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Introduction: Bronchiolitis, mostly caused by Respiratory Syncytial Virus (RSV), 
and influenza among other respiratory infections, lead to seasonal saturation at 
healthcare centers in temperate areas. There is no gold standard to characterize 
the stages of epidemics, nor the risk of respiratory infections growing. We aimed 
to define a set of indicators to assess the risk level of respiratory viral epidemics, 
based on both incidence and their short-term dynamics, and considering 
epidemical thresholds.

Methods: We used publicly available data on daily cases of influenza for the 
whole population and bronchiolitis in children <2  years from the Information 
System for Infection Surveillance in Catalonia (SIVIC). We  included a Moving 
Epidemic Method (MEM) variation to define epidemic threshold and levels. 
We  pre-processed the data with two different nowcasting approaches and 
performed a 7-day moving average. Weekly incidences (cases per 105 population) 
were computed and the 5-day growth rate was defined to create the effective 
potential growth (EPG) indicator. We performed a correlation analysis to define 
the forecasting ability of this index.

Results: Our adaptation of the MEM method allowed us to define epidemic 
weekly incidence levels and epidemic thresholds for bronchiolitis and 
influenza. EPG was able to anticipate daily 7-day cumulative incidence by 4–5 
(bronchiolitis) or 6–7 (influenza) days.

Discussion: We developed a semi-empirical risk panel incorporating the 
EPG index, which effectively anticipates surpassing epidemic thresholds for 
bronchiolitis and influenza. This panel could serve as a robust surveillance 
tool, applicable to respiratory infectious diseases characterized by seasonal 
epidemics, easy to handle for individuals lacking a mathematical background.
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1 Introduction

Lower respiratory tract infections (LRTIs) are a significant global 
health burden, causing substantial morbidity and mortality worldwide. 
According to the Global Burden of Disease (GBD) Study 2019, LRTIs 
were responsible for approximately 2.5 million deaths and around 500 
million infections globally in 2019 (1–3). LRTIs affect individuals of 
all ages but disproportionately impact children under 5 years of age 
and older adults. In the former age group, acute LRTIs are a leading 
cause of morbidity and mortality, with Respiratory Syncytial Virus 
(RSV) and Influenza Viruses (IVs) being the two most common 
causes (4).

The RSV causes approximately 70% of bronchiolitis, a seasonal 
LRTI that is particularly critical in children under 2 years, with 3.5 
million hospitalizations and almost 1% of deaths among admitted 
children, mostly infants <6 months (4). Bronchiolitis is mostly 
contagious 5 days after infection, and it is associated with respiratory 
distress, wheezing, apnea, fever, and nasal flaring, although these 
symptoms are correlated with the severity of the disease and age (5). 
Similarly, seasonal influenza, caused by IVs, is responsible for a 
significant burden of LRTIs in children under 5 years, with an 
estimated 120,000 deaths annually (6). Nonetheless, adults, 
particularly those with underlying medical conditions, adults over 
60 years of age, and pregnant women (7) are the most affected. The 
World Health Organization (WHO) describes influenza’s clinical 
manifestations as fever, dry cough, headache, muscle and joint pain, 
severe malaise, sore throat, and a runny nose (7). Although seemingly 
mild, according to the Centers for Disease Control and Prevention 
(CDC), IVs are responsible for an estimated 9–45 million cases, 
140,000–810,000 hospitalizations, and 12,000–61,000 deaths annually 
in the United  States (8–10). Moreover, influenza has a shorter 
incubation period and is mostly contagious between 48 h and 6 days 
from infection (11).

In Catalonia, a region with about 7.6 million population in Spain, 
bronchiolitis and influenza are also significant health concerns for 
patients and healthcare providers (12). Between 10,000 and 15,000 
children under two years get infected with RSV seasonally (13), 
similar to the values that the peak number of total weekly infections 
of influenza reaches (14). Given the high incidence and substantial 
morbidity and mortality associated with bronchiolitis and influenza, 
conducting effective surveillance of these viral infections is crucial. 
Surveillance can inform public health interventions and guide the 
allocation of resources to reduce the burden of these infections, 
including vaccination campaigns, infection control measures, and 
appropriate clinical management of patients. Besides, it can guide and 
comfort healthcare providers during the epidemics.

Epidemic indicators are used to guide surveillance in public health 
domains, some of them are computed empirically and others are 
estimated from model parameters, such as the well-known 
reproduction number (R) (15). Due to the nature of this work, mostly 
empirical indicators will be described, such as incidence, one of the 
most commonly used. Incidence measures the disease occurrence in 
a population, and it is often expressed as the number of cases per 
100,000 population over a specific period. The CDC also uses 
cumulative hospitalization incidence and admissions, in addition to 
deaths, infection fatality ratio and pediatric deaths, to monitor 
influenza (16–18). Other organizations such as the European Centre 
for Disease Prevention and Control (ECDC) monitor laboratory data 

to detect variants of the viruses circulating or compute the percentage 
of positive tests for respiratory viral infections (RVIs). In addition, 
they use sentinel groups to estimate the epidemic incidence levels that 
a disease achieves, in different countries (19). Another useful measure 
is the growth rate of the epidemic, which is defined as the relative 
change in cumulated infections from 1 week to the next. Similarly, the 
empirical reproduction number is used to estimate and monitor the 
average number of infections that a single individual triggers. Usually 
computed from mathematical mechanistic models, the empirical 
reproduction number is a good measure of the stage of an epidemic, 
and several studies have been made to improve the calculation of this 
indicator while reducing complexity avoiding complicated models 
(20–22). This range of indicators helps us to identify potential 
outbreaks and track the progression of the disease over time, as was 
evident during the COVID-19 pandemic (23).

In the present study, we aim to define a set of semi-empirical 
indicators to assess the risk level of seasonal respiratory epidemics, 
based on both incidence and their dynamics, and considering 
epidemical thresholds. We base this risk evaluation system on our 
previously developed method for monitoring COVID-19 (23, 24). By 
limiting the use of models, we intend to provide a precise surveillance 
and short-term forecasting tool for healthcare or public health 
professionals without an expertise in mathematical epidemiological 
modeling, not to design immediate control plans, but to assist 
decisions on the relocation of health resources or simply to provide 
direct knowledge of the current and short-term expected burden.

2 Materials and methods

2.1 Data collection

We used publicly available data on daily clinical diagnoses of 
influenza for the whole Catalan population and bronchiolitis in 
children less than 2 years old, from 1st September 2014 to 31st March 
2023. We obtained the data from the Information System for Infection 
Surveillance in Catalonia (SIVIC) (25) of the Health Department of 
Catalonia, a database that contains information on clinical diagnoses 
in Primary Healthcare, usually mostly without microbiological 
confirmation. However, previous studies showed that clinical 
diagnoses data are a good proxy of the epidemiological dynamics of 
respiratory diseases like influenza, because their results have been 
representative of laboratory confirmed diagnoses and sentinel systems 
but entail a shorter delay, as demonstrated by Aguilar Martín et al. 
(26). We used data from children <2 years for assessing bronchiolitis 
because this is the main age group affected by this disease. Otherwise, 
influenza is not only focused on a determined age group and can have 
an impact among the general population.

2.2 Data pre-processing

In this study, we  divided the data pre-processing into three 
different stages: two of nowcasting and one of smoothing 
(Supplementary material). The first nowcasting approach is to account 
for the delayed notification or report in medical databases, while the 
second one is to consider the differences in data reporting (i.e., 
influenza cases) depending on whether the day of the week is a 
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working day or a holiday. Finally, to the pre-processed data 
we  performed a smoothing 7-day moving average. To facilitate 
understanding of the two nowcasting methods, we provide a more 
extensive explanation in the following subsections. The aim of this 
extensive pre-processing is to extract the global dynamics of the 
diseases by clearing out all the noise present within them. 
Notwithstanding that, the rest of the study could be implemented 
simply smoothing the data. Note that all processes and analyses were 
done using Python and the codes for this paper are available in https://
github.com/BIOCOM-SC/cloud-of-codes.

2.2.1 Nowcasting delayed reporting or 
notifications

There is a well-described problem when working with medical 
diagnostic databases, data are constantly being updated and the true 
number of infections for a certain day can only be verified after some 
period of time. However, the general agreement is to use these data 
after 1 month since being reported, once it has consolidated (27). In 
this regard, we had been downloading the SIVIC database each week 
since the beginning of 2021. We  performed a week-to-week 
comparison of the daily reports in the different databases and 
ascertained that while records were generally coherent after 30 days 
from their entry, the most recent registers were still being updated. 
With a retrospective analysis, we intended to define the percentage of 
data completion for the last 30 entries in the database, and use them 
to weight the data into a more accurate approximation of the real 
number of cases.

Since the reporting methods in Catalan healthcare changed 
substantially during the pandemic, we focused our process only in 
the datasets downloaded in mid-October, November and 
December 2022. These datasets were considered consolidated, 
being more than three months old by the end of the study period. 
Additionally, their reporting pattern was closer to the ongoing and 
pre-pandemic ones than that of 2021. We decided to take records 
after 30 days from entry as ground truths (consolidated data) and 
iteratively compute the percentage of completion of each day from 
October to December 2022, ending up with thirty 30-last days 
iterations. Thereafter, we averaged the results to obtain the mean 
percentage of completion per each of the days, which we named 
reporting weights:
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In Eq. 1, ω j states for the normalized percentage of completion, Ci 
is the number of cases reported in a day and Ci + 30 the number of cases 
reported for the same day but 30 days later. The reporting weights in 
Eq. (2) (ωr ) are constructed as the average ω j for all iterations 
performed. In our case, Nrepetitions = 30 since we started computing ω j 
from 20/10/2022 to 20/11/2022 and ended at the iteration from 
20/11/2022 to 20/12/2022.

Finally, we estimated the daily cases for the last month since the 
day the data is downloaded from SIVIC as:
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In Eq. (3), Ci
i( ) states for the estimated diagnoses in the 30 days 

previous to the last update of the database. Former works share this 
approximation (24, 28, 29).

To end the pre-processing and smooth the data of bronchiolitis 
infections, we apply to Ci

i( ) a cumulative 7-day moving average filter, 
while the influenza series undergo the weekly pattern correction 
detailed in the next subsection.

2.2.2 Nowcasting weekly patterns
SIVIC data followed a weekly pattern, Mondays having 

approximately double the cases of weekends or holidays 
(Supplementary material). However, bronchiolitis cases usually follow 
a highly stochastic nature thus their pattern of report is not stable nor 
avoidable. Hence, this approach can only be applied when an evident 
pattern is present like in the influenza diagnoses.

The main process comprises labeling every day in the study period 
as Monday (1), Tuesday (2), Wednesday (2), Thursday (2), Friday (2), 
Saturday (3), Sunday (3) or Holiday (3) as stated by the working 
calendar in Catalonia for each year. Therefore, we created three groups 
of days, the regular working days from Tuesday to Friday, the 
weekends and festivities when the healthcare centers only attend 
emergencies, and Mondays when all non-urgent cases occurring in 
weekends are finally attended. In addition, days after a festivity are 
labeled as Mondays (1) to capture the same effect as described.

Afterwards, we took daily windows of 7-days from the start to the 
end of the study period and computed the weights per type of day as 
the difference between the raw number of diagnoses reported in 
SIVIC and the daily filtered number of diagnoses with a 7-day moving 
average (MM7), that is:
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In Eq. (4), δ j are the weights computed for Mondays (j = 1), 
regular workdays (j = 2) and weekends and festivities (j = 3) in a certain 
7-days window. C states for the raw daily reports in SIVIC and CMM7 
for the 7-day moving mean of C. The j index indicates that to compute 
a certain weight, we only consider the cases of its kind. We saved all 
the iterative computations per type of day and graphically observed a 
time-varying pattern in which stochasticity was reduced when 
epidemic peaks were reached. Therefore, we took the weights per kind 
of day as the median among the intervals in which the values were 
more stable, which were detected with a signal processing algorithm 
detecting local maxima, as displayed as an example in Figure  1. 
We decided to take the median value instead of the average to account 
for instability.

However, we wanted to account for the stochasticity present in the 
data. Hence, instead of using a constant weight value we  used a 
random Gaussian distribution in which the aforementioned computed 
weights are the mean of the distribution, but its standard deviation is 
inversely proportional to the recorded number of diagnoses, ensuring 
that negative weights are avoided. Consequently, the more daily cases, 
i.e., the closer to the epidemic peak, the more the final weight 
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resembles the average. Besides, we only apply this modification when 
CMM7 are over 100 influenza infections, when fluctuations are low 
enough to have a signal-to-noise ratio large enough to make the 
computation of weights reliable.

Finally, we  applied the weekly reporting pattern to the daily 
estimated diagnoses Ci

i( ) that we already computed in order to obtain 
more balanced data:
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In Eq. (5), D represents the final weighted diagnoses. We based 
this approach on the work of Català et al. (18, 23) and Villanueva et al. 
(30). Further information can be found in the Supplementary material. 
To end the pre-processing and smooth the data of influenza infections, 
we apply to D a cumulative 7-day moving average filter.

2.3 Epidemic levels

To define epidemic levels, we employed a novel approach based 
on the Moving Epidemic Method (MEM) which is used in European 
institutions such as the ECDC (31, 32). But first, we  needed to 
compute the weekly incidence for each disease and set an epidemic 
threshold from which to compute these stages.

From the pre-processed dataset, we  measured the weekly 
incidence of bronchiolitis and influenza computing the number of 
daily diagnoses per 105 population (<2 years and all Catalonia 
respectively) and resampling them to weekly frequency. To determine 
the start of the epidemic, we used the first derivative of daily diagnoses. 
The first derivative represents the rate of change of the number of 
reported cases with respect to time. By looking at a certain value of the 
derivative, we can identify the day when the number of reported cases 
started to increase rapidly. We set this value to a three-fold increase in 
the number of reported cases over a single day. We then looked for the 
number of cases reported that day from 2014 to 2019 and averaged 
them. The exclusion of pandemic years is deliberate to avoid skewing 

the result. Once we found the epidemic threshold, we selected the 
epidemy as the first and last days when we are over this boundary.

With the epidemy delimited, we computed an average epidemy 
among the pre-pandemic ones and calculated the 25th, 50th, 75th and 
95th percentiles of cases. The number of cases up to the threshold 
represent the basal level of the epidemy, from the threshold to the 25th 
percentile correspond to a very low level of the epidemy, from the 25th 
to the 50th percentile indicates a low level, from 50th to 75th signifies 
a medium level, from 75th to 95th represents a high level and above 
the 95th constitutes very high epidemic levels. Since with this method 
we obtain epidemic thresholds for weekly incidence, we divide the 
values obtained by 7 to also have the daily incidence levels. This whole 
process has been coded in R and is available in (33).

2.4 Epidemic indicators

In the present work, we used four different epidemic indicators: 
the daily incidence of disease, the weekly growth rate, the semi-
empirical reproduction number and the Effective Potential Growth 
(EPG) (24). All of them are computed from the pre-processed datasets.

2.4.1 Daily incidence
To calculate the daily incidence of bronchiolitis and influenza, 

we took the daily number of diagnoses weighted and filtered with a 
cumulative 7-day moving average and computed cases per 100,000 
population as:
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In Eq. (6), Ii
influenza states for the daily incidence of the disease, Di 

represents the pre-processed number of infections in a day and Pi the 

FIGURE 1

Value of the weight of Monday for its iterative calculations historically (blue, left axis). In orange and referred to the right axis, the time series of 
influenza diagnoses. Delimited in red, are the zones where the median weight value has been computed. Red crosses indicate the peaks detected.
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general number of inhabitants of Catalonia. Regarding Eq. (7), 

Iibronchiolitis  represents the daily incidence of bronchiolitis, Ci
i( ) the

 

pre-processed number of infections in a day and Pi the number of 
infants <2 years in Catalonia. The population has been considered 
constant intra-yearly but variable inter-annually.

2.4.2 Weekly growth rate
To assess the weekly growth rate, we  first define the weekly 

incidence as previously explained, resampling daily incidence to 
weekly frequency. With this, we define the weekly growth rate as the 
percentage of more (or less) cases reported in a week compared to the 
previous week:

 
µ

ϕ
ϕj
j

j
for j all weeks in the study period= =

−1

,     

 
(8)

In Eq. (8), ϕ j  stands for the weekly growth rate, obtained from 
ϕ j  that represents the weekly incidence of disease in a certain week. 
The higher the weekly growth rate, the faster the disease is spreading.

2.4.3 Effective reproduction number
The effective reproduction number (R) is an estimation of the 

average number of infections produced by a single infected individual 
over their infectious period. It is computed taking into account the 
generation time, which is defined as the average interval between the 
infection of an individual and the infection of its secondary cases. It 
usually corresponds to the infectious period. For influenza, the 
generation time is between γ  = 2 and γ  =6 days. For bronchiolitis, the 
generation time is in the order of γ  = 5 days. This index is usually 
computed through the equations of mathematical mechanistic models 
such as the Susceptible-Infected-Recovered (SIR) model (34). 
However, it has undergone several redefinitions to enable alternative 
(rough) estimations without detailed knowledge of specific disease 
characteristics or the need to solve complex equations (20–22). When 
the effective reproduction number has temporal resolution, it can 
be used to predict disease dynamics and evolution. An R > 1 means the 
number of new infections is increasing while R < 1 indicates that the 
new infections have decreased over the generation time.

In this work, we define a semi-empirical reproduction number (ργ), 
as the ratio of new cases with respect to cases γ  days ago, with γ  the most 
contagious period of the disease that also corresponds to the time 
between cases, and filtered with a 3-day moving mean:
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In Eq. (9) the semi-empirical reproduction number is presented, 
with N the number of days of the study period, D the filtered and 
pre-processed diagnoses either of bronchiolitis (Eq. (3) or of influenza 
(Eq. (5), and γ = 5 both for bronchiolitis and influenza. We decided to 
use γ = 5 for influenza after analyzing the robustness of the results 
obtained for γ = 2  to γ = 6 days, which is the interval that literature 
proposes as time between infections. Since the resulting ργ , especially 
for bronchiolitis, were strongly fluctuating, we decided to apply a 
7-day moving mean filter to smooth the effects of the stochasticity of 
certain diagnostic reports.

From all possible estimations of the reproduction number, 
we decided to use the semi-empirical ργ , from now on ρ5, (Eq. (9) due 
to its simplicity. Our aim is not to find the most accurate reproduction 
number, but an estimate that allows us to make a good monitoring of 
the dynamics of the epidemic. We intend for professionals without 
mathematical background to understand epidemic dynamics and 
indicators, hence so we applied the Occam’s Razor Principle.

2.4.4 Effective potential growth
The Effective Potential Growth (EPG) is based on the one defined 

for COVID-19 (24). EPG is an epidemic index that combines the 
incidence level and the incidence trend into a single parameter, and it 
has shown to be a useful risk indicator for the monitoring of COVID-
19. In this work, we  defined it as the product of the daily 7-day 
cumulated incidence of infections (A7) by the corrected semi-
empirical reproduction number (ργ ). Since the time t = 7 for A7 and 
the generation interval are different, the reproduction number has to 
be corrected as:

 ρ ργ γ γ
c

t
= ( )  (10)

 EPG A
c

= 7·ργ  (11)

We defined in Eq. (10) the corrected semi-empirical reproduction 
number, with t = 7 and γ = 5 in our particular case. In Eq. (11) 
we presented the EPG index as the product of A7 and the ργ c

, from 
now on ρ′5, afore introduced. The semi-empirical reproduction 
number is an estimation of how many new infections generates one 
infected individual. EPG amplifies or narrows the weekly incidence 
according to whether there has been an increase (ρ′ > ⇒ >5 71 EPG A )  
or decrease (ρ′ < ⇒ <5 71 EPG A ) in cases over the last γ  days. In this 
way, the rate of growth is considered when looking at the weekly 
incidence of infections and we can anticipate a threshold crossing of 
the epidemic. Hence, the EPG can be interpreted as a forecaster of 
trend changes, the anticipation of which needs to be determined. 
However, EPG is not a predictor of incidences, but of the dynamic 
changes in the evolution of an epidemic, anticipating the level of risk 
to which we are going to be exposed.

The EPG has an advantage over using ρ5 or A7 alone in that it is 
more easily interpretable for healthcare or public health professionals. 
It presents, in incidence terms, the effects of the reproduction number 
on the evolution of the epidemic. In addition, it can be combined with 
risk levels to provide a short-term snapshot.

2.5 Measure of anticipation

The objective of creating a monitoring and risk panel for RVIs is 
not only to assess the current epidemiological situation but to be able 
to forecast how the course of events will unfold. Subsequently, 
we performed a Pearson correlation analysis for EPG to determine its 
suitability and anticipation to the surpassing of epidemic levels. For 
that, we analyzed how influenza and bronchiolitis incidences correlate 
and what lag they have with their EPG sequences globally, for their 
whole series, but also for each of their seasons separately. In Figure 2, 
you can see a representation of this process, and further visualizations 
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can be  found in the Supplementary material. Keeping EPG intact 
(dark purple line), we move forward or backwards A7 (light brown 
lines) and compute the Pearson correlation among both signals. That 
way, the anticipation of EPG to A7 can be  computed, since that 
number of days will correspond to the strongest correlation coefficient.

We also looked at how many days EPG advances the different 
epidemic levels, computing the difference in days when a certain 
threshold is reached.

3 Results

3.1 Epidemic levels and threshold

After performing the extensive pre-processing, we obtain smooth 
visualizations of daily number of diagnoses of bronchiolitis and 
influenza throughout the study period. With them, we have been able 
to compute daily and weekly incidence of disease, allowing us to 
define epidemic stages. The resulting computations of daily and 
weekly epidemic incidence threshold and levels for influenza and 
bronchiolitis are collected in Table 1. Furthermore, weekly thresholds 
are represented in Figures  3, 4, for influenza and bronchiolitis 
respectively, together with their weekly incidences.

These results suggest that when we have a weekly incidence of 
9/27 or a daily incidence of 1/4 for influenza/bronchiolitis, we can 

consider the epidemic wave to have started and we will remain at very 
low numbers of infections until we cross the low epidemic thresholds, 
after which we should already observe effects at the level of occupancy 
in health care facilities.

We can notice from Figures 3, 4 the disappearance of influenza 
when the COVID-19 pandemic spread in March 2020, until mid-2022 
when a small epidemic occurred. Meanwhile, diagnoses of 
bronchiolitis were reported in winter 2020 and two consecutive 
relatively small epidemics in 2021, both during summer and winter, 
surpassing the epidemic thresholds defined but not reaching very 
high levels.

Nonetheless, as Figure 4 shows, the latter epidemic of bronchiolitis 
has been the historically greatest appearing 1 month earlier. As 
concerning influenza, in Figure 3 we can ascertain that we are still 
moving toward a new “normal” seasonality. The latter epidemic wave 
of influenza was advanced also 1 month from previous seasons, and 
actually consisted of two different outbreaks, the first one mainly 
corresponding to influenza A and the subsequent to mainly influenza 
B viruses (35).

On another note, these visualizations allow us to contrast the 
nature of both diseases. Bronchiolitis is of a highly stochastic nature, 
partially because it affects a smaller population (only children) and 
because the disease can be caused by several viral agents creating 
plateaus before and after the epidemic peak, which is mostly caused 
by RSV. On the other hand, influenza presents a smoother signal, both 
because the number of daily diagnoses is higher and because in 
Catalonia only two different strains of influenza viruses, A and B, are 
widespread (32).

Comparing Figures  3, 4, the distance between the low and 
medium epidemic thresholds is narrower for bronchiolitis than for 
influenza, as an effect of that previously described plateau present in 
the bronchiolitis infections data. This indicates that for bronchiolitis, 
the epidemic thresholds defined might only be  useful from the 
medium threshold, when the clear epidemic wave started before the 
pandemic. Besides, we  still have to be  cautious with the levels 
calculated since there are still many unknowns about how future 
epidemics of influenza and bronchiolitis will unfold in Catalonia after 
COVID-19.

3.2 Effective potential growth

With a correlation coefficient higher than 0.98, we found that the 
EPG anticipates weekly influenza incidence by 6 to 7 days and 
bronchiolitis by 4 to 5 days. In Figure 5 we provide the results of the 
correlation analyses for both diseases.

FIGURE 2

Examples of A7 and EPG computed for season 2022–2023 of 
bronchiolitis, and the process on how to compute the days of delay 
between both time series peaks.

TABLE 1 Epidemic threshold and levels of daily and weekly incidence for influenza and bronchiolitis diseases.

Level Daily Weekly

Influenza 
(diagnoses/105)

Bronchiolitis 
(diagnoses/105)

Influenza 
(diagnoses/105)

Bronchiolitis 
(diagnoses/105)

Threshold 1 4 9 27

Low 3 13 21 89

Medium 8 20 53 141

High 20 36 138 250

Very high 31 65 214 453
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It is noteworthy that the EPG effectively predicted the incidence 
of bronchiolitis and influenza almost a week in advance, maintaining 
strong correlation coefficients even during and after the pandemic. 
During the first epidemic following the SARS-CoV-2 outbreak, it 
experienced only a slight decrease in predictive ability, losing 1–2 days 
of anticipation. However, the 2020–2021 epidemic period should 
be  excluded from the analysis due to the negligible incidence of 
influenza and the low occurrence of bronchiolitis cases.

We also looked at how many days EPG anticipates the different 
epidemic levels, and the results are collected in Table 2.

Notice that not all columns in Table 2 are filled. That is because 
not all epidemic seasons reach all the different thresholds, some of 
them only achieve medium levels of incidence. In addition, the 
robustness of EPG in influenza anticipation is palpable when 
compared to the results for bronchiolitis, a consequence of the nature 
of the data used, with much less daily diagnoses than influenza. Hence 
the bronchiolitis reports present and therefore can cause artifacts 
leading to less robust results, presented as >10 days. For the same 
reason, for bronchiolitis, only EPG anticipating high and very high 

risks should be  considered, since lower incidences still present 
reporting variability that adds noise to the metric. Medium risk is also 
faithfully anticipated, but one should be cautious as to read the results 
because artifacts appear in some seasons as a result of the plateaus 
occupying these incidence ranges, plateaus caused by the many viruses 
that can produce bronchiolitis before the RSV predominates.

For further insight into the results, we  present the historical 
diagnoses, incidences, ρ5 and EPG measurements in Figures 6, 7 for 
influenza and bronchiolitis, respectively.

Once again, the stochastic nature of epidemic medical records is 
ascertained, in particular when looking at the estimated reproduction 
numbers ρ5. In addition, we see how before an epidemic peak there is 
a raise of ρ5 up to 3, which means that a large number of contagions 
are taking place.

The similarity between the incidence of diagnoses and the EPG 
for both diseases can be corroborated, as well as the slight advancement 
of EPG, and how it reaches incidences higher than the equivalent 
weekly diagnoses, due to prompt growths in infections. This way, it 
indicates the risk of growth of an epidemic.

FIGURE 3

Weekly influenza cases per 100,000 inhabitants in Catalonia. From bottom to top, the epidemic threshold (black), the low (green, stars), medium 
(yellow, squares), high (red, triangles) and very high (maroon, diamonds) epidemic levels are also displayed.

FIGURE 4

Weekly bronchiolitis cases per 100,000 inhabitants <2  years in Catalonia. From bottom to top, the epidemic threshold (black), the low (green, stars), 
medium (yellow, squares), high (red, triangles) and very high (maroon, diamonds) epidemic levels are also displayed.
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TABLE 2 Number of days in which EPG advances the reaching of the different epidemic thresholds with respect to A7.

Bronchiolitis

Season
Threshold

Low Medium High Very high
2014–2015 >10 9 6 6
2015–2016 7 >10 7 10
2016–2017 7 >10 7 9
2017–2018 5 9 6 8
2018–2019 6 9 >10 6
2019–2020 >10 >10 7 >10
2020–2021 9 - - -
2021–2022 0 5 >10 >12
2022–2023 0 6 >10 4

Influenza

Season
Threshold

Low Medium High Very high
2014–2015 8 3 8 8
2015–2016 >10 >10 10 7
2016–2017 7 6 7 –
2017–2018 5 5 6 8
2018–2019 >10 8 6 9
2019–2020 >10 6 7 –
2020–2021 – – – –
2021–2022 9 5 – –
2022–2023 0 >10 – –

For (top) bronchiolitis and (bottom) influenza diseases.

FIGURE 5

Pearson correlation coefficient among A7 and EPG, for the different lags applied to A7, for (top) influenza and (bottom) bronchiolitis, and the different 
epidemic seasons, each corresponding to a different color.
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3.3 Risk diagrams

To assist the visualization of EPG to better interpret it, we plotted 
the so-called risk diagrams (24) in which we have ρ′5 in front of A7 
and a shaded background in a color scale representing the different 
epidemiological levels defined: dark green for very low or basal level, 
light green for low, yellow for medium, red for high and maroon for 
very high weekly incidence levels. To enhance readability and assist all 
readers, we have incorporated distinct symbols in our presentation. 
We  differentiate between very low and low levels by “*,” low and 
medium levels by a square, medium and high levels by triangles and 
high and very high levels by diamonds. The growth/decrease threshold 
(ρ′5 = 1) is shown as a dotted line. Each dot in the plot depicts an EPG 
value for the corresponding A7 and ρ5 in a certain day, and the dashed 
line joins two consecutive days. The more separated the points, the 
greater the increase or decrease in incidence (horizontal direction) or 
growth rate (vertical direction). The day the epidemic threshold is 
crossed initially is drawn as a blue dot and the final day of the epidemy, 
when we cross that value again, is in red. The x-axes are limited to only 
show A7 incidences above the weekly epidemic threshold. An example 
of risk diagram can be found in Figure 8 but the complete set of risk 
diagrams for all epidemic seasons during the period of study can 
be found in the Supplementary material.

The risk diagrams allow us to anticipate the evolution of an 
epidemic in a very straightforward way. If we  have an influenza 
incidence of 50 cases per 105 inhabitants but we are above the dotted 

line that separates growth from decrease, we expect that the number 
of active cases will continue to increase, following the pattern of the 
last 5 years. On the other hand, if the same incidence is located below 
the dotted line, it will not. Then, the color scale helps us to define 
where we are in the epidemic, whether we are at low (dark and light 
green), medium (yellow) or high (bright and dark red) 
incidence values.

3.4 Surveillance table

To enhance and simplify surveillance of respiratory diseases in 
Catalonia, and facilitate the visualization of the epidemiological 
indicators, we  have developed an automatized control panel, as 
depicted in Figure 9, that displays the weekly incidence rates for the 
previous and current weeks, the growth rates for the previous and 
current weeks, and the EPG. These data are updated daily and the 
weekly incidence rates and growth rates are calculated by grouping the 
reported diagnoses over the last 7 days. In Figure 9 we represented the 
panel at 5th December 2022, when the epidemic of bronchiolitis started 
vanishing and the influenza wave started to increase.

The last three columns present a color scale such that Current 
week growth rate (%) is green if it is lower than the previous week 
one, orange if it is the same and red if it is higher; Semi-empirical 
reproduction number ρ5 is green when below 1, orange if equal to 1, 
and red if greater than 1; and EPG (diagnoses per 100,000 population) 

FIGURE 6

From top to bottom, the daily diagnoses (left) and daily diagnoses per 100,000 population (right, pointed), ρ5 rate and EPG (weekly) infections per 
100,000 population, for influenza.
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is white if the epidemic threshold is not surpassed, dark green if 
we are in very low level, green for low level, yellow for medium 
level, orange for high level and maroon for very high level. In 
Figure 9, we observe that we are in a period where the bronchiolitis 

epidemic is over and we are slowly decreasing incidence, although 
maintained in high incidences, while at the height of the flu 
epidemic, with a high number of infections and moving toward 
greater incidences.

FIGURE 8

Risk diagrams for season 2019–2020 for influenza (left) and bronchiolitis (right). They show ρ′5 with respect to A7 starting from the cyan point and 
finishing at the red point. The background colors correspond to EPG values classified by the epidemic levels. Very low (dark green) and low (light 
green) levels are separated by “*”, low and medium (yellow) levels by a square, medium and high (red) levels by triangles and high and very high 
(maroon) levels by diamonds.

FIGURE 7

From top to bottom, the daily diagnoses (left) and daily diagnoses per 100,000 population (right, pointed), ρ5 rate and EPG (weekly) infections per 
100,000 population, for bronchiolitis.
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4 Discussion

We redefine an epidemic indicator named Effective Potential 
Growth (EPG) that potentially anticipates changes in weekly epidemic 
incidence by 4 to 5 days for bronchiolitis and 6 to 7 days for influenza 
disease. This index, together with a semi-empirical reproduction 
number, the weekly changes in incidences and growth rates, are the 
core of the epidemic surveillance panel we  developed based on 
previous work that showed how this approach could work for 
COVID-19 monitoring (23).

Since the SARS-CoV-2 pandemic, the need for epidemiological 
surveillance of infectious diseases, especially respiratory diseases, 
became evident, as airborne transmission is highly effective (36). 
Several countries already have established publicly available epidemic 
surveillance systems and outbreak risk indicators, such as the USA 
(37), UK (38), Canada (39), Australia (40), and even Spain, in 
particular Catalonia (25). Nonetheless, we have not found any that 
anticipate the evolution of an epidemic wave targeting a general public 
without a strong mathematical background. Mathematical modeling 
of infectious diseases is highly dependent on the quality of the 
epidemiological data available, and requires expertise to produce and 
understand the models’ results and parameters. Even though being the 
most accurate way of forecasting infectious diseases, models can 
be counter intuitive for medical practitioners or policy makers, who 
may require of previous formation in the topic. That is why EPG can 
be a support index for very short-term forecasting, since it shows in 
advance when the different epidemic thresholds will be achieved and 
can anticipate by almost a week the epidemic peak. This information 
is given in incidence terms, which is a common measure of the state 
of a disease in both public health policy and in medical settings. In 
addition, we introduce the visualization of EPG in a risk diagram, 
which can give an illustration of the state of the epidemic in a very 
straightforward manner. Besides, this epidemiological indicator could 
be  introduced in mathematical models to enhance their 
prediction capability.

We have also shown that, with a proper pre-processing of the data, 
and taking into account the weekly differences in reporting, the 
epidemic waves of influenza and bronchiolitis have had clearly defined 
thresholds in the last decade, at least in the Catalan healthcare system. 
These thresholds are particularly robust to different analyses that deal 
with data reporting fluctuations and, even in the case of bronchiolitis 
data, where more artifacts are present, they provide an accurate 
picture of its short-term evolution. Indeed, when the number of 
weekly cases reaches a certain threshold with a certain weekly growth, 
a large wave of cases appears in subsequent weeks systematically. For 
future surveillance, this can be a crucial input to warn the health care 
system a few weeks in advance of the increase in workload.

Certainly, our proposed scheme has some limitations and the EPG 
indicator is more robust for influenza than for bronchiolitis, in 
particular until the medium level threshold. That is due to the 
stochastic nature of bronchiolitis data, as stated before, and because of 
the plateau present in its epidemic waves. Nonetheless, in most cases 
we  are able to anticipate the change in epidemic threshold by 
approximately a week in advance. Another limitation is the simplicity 
of the calculation of the effective reproduction number, which might 
not be  accurately describing the epidemic dynamics. However, is 
within the error that we  accept in exchange for simplicity of 
interpretation, and we observe that it performs adequately. We could 
also use it in an anticipatory way, but this is not the objective of this 
work, since its output is more complex to interpret than that of the 
incidence, which is why we rely on the EPG.

In addition, currently, hospitalizations are not publicly available, 
which restricts us to using only primary healthcare data. With hospital 
admissions, further information could be introduced in our risk panel, 
such as the severity of the infections by a certain disease, including the 
ratio of people admitted to the hospital versus clinical diagnoses in 
primary healthcare, or the percentage of Intensive Care Units (ICUs) 
occupied. From these data, other risk indicators could be designed, 
such as an ICU-increase associated risk indicator. Besides, data on 
mortality could also be a good indicator of the sternness of the disease, 
but these data are not provided in a daily manner in our region. 
Additionally, preprocessing medical records is a hard task and there is 
not a standardized way to do so, yet. The bronchiolitis diagnoses’ 
stochasticity limits both our preprocessing and predictions abilities 
with the disease.

Nevertheless, the availability of centralized databases with 
primary care clinical diagnoses has been enhanced by the pandemic, 
thus providing a rapid way to monitor the evolution of an epidemic. 
The panel of semi-empirical indicators that we have presented can 
be easily incorporated to such databases due to their empirical nature, 
thus becoming a simple and useful tool to help on the management 
and surveillance of such epidemic episodes. Our proposed 
preprocessing methodology allowed us to work with smoother and 
more reliable data and the defined monitoring panel is the only one to 
our knowledge using mostly empirical data to construct forecasting 
indicators, with concept and visualization easy to understand for 
healthcare practitioners and the general public.
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FIGURE 9

Capture of the risk panel for seasonal epidemics in Catalonia, as of 5th of December 2022.
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