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comparative incidence and association with infections and
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Key Points

• The novel EHA/EBMT
grading of ICAHT
closely reflects the
extent of hematological
toxicity following
BCMA- and CD19-
directed CAR-T
therapy.

• Severe ICAHT was
associated with
transfusion use, an
increased rate of
severe infections and
adverse treatment
outcomes with high
NRM.
ril 2024
Cytopenias represent the most common side effect of CAR T-cell therapy (CAR-T) and can

predispose for severe infectious complications. Current grading systems, such as the

Common Terminology Criteria for Adverse Events (CTCAE), neither reflect the unique

quality of post–CAR-T neutrophil recovery, nor do they reflect the inherent risk of infections

due to protracted neutropenia. For this reason, a novel EHA/EBMT consensus grading was

recently developed for Immune Effector Cell-Associated HematoToxicity (ICAHT). In this

multicenter, observational study, we applied the grading system to a large real-world cohort

of 549 patients treated with BCMA- or CD19-directed CAR-T for refractory B-cell

malignancies (112 multiple myeloma [MM], 334 large B-cell lymphoma [LBCL], 103 mantle

cell lymphoma [MCL]) and examined the clinical sequelae of severe (≥3◦) ICAHT. The ICAHT

grading was strongly associated with the cumulative duration of severe neutropenia

(r = 0.92, P < .0001), the presence of multilineage cytopenias, and the use of platelet and red

blood cell transfusions. We noted an increased rate of severe ICAHT in patients with MCL vs

those with LBCL and MM (28% vs 23% vs 15%). Severe ICAHT was associated with a higher

rate of severe infections (49% vs 13%, P < .0001), increased nonrelapse mortality (14% vs

4%, P < .0001), and inferior survival outcomes (1-year progression-free survival: 35% vs

51%, 1-year overall survival: 52% vs 73%, both P < .0001). Importantly, the ICAHT grading

demonstrated superior capacity to predict severe infections compared with the CTCAE

grading (c-index 0.73 vs 0.55, P < .0001 vs nonsignificant). Taken together, these data

highlight the clinical relevance of the novel grading system and support the reporting of

ICAHT severity in clinical trials evaluating CAR-T therapies.
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Table 1. EHA/EBMT consensus grading for early ICAHT

Grading I II III IV

Early ICAHT (d 0-30)

ANC ≤ 500/μL <7 d 7-13 d ≥14 d Never above 500/μL

ANC ≤ 100/μL - - ≥7 d ≥14 d

Late ICAHT (after d +30)*

ANC ≤ 1500/μL x

ANC ≤ 1000/μL x

ANC ≤ 500/μL x

ANC ≤ 100/μL x

Because of incomplete data and loss to follow-up, only early ICAHT grades were assessed
in this study. Data on late ICAHT grades were not available in this study.
*measured ≥2 time points, or nontransient neutropenia
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Introduction

Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as
a powerful treatment modality for a range of advanced B-cell
malignancies but is associated with a unique toxicity profile.1-6 Next
to cytokine release syndrome (CRS) and immune effector cell-
associated neurotoxicity syndrome (ICANS) as prototypical side
effects, hematological toxicity represents the most common side
effect of CAR-T therapy.7,8 Cytopenias are qualitatively unique
because of their biphasic trajectory and can be long-lasting in
nature.9-12 Importantly, profound neutropenia can incur significant
morbidity and mortality by predisposing patients undergoing cell
therapy to clinically relevant infectious complications.11,13-17 The
recurrent quality of cytopenia can prolong hospital stays or result in
additional hospitalizations due to infections. Notably, a high fre-
quency of hematotoxicity has been observed across CAR products
and disease entities, irrespective of target antigen (eg, CD19,
CD22, BCMA) and costimulatory domain (eg, 4-1BB,
CD28z).8,11,18-21 Current grading systems, such as the Common
Terminology Criteria for Adverse Events (CTCAE) describe cyto-
penias predominantly in quantitative terms by assigning severity
grades according to cytopenia depth. However, the cumulative risk
of secondary complications such as infections primarily increases
with the respective duration of observed cytopenia.15,22

In an international survey of >50 experienced CAR-T centers, we
observed significant heterogeneity in the grading and management
of post–CAR-T cytopenias.23 To better assess cytopenias and the
potential risk of severe infections, the European Hematology
Association (EHA) and the European Society for Blood and
Marrow Transplantation (EBMT) recently introduced a novel
grading system for Immune Effector Cell-Associated HematoTox-
icity (ICAHT), which incorporates both the depth and duration of
neutropenia.8 Importantly, the novel EHA/EBMT grading system for
ICAHT provides a more distinct description of hematotoxicity,
separating early (day 0-30) vs late ICAHT (after day 30). The
consensus guidelines document further provides severity-based
best practice recommendations for both the diagnostic workup
and management of ICAHT (eg, G-CSF, anti-infective prophylaxis,
stem cell boosts).24

Because of the standardized severity criteria, the novel ICAHT
grading enables harmonized comparisons across disease entities.
In this study, we applied the grading to a large, multicenter, retro-
spective patient cohort that was treated with different CAR
constructs across multiple refractory B-cell malignancies (eg, large
B-cell lymphoma [LBCL], mantle cell lymphoma [MCL], and multi-
ple myeloma [MM]). Moreover, we examined the rate of infections
and treatment outcomes in relation to ICAHT severity.

Methods

Patient cohort

The grading system for early ICAHT (Table 1) was applied to
a real-world cohort of 549 patients treated with BCMA- or
CD19-directed CAR T-cells for relapsed/refractory B-cell
malignancies (112 MM, 334 LBCL, and 103 MCL) across 12
international CAR-T centers (supplementary Methods).18,19,25 A
uniform data collection form with an embedded data dictionary
was provided to all participating centers by the coordinating center
1858 REJESKI et al
(LMU Munich), along with an example of guidelines for data
collection. All sites returned data to the coordinating center. A quality
control check was performed by the coordinating center and queries
were issued for missing data or data that did not follow the format
specified in the data collection form. All retrospective data were
collected with institutional review board approval. Examples: LMU
Munich: Project Nr. 19-817; Lyon: CNIL, approval No. 18-076,
Mayo: 21-006535, Moffitt Cancer Center: Advarra Pro00046602.

Hematological toxicity and management

Hematotoxicity end points included the total cumulative duration of
severe neutropenia (absolute neutrophil count [ANC] <500/μL, day
0-60) and the phenotypes of neutrophil recovery (quick vs intermittent
vs aplastic), as previously described.11,22 Severe thrombocytopenia
was defined as a platelet count <50 G/L, whereas severe anemia was
defined as a hemoglobin <8 g/dL or requiring transfusion with packed
red blood cells. Neutropenia was defined as severe (ANC <500/μL)
or profound (ANC <100/μL) based on the joint American Society
of Clinical Oncology/Infectious Diseases Society of America
(ASCO/IDSA) consensus guidelines for cancer-related infection
risk.22 Patient-individual data concerning management strategies for
hematotoxicity including the use of G-CSF, thrombopoietin agonists,
and hematopoietic stem cell boosts were collected.

Assessment of other toxicities

CRS and ICANS were graded according to the American Society
For Transplantation and Cellular Therapy (ASTCT) consensus
criteria.26 Toxicity management followed institutional guidelines.15,27

Infections were studied until day +90 after CAR-T infusion and were
graded on a 5-grade scale as mild, moderate, severe, life-
threatening, or fatal.15,17-19,28 Severe infections (grade 3 or higher)
were defined as requiring intravenous anti-infective therapy and/or
hospitalization. Infectious events were either characterized based on
microbiologic or histopathologic data or as a clinical syndrome of
infection (eg, pneumonia, cellulitis, cystitis) based on retrospective
chart review. In the absence of microbiologic evidence, asymptom-
atic neutropenic fever was not considered an infection event.

Clinical outcomes

Kaplan-Meier estimates for progression-free survival (PFS) and
overall survival (OS) were calculated from the time of CAR-T
infusion. NRM was defined as death following CAR-T without
23 APRIL 2024 • VOLUME 8, NUMBER 8
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evidence of relapse or progression. Severe (≥3◦) vs nonsevere (0-
2◦) ICAHT groups were compared by log-rank test. In a subgroup
analysis, we compared survival outcomes in patients with absent
(0◦), mild-to-moderate (1-2◦), and severe (≥3◦) ICAHT. Univariate
Cox regressions were applied to study hazard ratios (HRs)
comparing different ICAHT severity groups.

Statistical considerations

Univariate and multivariable analyses were performed using binary
logistic regression, studying severe vs nonsevere ICAHT as the
binary outcome. All covariates with a P < .2 on univariate analysis
were included in the multivariable model. Statistical significance
between groups was explored by the Mann-Whitney test for
continuous variables and Fisher exact test for comparison of per-
centages. Receiver operating characteristic (ROC) analysis
was performed to compare the discrimination of the ICAHT vs
CTCAE grading for severe infections (eg, grade 3 or higher). Sta-
tistical analysis and data visualization were performed using
GraphPad Prism (v9.0), SPSS (IBM, v28.0), and R Statistical Soft-
ware (v4.1.2).

Results

Overview of baseline features and coincident toxicity

according to ICAHT severity

The overall distribution of mild (1◦), moderate (2◦), severe (3◦),
and life-threatening (4◦) ICAHT was 36%, 29%, 17%, and 5%
r/r LBCL
n = 334

18%
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Figure 1. ICAHT severity across disease entities. (A-D) Relative distribution of ICAHT

relapsed/refractory (r/r) LBCL (B), mantle cell lymphoma (C), and MM (D).
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(Figure 1a). Only 70 patients (13%) did not exhibit ICAHT of any
grade. An overview of baseline features comparing patients with
severe (grade 3 or higher, n = 125) vs nonsevere ICAHT (absent
or grade 1-2, n = 424) is provided in Table 2. Patients that sub-
sequently developed severe or life-threatening ICAHT displayed
elevated serum inflammatory markers and pronounced cytopenia
at baseline, reflected by increased CAR-HEMATOTOX scores
(median 3 vs 1, P < .001).11,15,29 The severe ICAHT group also
showed significantly elevated serum LDH levels (median 272 vs
235 U/L, P < .001), increased ECOG performance status (≥2:
20% vs 11%, P = .02), and more frequent bone marrow (BM)
infiltration (36% vs 18%, P < .001). Furthermore, the CD28z
costimulatory domain was associated with severe ICAHT,
consistent with prior reports (Table 2).30,31 In contrast, neither the
number of prior treatment lines nor prior autologous stem cell
transplantation (SCT) were associated with severe
hematotoxicity.

In terms of coincident toxicity after CAR-T infusion, both severe
CRS (ASTCT grade 3 or higher: 15% vs 5%, P < .001) and
ICANS (≥3◦: 26% vs 13%, P < .001) were more common in
patients with severe ICAHT (supplementary Table 1). Accord-
ingly, patients with severe hematotoxicity often received addi-
tional immunosuppressive agents for toxicity management, such
as glucocorticoids (52% vs 43%, P = .07) or the IL-6 receptor
antagonist tocilizumab (75% vs 60%, P = .002). Furthermore,
intensive care admission was more frequent for the severe
ICAHT group (23% vs 4%, P < .001). On multivariable binary
32%
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Table 2. Baseline patient characteristics

Characteristic All patients (n = 549)

ICAHT severity

P valueNonsevere (n = 424) Severe (n = 125)

Demographic features

Age, y (95% CI) 65 (64-65) 65 (64-65) 65 (63-66) .65

Gender, female – n (%) 208 (38%) 155 (37%) 53 (42%) .25

ECOG PS at lymphodepletion

Median (IQR) 1 (0-1) 1 (0-1) 1 (1-1) <.001

PS ≥2 – n (%) 73 (13%) 48 (11%) 25 (20%) .02

Disease features

LBCL 334 (60.8%) 255 (60.1%) 79 (63.2%) .06

MM 112 (20.4%) 95 (22.4%) 17 (13.6%)

MCL 103 (18.8%) 74 (17.5%) 29 (23.2%)

BM involvement – n (%) 113/520 (22%) 71/404 (18%) 42/116 (36%) <.001

Serum LDH (U/l), 95% CI 243 (235-255) 235 (221-243) 272 (259-308) <.001

CAR product features

CD28z (axi-cel, brexu-cel) 306 (56%) 224 (53%) 82 (66%) .01

4-1BB (tisa-cel, ide-cel, cilta-cel) 243 (44%) 200 (47%) 43 (34%)

Prior therapy

Median lines of prior therapy (95% CI) 4 (3-4) 3.5 (3-4) 4 (3-4) .35

Prior autologous SCT – n (%) 218 (40%) 171 (40%) 47 (38%) .60

CAR-HEMATOTOX components (Rejeski et al11)

Median C-reactive protein (mg/dl), 95% CI 0.84 (0.66-1.04) 0.96 (0.80-1.16) 2.03 (1.29-3.10) <.001

Median ferritin (ng/ml), 95% CI 356 (318-421) 307 (254-354) 828 (583-1157) <.001

Median ANC (/μl), 95% CI 2560 (2370-2720) 2830 (2600-3060) 1400 (1140-1770) <.001

Median platelet count (G/l), 95% CI 152 (144-158) 164 (156-174) 93 (79-115) <.001

Median hemoglobin (g/dl), 95% CI 10.5 (10.3-10.7) 10.8 (10.6-11.1) 9.1 (8.8-9.6) <.001

Median CAR-HEMATOTOX score, 95% CI 1 (1-2) 1 (1-1) 3 (3-4) <.001

CAR-HEMATOTOX score ≥2, n – % 266 (48%) 154 (36%) 112 (90%) <.001

P-values <0.05 are highlighted in bold.
Patient baseline characteristics before CAR-T infusion. All laboratory values were determined before lymphodepleting chemotherapy with a leniency period of 3 days. ECOG: Eastern

Cooperative Oncology Group. PS, performance status; IQR, interquartile range; LD, lymphodepletion chemotherapy. If a measurement was not available for all patients, the denominator is
indicated in the table.
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logistic regression, costimulatory domain (CD28z > 4-1BB), low
platelet count, low ANC, low hemoglobin, increased serum
ferritin, and the presence of BM infiltration were retained as
independent risk factors for severe ICAHT (supplementary
Table 2).

Severe ICAHT is more frequent in patients

with MCL

When comparing ICAHT grades across disease entities, we noted
a numeric trend toward increased grade ≥3 ICAHT in patients with
MCL compared with those with LBCL or MM (28% vs 23% vs
15%, Figure 1b-d). Although MCL was linked to severe ICAHT on
univariate analysis (HR = 2.2, 95% confidence interval [CI] 1.1-
4.3), this did not extend to the multivariable analysis accounting for
other pertinent risk factors, such as BM infiltration, serum inflam-
matory markers, and baseline cytopenia (P >. 9; supplementary
Table 2). Among the patients with LBCL, we noted an increase
in ICAHT severity with axi-cel compared with tisa-cel (P = .0015;
supplementary Figure 1).
1860 REJESKI et al
ICAHT severity is closely correlated with multilineage

cytopenias and the need for transfusions and other

supportive measures

As expected, based on the grading criteria, we noted a strong
positive correlation between ICAHT severity and the cumulative
duration of severe neutropenia (r = 0.92, P < .001; supplementary
Figure 2a). Cubic spline analysis showed a particular increase in
the duration of neutropenia beginning with grade 3 ICAHT
(supplementary Figure 2b). Accordingly, the median cumulative
duration of severe neutropenia was markedly increased in patients
with severe and life-threatening ICAHT (19 and 52 days, respec-
tively; Figure 2a). In terms of the quality of neutrophil recovery
following CAR-T, the aplastic phenotype was more common in the
patients with grade ≥3 ICAHT (Figure 2b).11 In contrast, quick
recovery was the dominant phenotype in patients without ICAHT
(0◦: 87%) and with mild ICAHT (1◦: 52%).

Though the ICAHT grading is entirely based on neutrophil counts,
patients with severe ICAHT also observed coincident multilineage
23 APRIL 2024 • VOLUME 8, NUMBER 8
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cytopenias, including severe thrombocytopenia (90% vs 46%,
P < .001) and severe anemia (92% vs 49%, P < .001; Table 3). In
terms of management, the severe ICAHT group more commonly
received G-CSF (72% vs 44%, P = .01) or needed platelets (85%
vs 21%, P < .001) and packed red blood cell transfusions (86% vs
41%, P < .001). Moreover, a higher proportion of patients received
TPO mimetics such as eltrombopag or romiplostim (12% vs 2%,
P < .001) or hematopoietic stem cell boosts (6% vs 0.2%,
P < .001).32,33

Patients with severe or life-threatening ICAHT more

commonly develop infectious complications

particularly fatal infections

Next, we examined the influence of ICAHT severity on early infec-
tious events. Notably, patients with severe ICAHT displayed
a significantly increased rate of severe infections (49% vs 13%,
Table 3. Hematotoxicity and management

Characteristic All patients (n = 549)

Coincident thrombocytopenia

Severe thrombocytopenia (platelet count < 50 G/
L), day 0-100

229/401 (57%)

Platelet transfusion day 0-100 149/401 (37%)

Coincident anemia

Severe anemia (Hb <8 g/dL), d 0-100 240/401 (60%)

pRBC transfusion day 0-100 209/401 (52%)

Supportive therapies – n (%)

Granulocyte colony stimulating factor (G-CSF) use 277 (50%)

Thrombopoetin (TPO) agonist use 25 (5%)

CD34+ Stem cell boost 9 (2%)

Overview of cytopenia incidence rates and concomitant management strategies during the firs
thrombocytopenia and transfusions were available in 401 patients. P values determined by Fisher

23 APRIL 2024 • VOLUME 8, NUMBER 8
P < .0001, Figure 3a) and severe bacterial infections (36% vs 8%,
P < .0001, Figure 3b). A high rate of life-threatening (10%) and fatal
infections (9%) was noted in the severe ICAHT group. Of the 11
fatal infections that occurred in the setting of severe or life-
threatening ICAHT during the first 90 days, most were of fungal
(n = 5) or bacterial origin (n = 4). In contrast, only 2 patients (0.5%)
with absent or mild-to-moderate ICAHT died of an infection during
the first 90 days after CAR-T infusion (both viral infections). Overall,
these observations translated into a markedly increased 1-year NRM
rate in the severe ICAHT group (14% vs 4.5%, log-rank P < .0001,
Figure 4a), primarily attributable to fatal infections (Figure 4b).

Superior discrimination for infectious events with the

ICAHT grading compared with CTCAE grading criteria

Regarding the predictive capacity for severe infectious events, the
ICAHT grading was superior to the CTCAE grading of neutropenia
ICAHT severity

P valueNonsevere (n = 424) Severe (n = 125)

139/301 (46%) 90/100 (90%) <.001

64/301 (21%) 85/100 (85%) <.001

148/301 (49%) 92/100 (92%) <.001

123/301 (41%) 86/100 (86%) <.001

187 (44%) 90 (72%) .01

10 (2%) 15 (12%) <.001

1 (0.2%) 8 (6%) <.001

t 100 days after brexu-cel infusion stratified by CAR-HEMATOTOX score. Data on anemia,
exact test for categorical variables.

CLINICAL SEQUALAE OF SEVERE ICAHT 1861
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(C-index 0.73 vs 0.55, P < .0001 vs nonsignificant, Figure 5a). On
receiver operating characteristic analysis, optimal discrimination for
severe infections was noted for grade 3 ICAHT (sensitivity 54%,
specificity 86%). A potential explanation for the poor discriminatory
capacity of the CTCAE grading lies in the fact that most patients
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across all time points for the entire study cohort (total n = 560 patients).
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(87.2%) developed CTCAE grade 4 neutropenia, making it difficult
to distinguish specific subgroups (Figure 5b). Nonetheless, the
small number of patients with absent or grade 1-3 neutropenia
according to CTCAE criteria did display a lower rate of severe
infections, as expected (supplementary Table 3).
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ICAHT severity is linked to extended hospitalization

and inferior survival outcomes

Importantly, the presence of severe or life-threatening ICAHT was
associated with prolonged hospital stays (median 21 vs 16 days,
P < .0001, Fig. S3). In terms of treatment outcomes, the severe
ICAHT group exhibited inferior PFS compared to the patients
without severe ICAHT (1-year PFS 35% vs 51%, log-rank P <
.0001, HRPFS = 1.9, 95% CI 1.5-2.4; Figure 6a). Furthermore, they
exhibited lower OS (1-year OS 52% vs 73%, log-rank P < .0001,
HROS = 2.3, 95% CI 1.7-3.1; Figure 6b). When examining
subgroups, we noted improved PFS in the patients with
mild-to-moderate ICAHT compared to those with a complete
absence of cytopenias (Figure 6c). However, the survival advan-
tage for low-grade hematotoxicity did not extend to OS (Figure 6d).
Discussion

In conclusion, these data highlight the clinical relevance of the
novel EHA/EBMT ICAHT grading system. ICAHT severity was
closely associated with multilineage cytopenias, transfusion
dependence, and the more common use of supportive measures
such as growth factor support and hematopoietic stem cell boosts.
More importantly, patients with severe and life-threatening ICAHT
23 APRIL 2024 • VOLUME 8, NUMBER 8
displayed an increased infection incidence and adverse treatment
outcomes with high NRM.

The multivariable analysis suggests that the observed disease-
specific differences in ICAHT severity (eg, higher incidence in
patients with MCL) more fundamentally reflect variant usage of
CD28z-harboring CAR products, as well as the extent of systemic
inflammation and impaired hematopoietic function at baseline. For
example, patients with LBCL receiving axi-cel displayed more
pronounced hematotoxicity when compared to those receiving tisa-
cel, in line with a recent matched comparison of both CAR-T
products by Bachy and colleagues.30 In terms of prior therapies,
we did not observe an association between ICAHT severity and the
prior administration of autologous SCT, which has been implicated
as a risk factor for hematotoxicity in other studies.9,13 However, we
did note an association between the presence of baseline cyto-
penias and ICAHT severity, which may indicate a preexisting insult
to the hematopoietic stem and progenitor compartment due to
prior cytotoxic therapies, especially bridging therapy.34

One of the major deficits of the current CTCAE grading lies in the
fact that most patients who received CAR-T therapy displayed
grade 3 or 4 neutropenia (>90%, Figure 5b), mostly as an
expected consequence of lymphodepleting chemotherapy. A
grading system wherein essentially all patients are classified as
CLINICAL SEQUALAE OF SEVERE ICAHT 1863
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having severe hematotoxicity once a certain count threshold is met
is not particularly useful in clinical practice. Specifically, it is difficult
to discern with the CTCAE grading system at what time point after
CAR-T infusion certain diagnostic and therapeutic measures are to
be initiated. In contrast, the ICAHT grading more closely mirrors the
true clinical severity of hematotoxicity, as reflected by the increased
infection rate, the need for platelet and red blood cell transfusions,
and escalated supportive measures, including the use of TPO
agonists and hematopoietic stem cell boosts. Furthermore, severe
manifestations of ICAHT were linked to the clinically relevant
aplastic neutrophil recovery phenotype, recently demonstrated to
be associated with poor treatment outcomes as well as baseline
immune dysregulation and an HLH-like inflammatory signature after
infusion.25 We noted a particular increment in the duration of
severe neutropenia beginning with grade 3 ICAHT, indicating that
patients with absent count recovery above an ANC >500/μL
1864 REJESKI et al
around day +14 and especially at day +30, are more likely to
encounter long-lasting and potentially even irreversible bone
marrow aplasia. Our analysis provides empiric evidence for the
expected incidence rate of grade 4 (eg, life-threatening) ICAHT,
which was ~5% across all studied patients. As noted in the
consensus guidelines manuscript, these patients require close
monitoring for infections and carry a very high risk of morbidity and
mortality.8 As spontaneous count recovery may prove elusive,
allogeneic SCT can be considered, though this likely only applies to
very few patients and needs to be discussed on a case-by-case
basis.

In our analysis, the novel EHA/EBMT ICAHT grading was closely
linked to the main complication of hematotoxicity, namely infectious
complications, which drive NRM after CAR-T therapy.15,35,36 The
increased infection incidence in patients with grade ≥3 ICAHT is
23 APRIL 2024 • VOLUME 8, NUMBER 8
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likely a consequence of the profound immune deficits conferred by
sustained neutropenia, combined with the underlying immune
dysregulation observed in patients developing severe
hematotoxicity.15,17,29,37 For example, patients who received CAR-
T with severe BM aplasia commonly also exhibit profound B-cell
aplasia and T-cell lymphopenia.25 Additional immunosuppressive
factors may relate to coincident high-grade CRS or ICANS and the
concomitant toxicity management, particularly the extended use of
high-dose corticosteroids.15 The poor survival in the severe ICAHT
group highlights that an increased toxicity burden (particularly
high-grade toxicity) and inferior treatment outcomes often go hand-
in-hand.15,37,38 In contrast, mild-to-moderate toxicity has been
associated with favorable outcomes across multiple immuno-
therapy platforms, including cellular therapies, allogeneic stem cell
transplantation, and immune checkpoint inhibition.39-41 Accord-
ingly, the patients with grade 1 or 2 ICAHT exhibited excellent
treatment outcomes in our study.

Key limitations of this study include the retrospective nature and
the absence of reporting of late ICAHT grades (beyond
day +30), which were not available for most cases because of a
loss of follow-up and/or lack of high-quality data after day 30.
Although this study incorporated a broad population of patients
treated with CAR T-cells in a real-world setting across multiple
countries, this comes with the caveat of considerable hetero-
geneity in terms of underlying patient features, treatment setting,
and toxicity management. Furthermore, we did not have available
data for pediatric patients or for patients treated with CAR-T for
indolent lymphoma or B-cell precursor acute lymphoblastic
leukemia.

Still, these data provide the expected incidence rates of early
ICAHT severity across several disease entities. One of the major
advantages of the ICAHT grading relates to the harmonized
reporting of hematotoxicity across different disease contexts, indi-
cations, and treatment settings using the same nomenclature.
Importantly, such standardized reporting could also inform hema-
totoxicity management protocols. Specifically, institutions may use
thresholds in the expected rate of grade ≥3 ICAHT to guide their
decision-making concerning the administration of anti-infective
prophylaxis, G-CSF support, TPO mimetics, and hematopoietic
stem cell boosts.33,42,43 Furthermore, existing risk-stratification
tools such as the CAR-HEMATOTOX score may be further opti-
mized by modelling for severe or life-threatening ICAHT as a clin-
ically relevant end point. Regulatory bodies such as the United
States Food and Drug Administration or European Medicines
Agency may consider mandating the reporting of ICAHT grades in
emerging CAR-T studies so as to uncover toxicity signals and
enable cross-trials comparisons of this important side effect of cell
therapy. Future work may also explore the utility of the ICAHT
grading in the context of bispecific antibody therapies, particularly
considering the high frequency of cytopenias with CD3xCD20 and
CD3xBCMA bispecifics.44-48

In conclusion, the new EHA/EBMT consensus grading provides a
framework for evaluating hematotoxicity after CD19- and BCMA-
directed CAR-T. We demonstrate clinically meaningful sequelae
in the patients who developed severe or life-threatening ICAHT.
These findings therefore argue for the reporting of ICAHT grades
both in the real-world setting and in clinical trials evaluating
established and novel CAR constructs.
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