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Abstract

Primary open-angle glaucoma (POAG) is a complex disease with a strong hereditably com-

ponent. Several genetic variants have recently been associated with POAG, partially due to

technological improvements such as next-generation sequencing (NGS). The aim of this

study was to genetically analyze patients with POAG to determine the contribution of rare

variants and hypomorphic alleles associated with glaucoma as a future method of diagnosis

and early treatment. Seventy-two genes potentially associated with adult glaucoma were

studied in 61 patients with POAG. Additionally, we sequenced the coding sequence of

CYP1B1 gene in 13 independent patients to deep analyze the potential association of hypo-

morphic CYP1B1 alleles in the pathogenesis of POAG. We detected nine rare variants in

16% of POAG patients studied by NGS. Those rare variants are located in CYP1B1, SIX6,

CARD10, MFN1, OPTC, OPTN, and WDR36 glaucoma-related genes. Hypomorphic vari-

ants in CYP1B1 and SIX6 genes have been identified in 8% of the total POAG patient

assessed. Our findings suggest that NGS could be a valuable tool to clarify the impact of

genetic component on adult glaucoma. However, in order to demonstrate the contribution of

these rare variants and hypomorphic alleles to glaucoma, segregation and functional stud-

ies would be necessary. The identification of new variants and hypomorphic alleles in glau-

coma patients will help to configure the genetic identity of these patients, in order to make

an early and precise molecular diagnosis.
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Introduction

It is estimated that almost 112 million people worldwide will have glaucoma in 2040, which will

continue to be the second leading cause of blindness worldwide [1]. It is known that half of all

glaucoma cases go undiagnosed, and therefore efficient screening methods for detecting glau-

coma are essential. Genetic studies have enormously progressed in recent years with the advent

of the Human Genome Project [2]. Increasingly, molecular genetics is seen as a diagnostic tool

in daily clinical practice. Molecular genetic analysis could be used to detect the disease in its

early stage (pre-symptomatic relatives), to perform phenotypic-genotypic correlations, to per-

sonalize treatment, to refine the prognosis of the disease and to offer genetic counselling [3].

Current next-generation sequencing (NGS) allows millions of DNA sequences to be pro-

duced in a single reaction, avoiding the limitations of the Sanger method of gene-to-gene and

exon-to-exon sequencing [4]. In this way, through NGS, a large amount of data is obtained

and a large number of variants will be observed in each individual. However, the classification

of the gene variants is the challenge posed in current genetic molecular diagnosis.

Through linkage analysis, 23 loci and four genes (MYOC/TIGR, CYP1B1, OPTN, and

WDR36) had already been associated with glaucoma in the past years. Early-onset glaucoma

(<40 years) is more likely to be inherited according to a classic Mendelian pattern involving

single genes, mainly CYP1B1 in primary congenital glaucoma (PCG) and MYOC in juvenile

open-angle glaucoma (JOAG), whereas glaucoma in adults tends to be more complex due to

its multifactorial inheritance [5, 6]. Family grouping is a known risk factor for glaucoma in the

adult, with a risk 1–10 times greater than the observed in general population among the first-

degree relatives of an affected individual [7, 8]. Therefore, the surveillance of these individuals

is indicated for early detection and treatment [9, 10].

However, these disease-causing genes mentioned above account for <10% of primary open

angle glaucoma (POAG) cases in the general population [11]. Therefore, in the past decade,

efforts have been made to elucidate the genetic causes of adult glaucoma. The application of

advanced genetic technology has increased the list of candidate genes [6]. Recent Big Data

studies using genome-wide association study (GWAS) have identified over 100 loci related

with oxidative stress, DNA repair mechanisms, mitochondrial DNA genes, sex hormones, and

phenotypic traits associated with glaucoma [12]. Quantitative endophenotypic agents that act

as risk factors (pachymetry, axial length, anterior chamber depth. . .) and glaucomatous risk

stratification have been identified [13, 14]. Therefore, genetic screening appears increasingly

promising not only for PCG and JOAG diagnosis, but also for POAG.

In 2006, our research group created the Spanish Multicentre Glaucoma Group (Estudio
Multicéntrico Español de Investigación Genética del Glaucoma, EMEIGG), including 18 Eye

Hospitals throughout Spain. We performed an initial study to identify pathogenic variants in

the MYOC and CYP1B1 genes, which were the only fully-described glaucoma-causing genes at

that time [15]. The aim of this study is to test a custom gene panel that gathered recently

described candidate genes associated with POAG using NGS and to evaluate the impact of the

implementation of NGS as a future method for diagnosis and early treatment of adult glau-

coma. And, additionally, based on the NGS results, we set out to evaluate the impact of hypo-

morphic alleles of CYP1B1 in a new cohort of patients with POAG.

Materials and methods

Patients

A total of 74 patients signed written informed consent to participate in this study and were

asked to fill in a questionnaire including personal, biographic, demographic, family, and
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clinical data. This study was carried out in accordance with the Declaration of Helsinki and

approved by the Research Ethics Committee of the Hospital Clı́nic of Barcelona.

All participating ophthalmologists from the EMEIGG completed a standardized question-

naire to homogenize the data collection. A full history was taken, including systemic and oph-

thalmologic disease, family members affected by glaucoma (number and type of relative) and

family history of consanguinity. POAG was diagnosed in the presence of compatible peri-

metric lesions correlated with typical glaucomatous changes of the optic nerve in patients over

40 years and absence of a cause for secondary glaucoma diagnosis. Patients affected with low-

tension glaucoma (LTG) which is a form of POAG in which there is a glaucomatous optic neu-

ropathy in the presence of intraocular pressures (IOP) lower than 20 mmHg were also

included in the study. Patients with early-onset glaucomas who were diagnosed with PCG or

JOAG were excluded.

Each referring ophthalmologist graded the disease stage, based on the ophthalmologic

exams, the aspect of the optic disc, and visual field-testing results, and classified each case as

initial, moderate, or severe glaucoma according to the Hodapp-Parrish-Anderson grading

scale, which refers to visual field mean defect (MD) (initial if MD< −6 dB, moderate if MD

between −6 and −12 dB, and advanced if MD> −12 dB). Data about the number of eye surger-

ies and current ocular hypotensive medication were recorded. The presence of thin pachyme-

try was also annotated as being an endophenotypic trait related to glaucoma conversion and

severity.

Study of glaucoma-related genes using NGS

Sixty-one patients (all unrelated, except two siblings) with POAG (or LTG) (Table 1) were

included in the NGS study, with a mean age at diagnosis of 51 ± 12 years (range: 18–76 years).

Although the study included adult glaucoma cases, four patients were younger than 40 years at

the time of diagnosis (18–27 years), but did not display the typical features of JOAG, and were

considered as early-onset POAG.

Thirty-nine genes potentially associated with POAG were studied (Table 2). After a thor-

ough search in OMIM, Orphanet and Human Gene Mutation Database (HGMD), we selected

Table 1. Clinical data of patients studied by NGS and Sanger sequencing.

Patients NGS N = 61 Patients Sanger N = 13

Gender Female 33 8

Male 28 5

Diagnosis POAG Initial 9 2

Moderate 14 8

Severe 31 3

LTG Severe 3 -

Early-onset POAG Moderate 1 -

Severe 3 -

Family history Yes 50 11

No 11 2

Surgery Yes 38 6

No 23 7

Ocular hypotensive medication Yes 15 1

No 46 12

LTG: Low-Tension Glaucoma; POAG: Primary Open-Angle Glaucoma.

https://doi.org/10.1371/journal.pone.0282133.t001
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the classic known glaucoma-causing genes, genes associated with elevated IOP or POAG risk,

anterior segment dysgenesis, glaucoma, glaucoma-related endophenotypic traits, optic nerve

pathology or augmented susceptibility and retinal vessels anomalies and, finally, syndromic

glaucoma-causing genes. Besides, additional genes have been included because a potential

association with glaucoma has been suggested in some scientific literature studies [16–25].

Libraries were generated through gene capture by hybridization with the SeqCap EZ system

(NimbleGene, custom panel “cl1_GM1”) and subsequent massive parallel sequencing was car-

ried out with a HiSeq™ 2000 platform sequencer (Illumina) at Sistemas Genómicos, S.L.

Sequence reads were aligned with the reference genome GRCh38/hg38. Alignment was made

using the BWA (Burrows-Wheeler Aligner) tool and scripts designed by Sistemas Genómicos,

S.L. Genetic variants in coding and flanking sequences of genes with frequencies <1% were

annotated. Annotated sequencing data was investigated using the filtering system for non-

sense, missense, synonym and intronic variants located up to +10 bp in the flanking sequences.

All exons and intronic regions up to +10 bp from the exons showed coverages greater than

20x. UTR regions were not analyzed. SNV annotation was made using ANNOVAR [26].

Sanger sequencing of CYP1B1 in a new cohort of POAG patients

After observing the results of the NGS study, we included 13 additional patients for the study

of the CYP1B1 gene using Sanger sequencing. These 13 patients were not studied by NGS. The

coding sequence of the CYP1B1 gene was directly sequenced, following the same selection cri-

teria as before (Table 1). The mean age at diagnosis was 55 ± 10 years (range: 40–79 years).

Specific oligonucleotides were designed to amplify the two coding exons of CYP1B1
(NM_000104.4; S1 Table).

Interpretation and classification of variants

In silico prediction algorithms included in Varsome (https://varsome.com/) were used to clas-

sify variants. The in silico tools used were: CADD, Polyphen2, DEOGEN2, MutPred,

FATHMM-XF, Mutation assessor, MVP, PROVEAN, EIGEN, LRT, SIFT, BLOSUM, DANN,

LIST-S2, M-CAP, MutationTaster and PrimateAI. ClinVar database was also consulted to

check the classification reported by other subscribers.

General population frequencies and the highest frequencies in a population were obtained

from gnomAD v3.1.2. Final variant interpretation was performed according to the American

Table 2. List of genes included in the custom glaucoma panel designed.

ADRB1 ERCC2 OCLM
ADRB2 GALC OLFM2
AGTR2 GAS7 OPA1
ATOH7 GSTM1 OPTC
BCAS3 HK2 OPTN
BMP4 LMX1B PAX6

CARD10 MFN1 PON1
CAV1 MFN2 SIX1
CAV2 MTHFR SIX6
CDC7 MYOC TGFBR3

CDKN2B NCK2 TMCO1
COL8A2 NOS3 WDR36
CYP1B1 NTF4 XRCC1

https://doi.org/10.1371/journal.pone.0282133.t002

PLOS ONE NGS for the detection of rare variants and hypomorphic alleles in primary open-angle glaucoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0282133 January 19, 2024 4 / 16

https://varsome.com/
https://doi.org/10.1371/journal.pone.0282133.t002
https://doi.org/10.1371/journal.pone.0282133


College of Medical Genetics and Genomics (ACMG) and the Association for Molecular

Pathology (AMP) recommendations [27]. In this way, we considered rare variants classified/

described as pathogenic, likely pathogenic or variant of uncertain significance (VUS) with low

frequencies in the general population (<1%), as well as variants that have been described as

hypomorphic variants.

Results

Rare genetic variants detected in POAG patients by NGS

We detected nine rare or hypomorphic variants (Table 3) in 10 patients (16%) by NGS

(Table 4). These variants were found in seven of the glaucoma-related genes. All variants were

detected in heterozygosity and classified as VUS. The allelic frequency of these variants in gen-

eral population was very low (<1%) (Table 3). Most patients described with variants showed a

severe POAG phenotype (70%, Table 4). Additionally, all patients with a rare genetic variant

had a family history of glaucoma and most of them had required surgery or maximal ocular

medication (Table 4). The presence of thin pachymetry readings was detected in two patients

(patient 1 and patient 8).

The only variant detected in two unrelated patients was the variant p.Y81N in the CYP1B1
gene (Table 4). Although different in silico algorithms and functional studies predict a possible

pathogenicity of this variant, it has been identified in 528 individuals from genomes and

exomes available in gnomAD, even in three of them in a homozygosis state. Nevertheless, the

comparison of residues between organisms showed marked conservation of Y81 in different

organisms (Fig 1) and its association with POAG has been reported several times [15, 28–31],

being described as a hypomorphic variant in some cases [32–35]. Therefore, this variant was

classified as a VUS.

Although familial studies of VUS are not recommended in clinical practice [36], the segre-

gation study of the p.Y81N variant in the CYP1B1 gene was performed in both families for

Table 3. Description and classification of variants detected in this study. All variants were detected in heterozygosity.

Gene Transcript Variant

(cDNA)

Variant

(protein)

ACMG

criteria

ClinVar classification

(number of times)

ACMG

classification

AF in general

population

Highest AF and

population

CYP1B1 NM_000104.4 c.241T>A p.Y81N PS3, PP3,

BS1, BS2

VUS (2); LB (1); B (2) VUS

(Hypomorphic)

0.35% 1.36% European

(Finnish)

CARD10 NM_014550.4 c.1307C>T p.T436M PM2, BP4 Not reported VUS 0.01% 0.03% Ashkenazi

Jewish

CARD10 NM_014550.4 c.2952C>A p.C984X PM2, BP4 Not reported VUS Not found Not found

MFN1 NM_033540.3 c.1601G>A p.R534Q PM2, PP3 Not reported VUS Not found Not found

MFN1 NM_033540.3 c.2101G>T p.E701X PM2 Not reported VUS Not found Not found

OPTC NM_014359.4 c.893G>A p.R298H PM2 Not reported VUS 0.03% 0.21% Latino/

Admixed American

OPTN NM_001008212.2 c.1552C>T p.Q518X PM2 Not reported VUS Not found Not found

SIX6 NM_007374.3 c.635C>T p.T212M PM2, PP3 VUS (2) VUS

(Hypomorphic)

0.02% 0.03% European

(non-Finnish)

WDR36 NM_139281.3 c.892G>A p.E298N PM2, PP3 Not reported VUS 0.01% 0.11% Ashkenazi

Jewish

CYP1B1
¶

NM_000104.4 c.83C>G p.S28W PM2, PP5,

PS1

Not reported VUS

(Hypomorphic)

0.004% 0.12% Ashkenazi

Jewish

¶Variant detected only in the study by Sanger sequencing. ACMG: American College of Medical Genetics; AF: allelic frequency; B: benign; LB: likely benign; NGS: next-

generation sequencing; VUS: variant of uncertain significance.

https://doi.org/10.1371/journal.pone.0282133.t003
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research purposes (Fig 2). The variant segregated with the disease in the family of patient 1.

The patient’s sister, who was also diagnosed with POAG, carried the p.Y81N variant in

CYP1B1 in heterozygosity. The variant was also detected in the patient’s daughter, who had

not signs of glaucoma, but has ocular hypertension. The family of patient 2 was smaller and

not informative. The segregation study showed that the patient’s daughter, who had no signs

of glaucoma or ocular hypertension, did not have the variant. His wife also had glaucoma, but

she also underwent NGS testing, and no variant was detected.

We also observed two siblings with the variant p.T436M in the CARD10 gene. Both siblings

(a 45-year-old female and a 43-year-old male) had a very aggressive POAG phenotype (Fig 3),

Table 4. Clinical characteristics of patients and variants detected in this study. All variants were detected in heterozygosity.

Patient Gender Age at

diagnosis

Diagnosis Features Family history

of glaucoma

Consanguinity Surgery Ocular

hypotensive

medication

Gene Transcript Variant

(protein)

Next-generation sequencing

Patient

1

Female 55 POAG Initial

glaucoma, with

PDS and

myopia

Yes (mother,

sister)

No No No CYP1B1 NM_000104.4 p.Y81N

Patient

2

Male 76 POAG Severe

glaucoma

No No Yes Yes CYP1B1 NM_000104.4 p.Y81N

Patient

3

Female 55 POAG Moderate

glaucoma

Yes (daughter) No Yes No SIX6 NM_007374.3 p.T212M

Patient

4¶
Female 42 POAG Severe

glaucoma, with

retinal venous

and arterial

occlusions

Yes (brother) No Yes No CARD10 NM_014550.4 p.T436M

Patient

5¶
Male 30 POAG Severe

glaucoma, with

retinal venous

and arterial

occlusions

Yes (sister) No Yes No CARD10 NM_014550.4 p.T436M

Patient

6

Female 65 POAG Severe

glaucoma

Yes (son, 2

siblings)

Yes No Yes CARD10 NM_014550.4 p.C984X

MFN1 NM_033540.3 p.R534Q

Patient

7

Female 65 POAG Moderate

glaucoma

Yes (4 siblings,

nephew)

No No Yes OPTC NM_014359.4 p.R298H

Patient

8

Male 25 Early-

onset

POAG

Severe

glaucoma

Yes (father,

brother)

No Yes No OPTN NM_001008212.2 p.Q518X

Patient

9

Male 60 LTG Severe

glaucoma

Yes (daughter) No Yes No WDR36 NM_139281.3 p.E298N

Patient

10

Female 68 POAG Severe

glaucoma

Yes (father,

brother)

No Yes No MFN1 NM_033540.3 p.E701X

Sanger sequencing of CYP1B1
Patient

11

Male 58 POAG Moderate

glaucoma

No No Yes No CYP1B1 NM_000104.4 p.Y81N

Patient

12

Female 60 POAG Initial

glaucoma

Yes (maternal

grandmother)

No No No CYP1B1 NM_000104.4 p.Y81N

Patient

13

Male 60 POAG Moderate

glaucoma and

myopia

Yes (mother, 2

siblings)

No No No CYP1B1 NM_000104.4 p.S28W

¶Siblings. LTG: low-tension glaucoma; NGS: next-generation sequencing; PDS: pigment dispersion syndrome; POAG: primary open-angle glaucoma.

https://doi.org/10.1371/journal.pone.0282133.t004
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with very high IOP and pigment dispersion syndrome (pigment dots scattered around the cor-

neal endothelium and pigmented trabecular meshword), although other characteristic features

of classic pigmentary glaucoma (typical Krukenberg spindle and iris atrophy) were missing.

Both also developed retinal venous and arterial occlusions. Aside from the siblings, we

detected another variant in the CARD10 gene (p.C984X) in a 65-year-old female, along with a

second variant in the MFN1 gene (p.R534Q). This patient had a severe POAG phenotype, and

was the only patient in the study with a family history of consanguinity (grandparents were

first degree cousins). Regarding the MFN1 gene, we also detected another variant (p.E701X) in

a 68-year-old patient with severe glaucoma. Both variants in the CARD10 gene and in the

MFN1 gene have not been reported in ClinVar and most of them do not appear in gnomAD,

except for the variant p.T436M in the CARD10 gene that was identified in 12 individuals in

heterozygosity. All of them have one or two deleterious predictors and should therefore be

classified as VUS.

Fig 1. Comparison of the evolutionary conservation of p.S28W (left) and p.Y81N (right) in the CYP1B1 gene in the

reference genome of some organisms.

https://doi.org/10.1371/journal.pone.0282133.g001

Fig 2. Pedigrees of patients in whom the p.Y81N variant in the CYP1B1 gene was detected in the NGS study: patient 1 (left) and patient

2 (right). Arrows indicate the index case. Black symbols indicate glaucoma phenotypes, and carriers of the variant are indicated by black

dots in the symbols. wt: wild-type allele.

https://doi.org/10.1371/journal.pone.0282133.g002

PLOS ONE NGS for the detection of rare variants and hypomorphic alleles in primary open-angle glaucoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0282133 January 19, 2024 7 / 16

https://doi.org/10.1371/journal.pone.0282133.g001
https://doi.org/10.1371/journal.pone.0282133.g002
https://doi.org/10.1371/journal.pone.0282133


The other genetic variants were identified in OPTC (p.p.R298H), OPTN (p.Q518X), SIX6
(p.T212M), and WDR36 (p.E298N). As shown in Table 3, all these variants have very low allele

frequencies in general population and most of them have not been described in ClinVar. It is

interesting to note that one of these variants, p.T212M in the SIX6 gene, has also been reported

in the literature as hypomorphic variant [37].

Analysis of hypomorphic CYP1B1 variants

It has been reported that CYP1B1 may play a role in the pathogenesis of POAG in a significant

proportion of cases [30, 31, 34]. For this purpose, we sequenced the coding region of this gene

in a new cohort of POAG patients. Heterozygous missense variants were detected in three

POAG patients (23%, Table 4). None of these patients had severe glaucoma. The aforemen-

tioned variant p.Y81N in the CYP1B1 gene was also detected in two patients of these three

patients (Table 4).

The variant c.83C>G (p.S28W) in the CYP1B1 gene was identified in a 66-year-old male

patient, diagnosed with myopia magna and moderate glaucoma at the age of 60 (Fig 4). His

mother and two siblings were also affected by glaucoma. He was taking ocular hypotensive

medication, but his IOP remained very high despite maximal treatment. Finally, surgery was

necessary in both eyes. To the best of our knowledge, this variant has never been reported in

ClinVar and has been detected at a very low frequency in the general population (0.004%).

According to the ACMG/AMP recommendations, the variant was classified as VUS following

criteria: PM2 (absent from controls in Exome Sequencing Project, 1000 Genomes Project, or

Exome Aggregation Consortium) and PP5 (reputable source recently reports variant as patho-

genic, but not functional experimental evidence). Similarly to the variant p.Y81N, the compar-

ison of residues between different organisms showed a marked conservation of S28 in

mammals and other organisms (Fig 1).

Fig 3. Ophthalmologic studies in patients 4 and 5 (siblings) with the variant p.T436M in the CARD10 gene. A: Optomap image of ocular fundus of the

patient 4 showing macular whitening and a myriad of splinter retinal hemorrhages and venous tortuosity secondary to central retinal vein occlusion with

cilioretinal artery occlusion in the right eye. B: Funduscopic image of the left eye of the patient 4 showing severe optic disk cupping in the context of advanced

glaucoma with pigment dispersion syndrome. C: Optomap image of the right eye fundus of the patient 5 showing mild macular whitening with scant

peripheral hemorrhages one month after non-ischemic central retinal vein occlusion associated with cilioretinal artery occlusion in the right eye. D:

Retinography of the patient 5 (up) showing severe right optic disk cupping causing advanced visual field constriction seen on perimetry (below).

https://doi.org/10.1371/journal.pone.0282133.g003
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Discussion

According to Lander and Schork [38], the genetic study of adult glaucoma is complex since its

transmission mechanisms are sometimes unclear and have variable penetrance and late onset.

Adult glaucoma is a multifactorial genetic disease whose outcome is also influenced by a num-

ber of environmental factors, many of them unknown. In addition, there are several ethnic

and geographic disparities between populations, which further complicate the genetic study of

glaucoma [39]. Thanks to recent technological improvements, such as NGS, the list of candi-

date genes possibly associated with glaucoma has increased considerably since the initial

Sanger direct sequencing studies, when only four genes showed a strong association with glau-

coma [6].

In this study, we applied NGS to study a cohort of patients with POAG. Hypomorphic

alleles and rare variants that were not previously described in the literature or with a very low

Fig 4. Ancillary tests of patient 13. This figure shows the structural and functional damage of the right (RE) and left eye (LE). The

optical coherence tomography shows severe peripapillary retinal nerve fiber layer thinning that correlates with the visual field findings

that depicts a marked inferior arcuate scotoma for the RE and tubular island of vision for the LE.

https://doi.org/10.1371/journal.pone.0282133.g004
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population frequency have been detected in 10 out of 65 patients assessed. The variant p.Y81N

in CYP1B1 gene was the most frequent variant without considering related patients by NGS

(two patients). Given the intimate relationship between CYP1B1 and glaucoma and the results

observed in the first group, we sequenced the CYP1B1 gene in a different cohort of patients,

detecting the variant p.Y81N in two more POAG patients. Thus, the variant p.Y81N was

detected in four unrelated patients (two patients from the NGS study and two patients from

the Sanger study).

CYP1B1 is an enzyme involved in drug, fatty acid and steroid metabolism located in the

endoplasmic reticulum membrane, peripheral membrane protein and microsome membrane.

CYP1B1 participates in the metabolism of an as-yet-unknown biologically-active molecule

that participates in eye development. Genetic variants in this gene had always been associated

with PCG, an autosomal recessive inherited trait [40, 41]. However, in recent years it has been

observed that CYP1B1 also could play an important role in the development of adult glaucoma

[30, 31]. Hypomorphic alleles pose a challenge in the interpretation of genomic variants [42].

A hypomorphic allele results in a partial loss of the normal (wild-type) gene function, often

characterized by reduced expression of the gene product (protein or RNA), although this

reduction does not reach a 100% reduction in normal gene function. In the literature we

found few articles about hypomorphic alleles in POAG, and most of them focus on genetic var-

iants in CYP1B1 [31–33, 43, 44] and SIX6 [37]. In the current study, hypomorphic variants in

CYP1B1 and SIX6 genes have been identified in 8% of the total POAG patient assessed. As

commented before, the genetic variant p.Y81N has been identified in heterozygous state in

four unrelated patients. This genetic variant has been reported at a low frequency (0.35%) in

the general population and has been described as a heterozygous hypomorphic variant for

POAG [32–35], with a significantly reduced enzymatic activity and reduced protein stability

(18–40% of the wild-type activity) [32]. In one of the families, the segregation study revealed

the presence of a variant in an individual who had not yet shown signs of glaucoma, but who

had ocular hypertension. These results suggest that it might be interesting to propose familial

studies in patients with CYP1B1 hypomorphic alleles to identify asymptomatic carriers of the

variant for close ophthalmological follow-up.Besides, we also identified for the first time the

variant c.83C>G (p.S28W) in the CYP1B1 gene in a patient with a moderate glaucoma and

myopia. Interestingly, a different genetic variant but at the same position (c.83C>T) which

produces the same amino acid change as the variant found in our study (p.S28W) has been

described as a hypomorphic variant and reported in patients with POAG [45] and PCG [46].

Both variants identified in our study in the CYP1B1 gene caused amino acid changes and

affected conserved residues located in structural domains, having the potential to modify

enzyme activity by incorrect insertion of the protein into the endoplasmic reticulum mem-

brane (p.S28W) and modification of substrate binding (p.Y81N) [45].

Additionally, we detected the variant p.T212M in the SIX6 gene in a patient with a moder-

ate glaucoma. This variant was also described as a hypomorphic variant. SIX6 is a transcription

factor with a known function in the retinal progenitor cell proliferation during the eye devel-

opment [47]. In vivo analyses in zebrafish have been useful to study the effect of this variant in

the eye. Modified animal models with this variant have been found to have a smaller eye size,

hypothesizing that the presence of hypomorphic alleles in SIX6 could reduce the number of

retinal ganglion cells and increase the risk of glaucoma [37].

Regarding the rare variants detected in other genes, we have observed variants in CARD10,

MFN1, OPTC, OPTN and WDR36. Most of them have not yet been associated with glaucoma.

Additional studies, including functional and segregation analyses, are imperative to confirm

whether these genes and variants are indeed associated with the disease. Interestingly, we

found two siblings with the variant p.T436M in the CARD10 gene. This variant has not been
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reported in the general population, but in silico tools predict a benign impact. Nevertheless,

the variant is still considered a VUS. CARD10 encodes for a caspase recruitment domain-con-

taining protein, which is a signaling protein in the regulation of the NF-κB (nuclear factor

kappa B) pathway. Since NF-κB is involved in the regulation of cellular apoptosis, it is likely

that there is a relationship between CARD10 and cell apoptosis, especially retinal ganglion cell

apoptosis, producing higher optic nerve susceptibility to IOP elevations and POAG [48, 49].

In fact, Zhou et al. [18] observed a higher frequency of variants in this gene (4.28%) in patients

with severe POAG compared to the control population (0.27%).

Besides, we found one patient with severe glaucoma and two VUS in CARD10 and MFN1.

In these cases, the use of polygenic risk scores may be of interest. These scores have been

reported in recent years as promising for stratifying individual risk and prognosis of POAG

[50, 51], although further studies are still needed.

The association of POAG with some of the rare variants identified in this study should be

treated with caution. For example, we detected the nonsense variant p.Q518X in the OPTN
gene in one patient with POAG. Recent studies have reported that the missense variant p.

E50K is the only known variant in the OPTN gene associated with glaucoma, whereas loss-of-

function variants in this gene are associated with amyotrophic lateral sclerosis (ALS) [52].

However, there are cases where ALS and glaucoma coexist, as seen in one of the patients

reported by Maruyama et al. [53]. Therefore, variants in the OPTN gene may contribute to

some additional risk of glaucoma in certain patient populations.

Similarly, contradictory results are reported for the association of pathogenic variants in

the WDR36 gene with glaucoma. Whereas several studies have indicated that genetic variants

in WDR36 gene are contributing risk factors for glaucoma progression and severity [54–58],

recent clinical trials and meta-analyses have suggested a lack of effect [59–61]. However, it is

known that this gene has a connection to glaucoma susceptibility and even to retinal homeo-

stasis [62, 63]. Monemi et al. demonstrated WDR36 gene expression in the lens, iris, ciliary

muscles, ciliary body, trabecular meshwork, retina, and optic nerve by RT-PCR with four path-

ogenic variants (p.N355S, p.A449T, p.R529Q and p.D658G) associated with adult-onset

POAG with implications for both high- and low-pressure glaucoma [64]. In our study, we

detected the variant p.E298N in the WDR36 gene in a patient with severe LTG, whose pheno-

type was very similar to another reported LTG patient with a variant (p.N355S) in the WDR36
gene [58].

Some of the patients carrying rare variants (patient 1 and patient 8) presented with thin

pachymetry, which is a known endophenotypic trait that increases the degree of severity of the

glaucoma cases, whether this trait has been directly linked to the variant described or is a con-

sequence of other genetic/epigenetic influences still has to be elucidated. Further studies are

warranted to explore this relationship more comprehensively.

Certainly, addressing the limitations of our study is crucial. While NGS is a powerful tool

for detecting genetic variations, it may have limitations in detecting copy number variations

(CNV), including deletions or duplications. We acknowledge that our study focused primarily

on single nucleotide variations and small indels, and we did not specifically investigate CNV.

This limitation is important to consider, especially in cases where CNV could be contributing

to the disease [65]. Future research efforts could explore complementary techniques or arrays

designed for CNV detection to provide a more comprehensive genetic assessment of glau-

coma-related variations.

Our findings suggest that NGS could be a valuable tool for the genetic assessment of glau-

coma. However, to irrefutably show the contribution of these rare variants and hypomorphic

alleles to glaucoma, additional studies, including functional evidence, will be necessary. The

progressive identification of new rare variants and hypomorphic alleles in patients clinically
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diagnosed with glaucoma will help to configure the genetic identity of these patients, in order

to make an early and precise molecular diagnosis. And as a clinical application of these find-

ings, the presence of hypomorphic alleles in asymptomatic relatives of our glaucoma patients

acts, in our opinion, as a red flag that suggests close monitoring of these patients and early

treatment decision in case of glaucoma suspicion.
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