: 4.9–28.3) 
HR 0.44, 95 % CI: 0.21–0.90; p = 0.02 

*Number of patients with available molecular assessments. †Patients with advanced NSCLC, including those with SqCLC histology. ‡Patients with advanced SqCLC. 
§Patient who progressed on erlotinib or gefitinib. ||bR is defined as a decrease in ctDNA at Week 2 compared with the baseline level that was greater than the variability 
of the digital polymerase chain reaction measurement [39]. |||mEGFR was detectable at baseline, but undetectable after eight weeks of treatment. ||||mEGFR was 
detectable at baseline and remained detectable. 
Abbreviations: bR, biological response; CI, confidence interval; CT, chemotherapy; ctDNA, circulating tumor DNA; DCR, duration of response; EGFR, epidermal 
growth factor receptor; FISH, fluorescence in situ hybridization; HR, hazard ratio; IHC, immunohistochemistry; m, mutant; mt, mutation; NE: not estimable; NSCLC, 
non-small cell lung cancer; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; SqCLC, squamous cell lung cancer; wt, wild-type. 
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based immunotherapies, which are being investigated as a platform for 
developing new cancer therapies due to the anti-tumor activity of NK 
cells and their role of bridging innate and downstream adaptive immune 
responses [73,74]. An ongoing Phase I/IIa clinical trial investigating the 
anti-tumor activity of cetuximab in combination with NK cell immu
notherapies aims to provide clinical evidence supporting this novel 
approach to treating advanced NSCLC (NCT04872634). (2) Mutations in 
molecular subtypes in the EGFR pathway, such as KRAS and BRAF, are 
associated with resistance and poor response to anti-EGFR agents such 
as cetuximab [75]. In addition, KRAS mutations have been associated 
with a lack of activity of TKIs [76]. Therefore, understanding the role of 
such molecular subtypes and harboring mutations associated with poor 
anti-EGFR response in advanced NSCLC could help to identify bio
markers and select precise treatment strategies. (3) Recent advances in 
the development of bispecific antibodies, such as amivantamab, provide 
new targeted therapies to overcome resistance in NSCLC [77]. In two 
Phase I studies, the combination of amivantamab and lazertinib 
demonstrated anti-tumor activity with a manageable safety profile in 
patients with advanced EGFR-mutated NSCLC [78,79]. (4) Tepotinib (a 
MET inhibitor) is being investigated in combination with osimertinib in 
patients with NSCLC who acquired resistance to first-line osimertinib 
due to MET amplification (INSIGHT 2 trial, NCT03940703) [80]. The 
combination of anti-EGFR mAbs and MET inhibitors may be a potential 
treatment strategy in patients with advanced NSCLC and MET amplifi
cation following progression on first-line osimertinib [80]. (5) Further, 
larger scale trials of novel combinations of cetuximab with mAbs against 
other targets, such as ALK, may confirm the potential of these combi
nations in hard-to-treat patient populations. 

Conclusions 

Dual inhibition of EGFR with EGFR-TKIs and anti-EGFR mAbs has 
shown promising anti-tumor activity in patients with acquired resis
tance to TKIs mediated by EGFR mutation. Cetuximab/EGFR-TKI com
bination therapy has shown clinical benefit and a manageable safety 
profile, suggesting that cetuximab in combination with second- and 
third-generation TKIs may have a potential role as a second- and/or 
subsequent-line treatment option for patients with NSCLC who have 
specific EGFR mutations conferring resistance to prior TKI therapy. In 
addition, subgroup analyses support the use of EGFR protein expression 
as a predictive biomarker for selecting patients who may benefit from 
targeted treatment strategies with anti-EGFR mAbs, such as cetuximab 
and necitumumab. Finally, further analyses of patient subgroups in 
studies investigating cetuximab plus afatinib will clarify the potential 
predictive value of EGFR mutation status (e.g., T790M) and ctDNA level 
for identifying patients who may further benefit from dual EGFR inhi
bition therapy. 
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