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A B S T R A C T   

Background: Machine learning-based prediction models can catalog, classify, and correlate large amounts of 
multimodal data to aid clinicians at diagnostic, prognostic, and therapeutic levels. Early prediction of ventilator- 
associated pneumonia (VAP) may accelerate the diagnosis and guide preventive interventions. The performance 
of a variety of machine learning-based prediction models were analyzed among adults undergoing invasive 
mechanical ventilation. 
Methods: This systematic review and meta-analysis was conducted in accordance with the Cochrane Collabora-
tion. Machine learning-based prediction models were identified from a search of nine multi-disciplinary data-
bases. Two authors independently selected and extracted data using predefined criteria and data extraction 
forms. The predictive performance, the interpretability, the technological readiness level, and the risk of bias of 
the included studies were evaluated. 
Results: Final analysis included 10 static prediction models using supervised learning. The pooled area under the 
receiver operating characteristics curve, sensitivity, and specificity for VAP were 0.88 (95 % CI 0.82–0.94, I2 98.4 
%), 0.72 (95 % CI 0.45–0.98, I2 97.4 %) and 0.90 (95 % CI 0.85–0.94, I2 97.9 %), respectively. All included 
studies had either a high or unclear risk of bias without significant improvements in applicability. The care- 
related risk factors for the best performing models were the duration of mechanical ventilation, the length of 
ICU stay, blood transfusion, nutrition strategy, and the presence of antibiotics. 
Conclusion: A variety of the prediction models, prediction intervals, and prediction windows were identified to 
facilitate timely diagnosis. In addition, care-related risk factors susceptible for preventive interventions were 
identified. In future, there is a need for dynamic machine learning models using time-depended predictors in 
conjunction with feature importance of the models to predict real-time risk of VAP and related outcomes to 
optimize bundled care.   

Registration: PROSPERO CRD42022367014, registered on 24-10-2022. 
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1. Introduction 

Although lifesaving, mechanical ventilation predisposes patients to 
ventilator-associated pneumonia (VAP), which is the most serious res-
piratory infection, occurring in 23.5–39.3 % (12.2 to 22.4 cases per 1000 
ventilator days) of intubated patients [1–2]. VAP accounts for more than 
half of all intensive care unit (ICU) antibiotic prescriptions being asso-
ciated with multidrug-resistant organisms and overuse of 
broad-spectrum antibiotics [3] and significant mortality (22–43 %) rates 
[1]. VAP is also an important contributing factor to other causes of 
death, particularly sepsis and multiple-organ failure. 

Since 2014, researchers have started to develop near real-time 
automation for the detection of VAP [4–10]. These expert systems are 
efficient and useful as a quality indicator [11], but they have not 
improved the diagnostic accuracy of VAP [8,12–13]. In addition, they 
are resource-intensive and unable to identify an individual who would 
benefit from a certain type of treatment based on the predicted disease 
course. Full compliance with preventive interventions has decreased 
morbidity and halved the daily bed occupancy and use of ventilators 
[14]. 

ICU is a high-tech environment for intensive and invasive moni-
toring. ICU clinical information systems collect, store, process, and 
present high-volume, high-velocity, and high-variety information (e.g., 
structured and unstructured data, waveforms) from multiple systems (e. 
g., laboratory, pathology, and radiology systems) and solutions (e.g., 
monitors, ventilators, infusion pumps) simultaneously, continuously, 
and synchronously to support clinical decision-making. Machine 
learning-based prediction models can continuously catalog, classify, and 
correlate large amounts of multimodal data to aid clinicians at diag-
nostic, prognostic, and therapeutic levels (e.g., risk assessment, patient 
profiling, resource allocation) [15]. Despite its clinical potential, med-
ical artificial intelligence (AI) is not yet a universal solution due to un-
certainty and distrust of AI predictions. 

Diagnostic and prognostic prediction models may accelerate the 
diagnosis (e.g., stratify patients into high- and low-risk groups), guide 
preventive interventions (e.g., identify risk factors, predict the disease 
course), and determine the best treatment options (e.g., predict weaning 
failure) decreasing the risk of VAP and its consequences (e.g., prolonged 
mechanical ventilation, antimicrobial resistance, mortality). Compared 
to one-time activity (e.g., manual diagnosis) and static baseline infor-
mation (e.g., clinical scoring tools), various prediction intervals and 
prediction windows can facilitate timelier diagnosis to guide preventive 
interventions and additional monitoring in VAP. In addition, dynamic 
clinical prediction models can increase predictive power across a certain 
time by computing and updating candidate predictors on a continuous 
basis over time [16]. In prior literature, however, the majority of pre-
diction modeling studies have been retrospective with a high risk of bias 
due to insufficiently reported eligibility and recruitment methods as well 
as unvalidated and unadjusted electronic health record (EHR) data [16]. 
Correspondingly, the level of technology readiness has been low due to 
lack of clinical validation and workflow integration. In addition, none of 
the previous reviews have focused on the interpretability of machine 
learning-based prediction models [16–17] to foster explainability and 
trust in AI predictions. 

For that reason, we reviewed and summarized the state of existing 
multivariable diagnostic and prognostic prediction models in VAP and 
related outcomes in adult patients undergoing invasive mechanical 
ventilation (IMV). Due to the lack of consensus on a “gold standard” 
definition, all diagnostic criteria were considered [2]. The primary 
objective was to compare the predictive performance of competing 
machine learning-based prediction models. Our secondary objectives 
were to identify risk factors for VAP and assess the interpretability, the 
technological readiness level and the risk of bias of the included studies. 

This systematic review and meta-analysis was conducted in accor-
dance with the Cochrane Collaboration’s tool [18] and the PRISMA-DTA 
(Preferred Reporting Items for a Systematic Review and Meta-analysis of 

Diagnostic Test Accuracy Studies) statement [19]. The formal research 
question was as follows: to what extent are existing machine learning-based 
prediction models able to predict VAP and related outcomes in adults un-
dergoing invasive mechanical ventilation? The study protocol was regis-
tered in the international prospective register of systematic reviews 
(PROSPERO) before the start of the study (CRD42022367014). 

2. Material and methods 

2.1. Literature search and inclusion criteria 

An actual search was conducted in nine multi-disciplinary databases 
(ACM Digital Library/ACM Guide to Computing Literature, Astrophysics 
Data System, arXiV, Academic Search Ultimate, Cumulative Index to 
Nursing and Allied Health Literature [CINAHL], IEEE Xplore Digital 
Library, PubMed [Medline], Scopus, Web of Science) with the assistance 
of information specialists in October 2022, and the saved searches were 
then automatically updated until October 2023. The controlled (MesH in 
Medline Ovid and PubMed) and free-text terms were used through the 
Boolean operators (Table 1). In addition, manual searches of the refer-
ence lists, citations, and related articles (PubMed function) of the 
included studies were undertaken to identify additional studies missed 
from the original electronic searches. All original prediction modeling 
studies written in English were included if they met the predefined in-
clusion criteria (PICOTS):  

• Population: Adults undergoing IMV.  
• Index: Machine learning-based diagnostic and prognostic prediction 

models using regression (e.g., logistic regression) or non-regression 
(e.g., random forests, neural networks, and support vector ma-
chines) modeling techniques.  

• Comparator: Manual diagnosis with and without clinical scoring 
tools.  

• Outcomes: VAP with and without related outcomes.  
• Timing: Models to be used prior to VAP and at the moment of 

diagnosis.  
• Setting: Models to inform clinical decision making in ICU setting. 

2.2. Selection of relevant studies 

Two reviewers (MMJ and IA) screened the data independently. In 
case of disagreement, conflict was solved by discussion with each other. 
The study selection was carefully documented using the Covidence 
Systematic Review Software tool and Microsoft Excel spreadsheet to 
ensure its repeatability. 

2.3. Data extraction and assessment of methodological quality 

Two reviewers (MMJ and TF) assessed the risk of bias using the 
Prediction Model Risk of Bias Assessment Tool (PROBAST) [20]. In case 
of disagreement, conflict was solved by discussion with each other. The 
PROBAST includes 20 signaling questions across four key domains 
(participants, predictors, outcome, analysis), while each domain is 
assessed for a low, high, or unclear risk of bias (Table 2). Two reviewers 
(MMJ and IA) extracted the data (e.g., source of data, participants, 
outcomes, predictors, sample size, model development, model perfor-
mance, model evaluation, results) using the Critical Appraisal and Data 
Extraction for Systematic Reviews of Prediction Modeling Studies 
(CHARMS) checklist [21] in conjunction with the PROBAST tool [20]. 
Discrimination (model’s ability to differentiate between patients with 
and without VAP) was extracted to estimate prediction models’ ability 
to distinguish patients with and without VAP [range from 0.5 (no 
discriminative ability) to 1 (perfect discriminative ability)]. Due to lack 
of calibration blots, summarization of calibration (the agreement be-
tween the frequency of observed events with the predicted probabilities) 
was impossible. The technological readiness level (range 1–9) were 
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Table 1 
Search strategy.  

Databases PI(COT)S MesH in Medline Ovid and 
PubMed 

No of 
references 

Scopus, Web of 
Science, and 
Academic 
Search 
Ultimate 

Population "respiration, artificial" OR 
"artificial respiration" OR 
"ventilator-associated" OR 
"ventilator-induced" OR 
"mechanical ventilation" 

Scopus 296 
Web of 
Science 180 
Academic 
Search 
Premier 111 Intervention (stratification OR "ROC curve" 

OR discriminat* OR "c- 
statistic" OR "area under the 
curve" OR auc OR calibration* 
OR algorithm* OR 
multivariable OR "multi- 
variable" OR diagnos* OR 
prognos*) AND ("Artificial 
Intelligence" OR "Machine 
Learning" OR "Artificial 
Learning" OR "Bayesian 
Learning" OR "Deep Learning" 
OR "Knowledge 
Representation" OR "Neural 
Network*" OR "Probabilistic 
Network*" OR "Statistical 
Learning" OR "Support vector 
machine*" OR "Generalized 
linear model*" OR "Naive 
bayes*" OR "Ensemble 
method*" OR "Neural network 
model*" OR "Decision tree*") 

Setting hospital* OR “operation 
theater*” OR “emergency 
department*” OR “recovery 
room*” OR ”tertiary care 
center*” OR ”intensive care 
unit*” OR ”operation room*” 
OR ”Clinical Decision Unit*” 
OR ”Clinical Observation 
Unit*” OR ”respiratory care 
unit*” OR ”Trauma Center*” 

PubMed 
(Medline) 

Population ((("Respiration, 
Artificial"[Mesh]) OR 
"Pneumonia, Ventilator- 
Associated"[Mesh]) OR 
(”ventilator-associated”[Text 
Word] OR ”ventilator- 
induced”[Text Word] OR 
”mechanical ventilation”[Text 
Word] OR ”artificial 
respiration”[Text Word]))) 

270 

Intervention (((((("Artificial 
Intelligence"[Mesh]) OR 
("Artificial Intelligence"[Text 
Word] OR "Machine 
Learning"[Text Word] OR 
"Artificial Learning"[Text 
Word] OR "Bayesian 
Learning"[Text Word] OR 
"Deep Learning"[Text Word] 
OR "Knowledge 
Representation"[Text Word] 
OR Neural Network*[Text 
Word] OR Probabilistic 
Network*[Text Word] OR 
"Statistical Learning"[Text 
Word] OR Support vector 
machine*[Text Word] OR 
Generalized linear model* 
[Text Word] OR Naive bayes* 
[Text Word] OR Ensemble 
method*[Text Word] OR 
Neural network model*[Text 
Word] OR Decision tree*[Text 
Word] AND ((("ROC 
Curve"[Mesh]) OR 
(stratification[Text Word] OR  

Table 1 (continued ) 

Databases PI(COT)S MesH in Medline Ovid and 
PubMed 

No of 
references 

"ROC curve"[Text Word] OR 
discriminat*[Text Word] OR 
"c-statistic"[Text Word] OR "c 
statistic"[Text Word] OR "area 
under the curve"[Text Word] 
OR AUC[Text Word] OR 
calibration*[Text Word] OR 
algorithm*[Text Word] OR 
multivariable [Text Word] OR 
”multi-variable”[Text Word] 
OR diagnos*[Text Word] OR 
prognos*[Text Word])))) 

Setting ((((((("Hospitals"[Mesh]) OR 
"Clinical Observation 
Units"[Mesh]) OR "Intensive 
Care Units"[Mesh]) OR 
"Operating Rooms"[Mesh]) OR 
"Emergency Service, 
Hospital"[Mesh])) OR 
(hospital*[Text Word] OR 
operation theater*[Text Word] 
OR emergency department* 
[Text Word] OR recovery 
room*OR tertiary care center* 
[Text Word] OR intensive care 
unit*[Text Word] OR 
operation room*[Text Word] 
OR Clinical Decision Unit* 
[Text Word] OR Clinical 
Observation Unit*[Text Word] 
OR respiratory care unit*[Text 
Word] OR Trauma Center* 
[Text Word])) 

CINAHL Population ((MH "Respiration, Artificial+" 
OR MH "Pneumonia, 
Ventilator-Associated") OR 
(”artificial respiration” OR 
“ventilator-associated” OR 
“ventilator-induced” OR 
“mechanical ventilation”)) 

65 (peer 
reviewed) 

Intervention (MH "ROC Curve" OR 
(stratification OR ”ROC curve” 
OR discriminat* OR ”c- 
statistic” OR ”area under the 
curve” OR AUC OR 
calibration* OR algorithm* OR 
multivariable OR "multi- 
variable"OR diagnos* OR 
prognos*)) AND (MH 
"Artificial Intelligence+" OR 
(“Artificial Intelligence” OR 
“Machine Learning” OR 
“Artificial Learning” OR 
“Bayesian Learning” OR “Deep 
Learning” OR “Knowledge 
Representation” OR “Neural 
Network*” OR “Probabilistic 
Network*” OR “Statistical 
Learning” OR “Support vector 
machine*” OR ”Generalized 
linear model*” OR ”Naive 
bayes*” OR ”Ensemble 
method*” OR ”Neural network 
model*” OR ”Decision tree*”)) 

Setting (((MH "Hospitals+") OR (MH 
"Observation Units") OR (MH 
"Intensive Care Units+") OR 
(MH "Operating Rooms") OR 
(MH "Emergency Service+")) 
OR (hospital* OR "operation 
theater*" OR "emergency 
department*" OR "recovery 
room*" OR "tertiary care 
center*" OR "intensive care 
unit*" OR "operation room*" 

(continued on next page) 

T. Frondelius et al.                                                                                                                                                                                                                              



European Journal of Internal Medicine 121 (2024) 76–87

79

assessed according to Fleuren et al. [22]. The interpretability of the 
included studies was assessed by whether the authors calculated the 
feature importance (e.g., Shapley values) for all the input features for a 
given model (a positive score indicates larger effect to predict a certain 
variable). In addition, the number of candidate predictors was consid-
ered for model interpretability. 

2.4. Data analysis 

The retrieved discrimination [e.g., area under the receiver operating 
characteristics (ROC) curve, AUROC] was summarized into a weighted 
average. In meta-analysis, we pooled prognostic prediction models with 
effect sizes (AUROCs) that used same measurement times for the same 
outcome. Standard errors were estimated based on normal distribution 
assumption. Due to heterogeneity of prediction modeling studies, 
random effects meta-analysis was performed [18]. The forest plot in-
cludes statistics for AUROC, sensitivity, and specificity with 95 % con-
fidence intervals. In addition, the Higgins I2 test was used to evaluate 
heterogeneity between the included studies (I2 ≤ 25 % for low, I2 < 50 % 
for moderate, I2 ≥ 50 % for high) [23]. 

3. Results 

3.1. Study selection and characteristics 

Study selection (Fig. 1) was performed in three stages: At the first 
stage (N = 1205), the studies were screened for duplicate hits. At the 

Table 1 (continued ) 

Databases PI(COT)S MesH in Medline Ovid and 
PubMed 

No of 
references 

OR "Clinical Decision Unit*" 
OR "Clinical Observation 
Unit*" OR "respiratory care 
unit*" OR "Trauma Center*")) 

ACM Guide to 
Computing 
Literature 

Population [[All: "respiration, artificial"] 
OR [All: "artificial respiration"] 
OR [All: "ventilator- 
associated"] OR [All: 
"ventilator-induced"] OR [All: 
"mechanical ventilation"]] 

275 

Intervention [[All: "artificial intelligence"] 
OR [All: "machine learning"] 
OR [All: "artificial learning"] 
OR [All: "bayesian learning"] 
OR [All: "deep learning"] OR 
[All: "knowledge 
representation"] OR [All: 
"neural network"] OR [All: 
"probabilistic network"] OR 
[All: "statistical learning"] OR 
[All: "support vector machine"] 
OR [All: "generalized linear 
model"] OR [All: "naive 
bayesian"] OR [All: "ensemble 
method"] OR [All: "neural 
network model"] OR [All: 
"decision tree"] OR [All: 
"proportional hazards model"]] 
AND [[All: "roc curve"] OR 
[All: discriminat*] OR [All: "c- 
statistic"] OR [All: "area under 
the curve"] OR [All: auc] OR 
[All: calibration*] OR [All: 
algorithm*] OR [All: 
multivariable] OR [All: "multi- 
variable"] OR [All: diagnos*] 
OR [All: prognos*]] 

Setting [[All: hospital*] OR [All: 
"operation theater"] OR [All: 
"emergency department"] OR 
[All: "recovery room"] OR [All: 
"tertiary care center"] OR [All: 
"intensive care unit"] OR [All: 
"operation room*"] OR [All: 
"clinical decision unit"] OR 
[All: "clinical observation 
unit"] OR [All: "respiratory 
care unit"] OR [All: "trauma 
center"]] 

arXiV Population "respiration, artificial" OR 
"artificial respiration" OR 
"ventilator-associated" OR 
"ventilator-induced" OR 
"mechanical ventilation" 

0 

Intervention "multivariable prediction 
model*" OR "multi-variable 
prediction model*" 

Astrophysics 
Data System 

Population ("respiration, artificial" OR 
"artificial respiration" OR 
"ventilator-associated" OR 
"ventilator-induced" OR 
"mechanical ventilation") 

0 

Intervention ("Artificial Intelligence" OR 
"Machine Learning" OR 
"Artificial Learning" OR 
"Bayesian Learning" OR "Deep 
Learning" OR "Knowledge 
Representation" OR "Neural 
Network" OR "Probabilistic 
Network" OR "Statistical 
Learning" OR "Support vector 
machine" OR "Generalized 
linear model" OR "Naive bayes" 
OR "Ensemble method" OR 
"Neural network model" OR  

Table 1 (continued ) 

Databases PI(COT)S MesH in Medline Ovid and 
PubMed 

No of 
references 

"Decision tree) AND 
(stratification OR "ROC curve" 
OR discriminat* OR "c- 
statistic" OR "area under the 
curve" OR AUC OR calibration* 
OR algorithm* OR 
multivariable OR "multi- 
variable" OR diagnos* OR 
prognos*) 

Setting (hospital* OR "operation 
theater" OR "emergency 
department" OR "recovery 
room" OR "tertiary care center" 
OR "intensive care unit" OR 
"operation room" OR "Clinical 
Decision Unit" OR "Clinical 
Observation Unit" OR 
"respiratory care unit" OR 
"Trauma Center") 

IEEE Xplore 
Digital Library 

Population "respiration, artificial" OR 
"artificial respiration" OR 
"ventilator-associated" OR 
"ventilator-induced" OR 
"mechanical ventilation" AND 
multivariable prediction 
model* OR multi-variable 
prediction model* 

6 

Intervention ("Artificial Intelligence" OR 
"Machine Learning" OR 
"Artificial Learning" OR 
"Bayesian Learning" OR "Deep 
Learning" OR "Neural 
Network") AND (stratification 
OR "ROC curve" OR 
discriminat* OR "c-statistic" 
OR "area under the curve" OR 
AUC OR calibration* OR 
algorithm* OR multivariable 
OR "multi-variable" OR 
diagnos* OR prognos*) 

Setting "intensive care unit"  
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second stage, potentially relevant studies were assessed by comparing 
the titles and abstracts (n = 702) against the predetermined inclusion 
criteria. At the third stage, the studies (n = 21) that appeared to meet the 
inclusion criteria were obtained for detailed assessment against the in-
clusion criteria. Eventually, 10 original prediction modeling studies 
were identified to meet the inclusion criteria (Fig. 2). 

Among the 20 prediction modeling studies identified and assessed 
for eligibility, 12 were excluded due to wrong article type (conference 
abstract), design (lack of comparator) or outcome (lack of psychomet-
rics). Majority (90 %) of included studies (Appendix 1) were retro-
spective cohort studies using either EHR [24–26] or open [27–32] data 
sources (Table 2). All included studies used the ICD-9 code for VAP 
(997.31) [24–32]. The most common study aims were predicting VAP 
without its consequences. The timeline for VAP diagnosis and VAP 
variable extraction varied from the first hour after ICU admission [25] to 
24–48 h after initiation of IMV [27–30], and beyond. 

3.2. Risk factors 

Table 3 summarizes the identified risk factors for VAP. The identified 
patient-specific risk factors were: age [30], Glasgow coma scale (GCS) 
[27–29], comorbidities (e.g., diabetes, hypertension, coronary artery 
disease) [24], pneumothorax [24] as well as APACHE III, SOFA, and 
SAPS II-scores in mixed medical-surgical patients [30–31] and the Injury 
Severity Score in trauma patients [24,32]. The identified clinical 
criteria-related risk factors were: white blood cell (WBC) count [27–28, 
30,33], PaO2/FiO2-ratio [30,33], body temperature [30,33], and 
sputum production [29,33] and color [33]. The care-related risk factors 
for the best performing models were the time from injury to emergency 
department [24], intubation [32], the duration of mechanical ventila-
tion [27,29,33], the length of ICU stay [32], blood transfusion [24,31], 
nutrition strategy [31], and the presence of antibiotics [29]. 

3.3. Predictive performance 

Most studies used more than one evaluation metric related to 
discrimination (e.g., AUROC, sensitivity, and specificity) whereas cali-
bration performance was not evaluated due to lack of studies (Appendix 
1). The pooled AUROC for VAP (Fig. 3) and early VAP (Fig. 4) were 0.88 
(95 % CI 0.82–0.94, I2 98.4 %) and 0.84 (95 % CI 0.76–0.91, I2 98.7 %), 
respectively. Effect sizes for model development are described in Fig. 5. 
The pooled sensitivity and specificity for VAP were 0.72 (95 % CI 
0.45–0.98, I2 97.4 %) and 0.90 (95 % CI 0.85–0.94, I2 97.9 %), 
respectively. Compared to clinical scoring tools, the ML models out-
performed the PIRO (predisposition, insult, response, organ dysfunc-
tion) and CPIS (clinical pulmonary infection score) scoring tools at all 
prediction times [29]. 

3.4. Interpretability 

All of the included studies used supervised learning where conven-
tional classification models were trained end-to-end. A set of candidate 
predictors varied from three [27–28] to 42 [30]. All predictors were 
available at the time the model was intended for use. Some of them (e.g., 
WBC count, body temperature, sputum production), however, were not 
excluded from the outcome definition [27–28,30,33]. Feature impor-
tance was evaluated in 70 % studies [24–25, 27–31) and reported in half 
of the studies [24,28–32]. Some studies utilized feature importance to 
optimize the model performance but didn’t report the feature impor-
tance of the tested models [25,27]. Additionally, feature importance was 
reported and used to develop minimal input model in some studies, but 
the feature importance was not reported for the resulting models 
[28–29]. 

Table 2 
Open data sources in retrospective cohort studies.  

Database Sample Data sources Research data sets 

eICU 
Collaborative 
Research 
Database 
(eICU-CRD) 

Over 200,000 
ICU admission 
across the United 
States between 
2014 and 2015 

Clinical records Patient 
demographics 
Clinical 
characteristics (e.g., 
outcome 
information) 
Laboratory test 
results 
Physiological 
measurements (e.g., 
vital signs) 
Medications and 
fluid balances 
Respiratory care (e. 
g., ventilator 
settings) 
Billing-related 
information (e.g., 
ICD-9 codes) 

Medical 
Information 
Mart for 
Intensive Care 
(MIMIC) 

Over 60,000 ICU 
admission in the 
Beth Israel 
Deaconess 
Medical Center 
between 2001 
and 2012 

Hospital EHR; 
ICU CIS; Social 
Security 
Administration 
Death Master File 

Patient 
demographics 
Clinical 
characteristics (e.g., 
outcome 
information) 
Laboratory test 
results 
Reports of 
electrocardiogram 
and imaging studies 
Physiological 
measurements (e.g., 
vital signs) 
Medications and 
fluid balances 
Respiratory care (e. 
g., ventilator 
settings) 
Billing-related 
information (e.g., 
ICD-9, DRG, and 
CPT codes) 

National Trauma 
Data Bank 

Pediatric and 
adult patients 
admitted to 
Level I, II, III, IV, 
V or 
undesignated 
trauma centers 
between 2007 – 
2020 

Clinical records Patient 
demographics 
Clinical 
characteristics (e.g., 
outcome 
information) 
Physiological 
measurements (e.g., 
vital signs) 
Pre-hospital 
information 
Emergency 
department 
information 
Hospital events 
Medications and 
fluid balances 
Respiratory care 
Billing-related 
information (e.g., 
ICD-10 and AIS 
codes) 

OUTCOMEREA ICU admissions 
across France 
starting from 
1997 (–ongoing) 

Clinical records Patient 
demographics (e.g., 
admission features 
and diagnoses) 
Clinical 
characteristics (e.g., 
outcome 
information) 
Physiological 
measurements (e.g., 
vital signs)  
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3.5. Technological readiness level 

The majority (80 %) of included studies (Fig. 2) were in the devel-
opment phase (level 4). Two (20 %) of the included studies [25–26] 
were validated on an external dataset (level 5). Real-time data (level 6), 
workflow integration (level 7), clinical outcome evaluation (level 8), or 
model integration (level 9) were not considered (Appendix 1). 

3.6. Risk of bias 

In general, the current body of evidence was low due to the lack of 
clinical trials. All included studies had either a high or unclear risk of 
bias without significant improvements in applicability (Table 4). High 
risk of bias was most often originated in the domain “participants” due to 
lack of adjustment of the baseline risk/hazard in the analysis, “outcome” 
due to suboptimal method of outcome determination, and “analysis” due 
to low number of participants with the outcome (events per variable). 

Low to high concerns related to applicability were detected (Fig. 2). 

4. Discussion 

A variety of prediction models, prediction intervals, and prediction 
windows (e.g., 6, 12, 24, and 48 h) were identified. Compared to manual 
diagnosis and clinical scoring tools, the included machine learning- 
based prediction models demonstrated sufficient discrimination abil-
ity. Given the costs and complications associated with VAP, once 
implemented and prospectively validated, these models may diagnose 
VAP faster and more accurately than clinicians. 

Contrary to diagnostic criteria, early (24 h) VAP was predicted to 
facilitate timely diagnosis to guide preventive interventions and addi-
tional monitoring [27–31]. The predictors of the best performing models 
included care-related risk factors, which are susceptible for preventive 
interventions (e.g., sedation and antibiotic strategies) [34,35]. Addi-
tional work is needed to determine the ideal data collection and 

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram of the study selection. Among the 20 prediction modeling 
studies identified and assessed for eligibility, 12 were excluded due to wrong article type (conference abstract), design (lack of comparator) or outcome (lack of 
psychometrics). 

Fig. 2. Summary of included studies by the definition of VAP, predictive performance (AUROC), and the overall risk of bias and applicability.  

T. Frondelius et al.                                                                                                                                                                                                                              



European Journal of Internal Medicine 121 (2024) 76–87

82

prediction windows and distinguish ventilator-associated tracheo-
bronchitis (VAT) from VAP [1,36]. Decreasing the progress (e.g., dys-
biosis) from VAT to VAP would improve patient outcomes [37]. 

It must be noted, however, that predictive power may be lost after a 
certain time [29], which reduces the overall relevance of the candidate 
predictors (e.g., patient-related risk factors). For that reason, 
case-specific variables (e.g., the components of the ventilator bundle) 
should be considered [38] to develop dynamic clinical prediction 
models [39]. In addition, other ventilator-associated events should also 
be taken into account to limit complications and improve outcomes 
[40–41]. 

Intelligible machine learning models were increasingly used to un-
derstand the prediction mechanism [25,29]. However, only half of the 
included studies reported feature importance for the candidate pre-
dictors. Typically, the feature importance scores were computed for 
random forest or boosting models yielding a numeric estimate for pre-
dictors (risk factor) contribution to the final predictions (risk of VAP), as 

well as allowing the features to be ordered and visualized according to 
their contribution to the positive prediction. It should be noted, how-
ever, that the feature importance scores are model specific and focus on 
correlation between the features and outcome, rather than causal 
relationships. 

In line with previous literature [16–17], retrospective cohort design 
seems to be the most frequent non-clinical study design, since treatment 
of patients has not been influenced by the use of AI. In addition, the 
development of the technological readiness level seems to be horizontal 
instead of diagonal. According to our findings, the majority of included 
studies were in the development phase, where the models are tested and 
optimized without external validation. Thus, a significant amount of 
development is still required to improve the maturity of technologies 
during their conceptualization, development, and application stages. In 
addition, the models need to be tested using real-time data. Additional 
development is also needed to introduce the models to clinical work-
flow, evaluate clinical outcomes, and integrate the models in the hos-
pital environment. 

Conventional machine learning models used in the included studies 
had minimal issues regarding scalability and computational demands 
due to the relatively low number of predictors and low model 
complexity. This leaves patient privacy and data security as more 
important concerns when bringing the models to clinical environment. 
Data-acquisition and sampling methods used in clinical setting should 
extract relevant predictors in real-time (either using bedside measure-
ments or electronic health records) without compromising patient se-
curity or privacy. Feature extraction should also be done in accordance 
with the relevant regulations and laws, which need to be considered 
when bringing the models to the next level of readiness. 

In future, unsupervised (e.g., clustering based models) and semi- 
supervised (e.g., generative adversarial neural networks) machine 
learning algorithms can potentially reveal novel features for prediction 
of VAP from patient data. The models might be able to learn features or 
combinations of features which go unseen by human observer and 
conventional statistical analyses. However, it is important to keep in 
mind that the models might learn to identify correlations rather than 
causal features and the results may be difficult to interpret. Additionally, 
validating the performance of unsupervised models can be difficult due 
to the lack of clear target or ground truth in unsupervised learning. This 
issue can be alleviated by using labeled data during model development 
and training. 

The included studies demonstrated sufficient discrimination ability, 
which is a prerequisite for clinical acceptance [42–43]. Prior to that, 
however, external validation is warranted in a clinical workflow. In 
future, it is important to determine whether the model addresses treated 
and/or non-treated patients and how the treatment effects were handled 
in the models. Evaluation of the feature importance would improve the 
robustness, interpretability, and stability of explanations, and reveal 
important predictors and potential biases in the datasets. In addition, 
real-time data infrastructures should be developed to respond to un-
known unknowns. 

This systematic review has several limitations. First of all, gray 
literature was not included. In addition, meta-regression was not con-
ducted due to low number of studies. Second, the high risk of bias was 
most often originated in the domain “participants” due to insufficiently 
reported eligibility and recruitment methods as well as un-validated and 
unadjusted EHR data, “outcome” due to suboptimal method of outcome 
determination (e.g., clinical criteria), and “analysis” due to unreasonable 
events per variable. In addition, differences in predictors, prediction 
windows, study characteristics, case-mix, statistical analysis, and se-
lective reporting were potential sources of heterogeneity across the 
included studies. Finally, calibration performance was not evaluated 
due to lack of studies. In addition, the impact of bundled care in the risk 
of VAP is unknown due to lack of discrete time-to-event data. 

Table 3 
Identified risk factors for ventilator-associated pneumonia (VAP).  

Author(s), 
year 

Source of data with 
participants 

Outcome to be 
predicted 

Risk factors 

Abujaber 
et al., 
2021 

Patients with traumatic 
brain injury in Qatar, 
2014–2019 (n = 772) 

VAP (n = 169) Time to emergency 
department, blood 
transfusion, 
comorbidity, Injury 
Severity Score, 
pneumothorax 

Amador 
et al., 
2022 

Mixed medical surgical 
patients in 3 ICUs in 
Brazil, 2016–2018 (n =
5474) 

VAP (n = 39) Administrative data, 
vital signs, lab results 

Calvert 
et al., 
2022 

MIMIC-III (v1.3) 
database, 2001–2012 
(n = 20,487) 

VAP at 24 (n 
= 469) hour- 
window 

White blood cell count, 
Glasgow Coma Scale, 
duration of mechanical 
ventilation 

Dos Santos 
et al., 
2021 

Mixed medical surgical 
patients in Southern 
Brazil, 2017 (n = 5105) 

VAP (n = 9) Vital signs, lab results, 
free text 

Faucher 
et al., 
2022 

MIMIC-III (v1.3) 
database, 2001–2012 
(n = 19,141) 

VAP at 12, 24, 
36, and 48 (n 
= 470) hour- 
window 

White blood cell count, 
Glasgow Coma Scale, 
duration of mechanical 
ventilation 

Giang 
et al., 
2021 

MIMIC-III (v1.3) 
database (n = 6126) 

VAP at 6, 12, 
24, and 48 h- 
window (n =
524) 

Duration of mechanical 
ventilation, the 
presence of antibiotics, 
sputum test frequency, 
Glasgow Coma Scale 

Liang 
et al., 
2022 

MIMIC-III database, 
2001–2012 (n =
38,515) 

VAP at 24 (n 
= 212) hour- 
window 

Admission source, 
APACHE III, SOFA, age, 
body temperature, 
PaO2/FiO2 ratio, white 
blood cell count 

Liquet 
et al., 
2012 

OUTCOMEREA 
database, 1996–2007 
(n = 2871) 

VAP (n = 433) Age, SAPS II, parenteral 
nutrition 

Pearl et al., 
2012 

National Trauma Data 
Bank, 2001–2005 (n =
1438,035) 

VAP (n=NR) Intubation, Injury 
Severity Score, 
intensive care unit 
length of stay >2 days 

Schurink 
et al., 
2007 

Neurosurgical patients, 
University Medical 
center Utrecht, 
2000–2003 (n = 872) 

VAP (n = 58) Duration of mechanical 
ventilation, white blood 
cell count, body 
temperature, 
antipyretic drugs, 
sputum production and 
color, PaO2/FiO2 ratio, 
X-ray   

Possible VAP 
(n = 78)    
Probable VAP 
(n = 21)   
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5. Conclusion 

A variety of the prediction models, prediction intervals, and pre-
diction windows were identified to facilitate timely diagnosis. In addi-
tion, care-related risk factors susceptible for preventive interventions 

were identified. In future, there is a need for dynamic machine learning 
models using time-depended predictors in conjunction with feature 
importance of the models to predict real-time risk of VAP and related 
outcomes to optimize bundled care in adults undergoing IMV. 

Fig. 3. Forest plot of area under the receiver operating characteristics curve of machine learning models to predict VAP.  

Fig. 4. Forest plot of area under the receiver operating characteristics curve of machine learning to predict early VAP.  
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Table 4 
Risk of bias assessment.   

ROB Applicability Overall 

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applica-bility 

Abujaber et al., 2021 – + ? – – + ? – – 
Amador et al., 2022 – + ? ? + + ? – ? 
Calvert et al., 2022 – ? ? ? + ? ? ? ? 
Dos Santos et al., 2021 – ? ? ? + ? ? ? ? 
Faucher et al., 2022 – + – – + + + – – 
Giang et al., 2021 – + – + + + + – +

Liang et al., 2022 – + ? + + + ? – ? 
Liquet et al., 2012 – + + + + + + – +

Pearl et al., 2012 – + ? + – + ? ? ? 
Schurink et al., 2007 + + + – – + + – +

ROB = risk of bias. 
+ indicates low ROB/low concern regarding applicability. 
- indicates high ROB/high concern regarding applicability. 
? indicates unclear ROB/unclear concern regarding applicability. 
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Appendix 1  

Table A1 
Data extraction from predictive modeling studies.  

Author(s), 
year 

Source of data with 
participants 

Type of 
prediction 
model study 

Outcome to 
be predicted 

Predictors Model development Model 
evaluation 
(AI level of 
readiness) 

Result(s)    

Development 
/Validation 

Diagnostic 
/Prognostic      

Abujaber 
et al., 
2021 

Patients with TBI in 
Qatar, 2014–2019 (n 
= 772) 

Development Prognostic VAP (n =
169) 

Time to ED, blood 
transfusion, 
comorbidity, ISS, 
pneumothorax 

C.5 DT model Internal 
validation 
(Level 4) 

AUC 80.5 %; SEN 43 %; 
SPE 95 %; ACC 83.5 %; 
PRE 71 %; NPV 86 %; F- 
score 54 % 

Amador 
et al., 
2022 

Mixed medical 
surgical patients in 3 
ICUs in Brazil, 
2016–2018 (n =
5474) 

Development 
+ validation 

Prognostic VAP (n = 39) Administrative data, 
vital signs, lab results 

XGB External 
validation in 
2019 (n =
1069) (Level 
5) 

Robustness 4.9 %; 
stability 7.4 %       

RF  Robustness 5.0 %; 
stability 7.2 %       

LR  Robustness 5.5 %; 
stability 7.6 % 

Calvert 
et al., 
2022 

MIMIC-III (v1.3) 
database, 
2001–2012 (n =
20,487) 

Development Prognostic VAP at 24 (n 
= 469) hour- 
window 

WBC, GCS, duration of 
MV 

XGB Internal 
validation 
(Level 4) 

AUC 0.888       

EBM  AUC 0.894       
LR  AUC 0.768 

Dos Santos 
et al., 
2021 

Mixed medical 
surgical patients in 
Southern Brazil, 
2017 (n = 5105) 

Development 
+ validation 

Prognostic VAP (n = 9) Vital signs, lab results, 
free text 

RF External 
validation in 
2018 (Level 
5) 

AUROC 95.67 % (SD 
0.15); SEN 95.69 % (SD 
0.48); SPE 89.02 % (SD 
0.05); ACC 89.0 % (SD 
0.05); NPV 99.99 % (SD 
0.0); PPV 2.62 % (SD 
0.02)       

LR  NR       
CNN  NR 

Faucher 
et al., 
2022 

MIMIC-III (v1.3) 
database, 
2001–2012 (n =
19,141) 

Development Prognostic VAP at 12, 
24, 36, and 
48 (n = 470) 
hour- 
window 

WBC, GCS, duration of 
MV 

XGB NR (Level 4) AUC 0.916       

EBM  AUC 0.915       
LR  AUC 0.814 

Giang 
et al., 
2021 

MIMIC-III (v1.3) 
database (n = 6126) 

Development Prognostic VAP at 6, 12, 
24, and 48 h- 
window (n =
524) 

Duration of MV, the 
presence of antibiotics, 
sputum test frequency, 
GCS 

XGB Internal 
validation 
(Level 4) 

AUROC 0.791       

RF  AUROC 0.777       
LR  AUROC 0.776       
SVM  AUROC 0.775       
MP  AUROC 0.741 

Liang 
et al., 
2022 

MIMIC-III database, 
2001–2012 (n =
38,515) 

Development Prognostic VAP at 24 (n 
= 212) hour- 
window 

Admission source, 
APACHE III, SOFA, 
age, body temperature, 
PaO2/FiO2 ratio, WBC 

RF Internal 
validation 
(Level 4) 

AUC 84 %; SEN 74 %; 
SPE 71 % 

Liquet 
et al., 
2012 

OUTCOMEREA 
database, 
1996–2007 (n =
2871) 

Development Prognostic VAP (n =
433) 

Age, SAPS II, 
parenteral nutrition 

Markov 
models 

Internal 
validation 
(Level 4) 

Semi-Parametric LCV 
4.04         

Non-homogenous LCV 
4.06         
Parametric LCV 4.46 

(continued on next page) 
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Table A1 (continued ) 

Author(s), 
year 

Source of data with 
participants 

Type of 
prediction 
model study 

Outcome to 
be predicted 

Predictors Model development Model 
evaluation 
(AI level of 
readiness) 

Result(s)    

Development 
/Validation 

Diagnostic 
/Prognostic      

Pearl 
et al., 
2012 

National Trauma 
Data Bank, 
2001–2005 (n =
1438,035) 

Development Prognostic VAP (n=NR) Intubation, ISS, ICU 
LOS >2 days 

ANN Internal 
validation 
(Level 4) 

True 85 %; False 87 %; 
Gini 0.80 

Schurink 
et al., 
2007 

Neurosurgical 
patients, University 
Medical center 
Utrecht, 2000–2003 
(n = 872) 

Development Diagnostic VAP (n = 58) Duration of MV, WBC, 
body temperature, 
antipyretic drugs, 
sputum production and 
color, PaO2/FiO2 ratio, 
X-ray 

BN Internal 
validation 
(Level 4) 

AUC 0.857 (95% CI 
0.827–0.888), SEN 80%; 
SPE 80%; PPV 6.1%; 
NPV 99.6%     

Possible VAP 
(n = 78)    

AUC 0.884 (95 % CI 
0.842–0.925)     

Probable 
VAP (n = 21)    

AUC 0.875 (95 % CI 
0.804–0.945) 

ACC = Accuracy; ANN = Artificial Neural Network; AUC = Area Under Curve; AUROC = Area Under the Receiver Operating Curve; BN = Bayesian Network; CI =
Confidence Intervals; EBM = Explained Boosting Machine; ED = Emergency Department; GCS Glasgow Coma Scale; ICU = Intensive care unit; ISS = Injury Severity 
Score; LCV = Likelihood cross-validation; LOS = length of stay; LR = Logistic regression; MIMIC = Multiparameter Intelligent Monitoring in Intensive Care; MP =
Multilayer Perceptron; MV = Mechanical Ventilation; NPV = Negative Predictive Value; NPA VAP = VAP attributed to P. Aeruginosa; NR = not reported; PPV =
Positive Predictive Value; RF = random forest; SEN = Sensitivity, SPE = Specificity; TBI = traumatic brain injury; VAP = Ventilator-Associated Pneumonia; WBC =
White Blood Cell count; XGB = eXtreme Gradient Boosting. 
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et al. Artificial Intelligence-based technologies in surgical scheduling: content 
validity assessment of required functionalities. BMC Health Serv Res 2022;22: 
1513. https://doi.org/10.1186/s12913-022-08780-y. 

[16] van de Sande D, van Genderen ME, Huiskens J, Gommers D, van Bommel J. Moving 
from bytes to bedside: a systematic review on the use of artificial intelligence in the 
intensive care unit. Intensive Care Med 2021;47:750–60. https://doi.org/10.1007/ 
s00134-021-06446-7. 

[17] Frondelius T, Atkova I, Miettunen J, Rello J, Jansson MM. Diagnostic and 
prognostic prediction models in ventilator-associated pneumonia: systematic 
review and meta-analysis of prediction modelling studies. J Crit Care 2022;67: 
44–56. https://doi.org/10.1016/j.jcrc.2021.10.001. 

[18] Debray TPA, Damen JAAG, Snell KIE, Ensor J, Hooft L, Reitsma JB, et al. A guide to 
systematic review and meta-analysis of prediction model performance. BMJ 2017; 
356. https://doi.org/10.1136/bmj.i6460. 

[19] McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM. The PRISMA-DTA 
group. preferred reporting items for systematic reviews and meta-analysis of 
diagnostic test accuracy studies the prisma-dta statement. JAMA J Am Med Assoc 
2018;319:388–96. https://doi.org/10.1001/jama.2017.19163. 

[20] Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. 
PROBAST: a tool to assess the risk of bias and applicability of prediction model 
studies. Ann Intern Med 2019;170:51–8. https://doi.org/10.7326/M18-1376. 

[21] Fleuren LM, Thoral P, Shillan D, Ercole A, Elbers PWG. Right data right now 
collaborators. machine learning in intensive care medicine: ready for take-off? 
Intensive Care Med 2020;46:1486–8. https://doi.org/10.1007/s00134-020-06045. 

[22] Moons KGM, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Reitsma JB, 
et al. Critical appraisal and data extraction for systematic reviews of prediction 
modelling studies: the CHARMS checklist. PlosMed 2014;11. https://doi.org/ 
10.1371/journal. 

[23] Higgins JPT, Thompson SG, Deeks J, Altman DG. Measuring inconsistency in meta- 
analyses. Br Med J 2013;327:557–60. 

[24] Abujaber A, Fadlalla A, Gammoh D, Al-Thani H, El-Menyar A. Machine learning 
model to predict ventilator associated pneumonia in patients with traumatic brain 
injury: the C.5 decision tree approach. Brain Inj 2021;6:1–8. https://doi.org/ 
10.1080/02699052.2021.1959060. 

[25] Amador T, SaturinoA Veloso A, Zivani N. Early identification of ICU patients at risk 
of complications: regularization based on robustness and stability of explanations. 
Artif Intell Med 2022;128:102283. https://doi.org/10.1016/j. 
artmed.2022.102283. 

[26] Dos Santos RP, Menezes A, Lukasewicz S, et al. Automated healthcare-associated 
infection surveillance using an artificial intelligence algorithm. Infect. Prev. Pract. 
2021;3:100167. https://doi.org/10.1016/j.infpip.2021.100167. 

[27] Calvert J, Faucher M, Casie Chetty C, Shokouhi S, Evans D, Barnes G, Mao Q. Early 
prediction of ventilator-associated pneumonia in intensive care unit patients using 
an intelligible machine learning algorithm. Am J Respir Crit Care Med 2022;205: 
A3451. 

[28] Faucher M, Casie Chetty S, Shokouhi S, Barnes G, Rahmani K, Calvert J, et al. Early 
Prediction of ventilator-associated pneumonia in ICU patients using an 

T. Frondelius et al.                                                                                                                                                                                                                              

https://doi.org/10.1007/s00134-018-5269-7
https://doi.org/10.1007/s00134-018-5269-7
https://doi.org/10.1017/ice.2017.106
https://doi.org/10.1016/j.ajic.2013.12.009
https://doi.org/10.1016/j.ajic.2017.09.006
https://doi.org/10.1016/j.ajic.2017.09.006
https://doi.org/10.1017/ice.2018.97
https://doi.org/10.1017/ice.2015.127
https://doi.org/10.1017/ice.2015.127
https://doi.org/10.1016/j.ajic.2015.05.040
https://doi.org/10.1016/j.ajic.2015.05.040
https://doi.org/10.1164/rccm.201307-1376OC
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0009
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0009
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0009
https://doi.org/10.1378/chest.13-2255
https://doi.org/10.1378/chest.13-2255
https://doi.org/10.21037/atm.2018.10.54
https://doi.org/10.1186/s13613-020-0624-6
https://doi.org/10.1186/s13613-020-0624-6
https://doi.org/10.1186/s13054-016-1506-z
https://doi.org/10.1186/s13054-016-1506-z
https://doi.org/10.1111/j.1469-0691.2012.03808.x
https://doi.org/10.1111/j.1469-0691.2012.03808.x
https://doi.org/10.1186/s12913-022-08780-y
https://doi.org/10.1007/s00134-021-06446-7
https://doi.org/10.1007/s00134-021-06446-7
https://doi.org/10.1016/j.jcrc.2021.10.001
https://doi.org/10.1136/bmj.i6460
https://doi.org/10.1001/jama.2017.19163
https://doi.org/10.7326/M18-1376
https://doi.org/10.1007/s00134-020-06045
https://doi.org/10.1371/journal
https://doi.org/10.1371/journal
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0023
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0023
https://doi.org/10.1080/02699052.2021.1959060
https://doi.org/10.1080/02699052.2021.1959060
https://doi.org/10.1016/j.artmed.2022.102283
https://doi.org/10.1016/j.artmed.2022.102283
https://doi.org/10.1016/j.infpip.2021.100167
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0027
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0027
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0027
http://refhub.elsevier.com/S0953-6205(23)00406-5/sbref0027


European Journal of Internal Medicine 121 (2024) 76–87

87

interpretable machine learning algorithm. Preprints 2022:2022060149. https:// 
doi.org/10.20944/preprints202206.0149.v1. 

[29] Giang C, Calvert J, Rahmani K, Barnes G, Siefkas A, Green-Saxena A, et al. 
Predicting ventilator-associated pneumonia with machine learning. Medicine 
(Baltimore) 2021;100:e26246. https://doi.org/10.1097/MD.0000000000026246. 

[30] Liang Y, Zhu C, Tian C, Lin Q, Li Z, Li Z, et al. Early prediction of ventilator- 
associated pneumonia in critical care patients: a machine learning model. BMC 
Pulm Med 2022;22:250. https://doi.org/10.1186/s12890-022-02031-w. 

[31] Liquet B, Timsit J, Rondeau V. Investigating hospital heterogeneity with a multi- 
state frailty model: application to nosocomial pneumonia disease in intensive care 
units. BMC Med Res Methodol 2021;12:79. 

[32] Pearl A, Bar-Or D. Decision support in trauma management: predicting potential 
cases of Ventilator Associated Pneumonia. Stud Health Technol Inform 2012;180: 
305–9. 

[33] Schurink CA, Visscher S, Lucas PJ, van Leeuwen HJ, Buskens E, Hoff RG, et al. 
A bayesian decision-support system for diagnosing ventilator-associated 
pneumonia. Int Care Med 2007;33:1379–86. 

[34] Ramirez-Estrada S, Peña-Lopez Y, Rello J. The effects of sedatives, neuromuscular 
blocking agents and opioids on ventilator-associated events. Eur J Anaesthesiol 
2020;37:67–9. 
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