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Summary
Background CLR457 is an orally bioavailable pan-phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) inhibitor. Methods
CLR457 anti-tumor activity and pharmacokinetics (PK) were characterized by in vitro biochemical assays and in vivo tumor
xenografts. A first-in-human study was conducted to determine the maximum tolerated dose (MTD), safety, PK, and efficacy of
CLR457. Successive cohorts of patients with advanced solid tumors with PI3K pathway activation received increasing CLR457
doses according to a Bayesian escalation model based on the rate of dose limiting toxicity (DLT) in the first 28-day cycle. Results
CLR457 inhibited p110α, p110β, p110δ and p110γ isoforms with an IC50 of 89 ± 29 nM, 56 ± 35 nM, 39 ± 10 nM and 230 ±
31 nM, respectively. CLR457 exhibited dose-dependent antitumor activity and interfered with glucose homeostasis in PI3K-
mutant tumor xenografts. 31 patients received doses ranging from 5 to 100 mg. DLTs included grade 3 hyperglycemia and rash
(3). In the 100 mg cohort (n = 11), 3 (27.3%) patients had DLTs and all patients (100%) experienced ≥ grade 3 toxicity with rash
(45.5%) as the most common event. The MTD was not determined. For the entire study population, stomatitis (45.2%), diarrhea
(38.7%), rash (35.5%) were the most common any grade toxicities—51.6% patients experienced ≥Grade 3 toxicity. CLR457was
rapidly absorbed with limited accumulation and linear PK. PK modeling indicated that pharmacologically active concentrations
were achieved at the highest dose tested (100 mg), though no objective responses were observed. Conclusion CLR457 clinical
development was terminated due to poor tolerability and limited antitumor activity. These results emphasize the difficulty of
achieving a wide therapeutic index when targeting all class I PI3K-isoforms.
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Introduction

The PI3K/AKT/mammalian target of rapamycin (mTOR)
pathway is a key intracellular signaling pathway, regulat-
ing critical cellular processes such as cell growth, prolifer-
ation, and survival. [1] PI3 kinases, a key component of
this pathway, are a family of lipid kinases divided into
three classes that differ in structure, preferred substrate,
tissue distribution, mechanism of activation, and ultimately
in function. [1] The class I PI3Ks functions as heterodi-
mers consisting of one of four catalytic p110 subunits
(p110α, β, δ or γ) and a regulatory subunit (p85α). [1]
Genomic alterations in PI3KCA, PTEN, or other nodes in
PI3K/AKT/mTOR pathway, contribute to oncogenesis in
multiple cancers, [2–4] and pharmacologic interference
with this pathway is deleterious to PI3K-addicted tumors
in vitro and in vivo. Thus, the PI3K/AKT/mTOR pathway
is an attractive target for anticancer therapy. [5, 6]
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A myriad of PI3K/AKT/mTOR pathway inhibitors with
unique molecular properties are in clinical development and
have met with varying degrees of clinical success. [7]
Rapalogues, the first effective inhibitor of this pathway, pro-
duce modest tumor shrinkage and improvement in outcomes
in a number of solid tumors. [8–10] The preclinical observa-
tion that these agents induced key signaling proteins upstream
of mTOR drove the development of both pan-PI3 kinase and
dual PI3K/mTOR inhibitors. Although pan-PI3 kinase and
dual PI3K/mTOR inhibitors should have widespread utility
given the high proportion of alterations in PI3KCA and
PTEN in human cancer, the issue of therapeutic index is of
paramount importance for their drug development. The clini-
cal experience with buparlisib, a selective pan-PI3K inhibitor
(p110α: 52 nM; p110β: 166 nM; p110δ: 116 nM), validates
the potential of pan-class 1 inhibition in advanced solid tu-
mors, though highlights the importance of tolerability. [11–15]
The toxicity profile of buparlisib is, in part, due to central
nervous system (CNS) penetration and off-target effects on
microtubules, and might be improved with the development
of a novel pan-class 1 PI3K inhibitor without such effects.
CLR457 is a potent, balanced pan-class 1 PI3K inhibitor de-
signed to abrogate CNS penetration and microtubule destabi-
lization (unpublished data). Here, we present the initial pre-
clinical characterization of CLR457 as well as results from the
first-in-human phase I study in patients with advanced solid
tumors with PI3K pathway activation.

Materials and methods

Preclinical experiments

CLR457 was synthesized in the Global Discovery Chemistry
group (Novartis). In vitro PI3K and protein kinase biochemi-
cal assays were performed as described previously to deter-
mine isoform-specific potency. [13] To evaluate antitumor
activity in vivo, three xenograft models were utilized: Rat1-
myr-p110α, Rat1-myr-p110δ, and HBRX2524. For Rat1-
myr-p110α and Rat1-myr-p110δ, Rat1 fibroblasts were
transfected with an N-terminal myristoylated form of PI3Kα
or PI3Kδ isoform, which led to constitutive activation of the
PI3K pathway. [13] Tumor xenografts were then grown sub-
cutaneously in nude mice or nude rats by injection of 2 to 3 ×
106 cells into the right flank (for Rat1-myr-p110α and Rat1-
myr-p110δ). For HBRX2524, a patient-derived breast cancer
tumor bearing the H1047R PIK3CA activating mutation was
established by subcutaneously implanting resected patient tu-
mor samples in nude mice without any in vitro manipulations.
CLR457 antitumor activity was then evaluated as described
previously. [13] Systemic exposure and bioavailability of
CLR457 and effects on glucose homeostasis were assessed
after single and repeat dosing in mice and rats. Plasma insulin

levels were assessed with a commercially available enzyme-
linked immunosorbent assay (ELISA) kit (Mercodia). Blood
glucose levels were determined using a Glucometer (One
Touch Ultra®, LifeScan). (Supplemental Methods).

Clinical study design

This was a first-in-human multicenter, open-label, phase I
study investigating CLR457 in adult patients with PI3K-
activated advanced solid tumors (NCT02189174). The prima-
ry objective was to define the maximum tolerated dose
(MTD). Secondary objectives included assessments for safety,
tolerability, pharmacokinetic (PK) profile, and preliminary an-
titumor activity. All procedures performed involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. Informed consent was obtained
from all individual participants included in the study.

Patients

Patients had histologically documented locally advanced or
metastatic solid tumors harboring an activating PIK3CA mu-
tation or amplification, PTEN loss of function, c-MET activa-
tion, [16, 17] EGFR activation,17 and/or HER2 overexpres-
sion,17 or endometrial cancer [18] that had progressed or failed
standard therapy. Other key inclusion criteria included age ≥
18 years, Eastern Cooperative Oncology Group performance
status (ECOG-PS) ≤2, adequate organ function, measurable or
non-measurable disease as determined by Response
Evaluation Criteria in Solid Tumors (RECIST) version 1.1.
[19] Key exclusion criteria included type 1 or 2 diabetes
mellitus requiring insulin treatment, fasting plasma glucose
≥140 mg/dL (7.8 mmol/L), prior pancreatitis, pneumonitis,
active small or large intestinal inflammation, central nervous
system (CNS) metastasis, prior treatment with AKT, mTOR,
and PI3K inhibitors, or inadequate cardiac, renal, lung or liver
organ function.

Study drug and treatment

CLR457 was administered orally once daily (QD) on a con-
tinuous schedule until patients experienced unacceptable tox-
icity, had progressive disease, and/or treatment was
discontinued at the discretion of the investigator or withdrawal
of consent. The starting dose for CLR457 was 5 mg QD,
based on preclinical toxicology studies in accordance with
ICH guidelines, and was administered at the same time each
day ±2 h in a fasted state. Various doses were planned up to
300 mg QD until MTD determination.
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Safety assessment

Safety was evaluated by incidence, nature, severity, and relat-
edness of adverse events (AEs), and graded according to
National Cancer Institute - Common Terminology Criteria
for Adverse Events (NCI CTCAE) v4.0.3. DLTs were defined
as any hematologic or non-hematologic ≥ Grade 3 AE
assessed as possibly related to CLR457 that occurred within
the first cycle (28 days) of treatment. In addition, uncontrolled
(> 14 days) Grade 2 rash or hyperglycemia were also consid-
ered DLTs. All AEs regardless of attribution were collected
until 30 days following the last administration of treatment or
study discontinuation/termination.

Mutational and pharmacokinetic analysis

Pretreatment tumoral mutational analysis was performed at
the treating institutions and reviewed by the Investigator.
CLR457 PK was evaluated using plasma samples collected
during Cycle 1 - Day 1 (C1D1) and Cycle 1 - Day 15 (C1D15)
at pre-dose, and 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 h post-dose by
liquid chromatography–mass spectrometry (LC-MS). PK pa-
rameters including area under the curve (AUC), maximum
serum concentration (Cmax), and time taken to reach Cmax

(Tmax) were calculated using non-compartmental methods in
Phoenix WinNonlin. [20]

Efficacy assessments

Efficacy assessments including overall response rate (ORR)
and disease control rate (DCR) were analyzed as per RECIST
v1.1 by local investigator interpretation based on interval im-
aging every 2 cycles. [19]

Statistical methods

For the preclinical studies, absolute values for primary tumor
growth and body weight were used to make the statistical
comparisons between groups (one way analysis of variance
[ANOVA] test followed by Dunnett’s test for normally distrib-
uted data; ANOVA on ranks for not normally distributed data
followed by Dunnett’s test for equal group size or Dunn’s for
unequal group size). The significant level was set at p < 0.05.

Descriptive methods were used to tabulate toxicity and
response endpoints in the clinical trial. All patients treated
with CLR457 were included for safety. TheMTDwas defined
as the highest dose of CLR457 not causing a DLT in >33% of
patients during the first treatment cycle. Dose escalation was
guided by an adaptive Bayesian logistic regression model
(BLRM) incorporating the escalation with overdose control
(EWOC) principle. [21] Under EWOC, the dose selected as
the MTD must have a < 25% chance that the true DLT rate
exceeds 33%, given the available DLT information. The study

data (including DLTs during cycle 1 and other safety and PK
data) were reviewed by the sponsor and trial investigators at
each dose level. Patients had to complete a minimum of one
cycle of treatment with the minimum safety evaluation and
drug exposure or to have had a DLT within the first cycle of
treatment to be considered evaluable for dose escalation deci-
sions. The Full Analysis Set (FAS) included all patients who
received at least one dose of CLR457. Safety set included all
patients who received at least one dose of CLR457 and had at
least one valid post-baseline assessment. The Dose-
determining set (DDS) included all patients from the safety
set who either met the following minimum exposure criterion
and had sufficient safety evaluations, or experienced a DLT
during Cycle 1 (the first 28 days of dosing). The
Pharmacokinetic analysis set included all patients who had
at least one blood sample providing evaluable PK data.

The ORR was defined as the proportion of patients at each
post-baseline scan who exhibited a complete response (CR) or
partial response (PR) according to RECIST 1.1. The DCRwas
defined as the proportion of patients at each post-baseline scan
who exhibited a CR, PR or stable disease (SD).

Results

Preclinical characterization of CLR457

The IC50 of CLR457 against the different PI3K isoforms was
as follows: p110α: 89 ± 29 nM; p110β: 56 ± 35 nM; p110δ:
39 ± 10 nM; p110γ: 230 nM ± 31 nM. In vitro profiling stud-
ies demonstrated that CLR457 also inhibited the most com-
mon forms of PIK3CA mutant isoforms: E545K (helical do-
main mutation) and H1047R (kinase domain mutation) (data
not shown).

To characterize the in vivo antitumor activity of CLR457,
xenograft nude rats and mice were treated with CLR457.
CLR457 administered orally at doses of 3, 10, 30, and
60 mg/kg QD and 30 mg/kg twice daily (BID) demonstrated
dose proportional antitumor activity against Rat1-myr-p110α
in nude rat xenografts (Fig. 1a, b). Tumor regression was
observed at 30 mg/kg QD and higher. Body weight did not
fluctuate more than ±5% for most tested doses. Similar anti-
tumor efficacy and weight effects were observed in murine
xenograft models with tumor regression occurring at 20 mg/
kg BID (Rat1-myr-p110α, Rat1-myr-p110δ, and HBRX2524)
(Supplemental Fig. 1A-C).

At doses where tumor regression was observed, the corre-
sponding steady state AUC was 22,769 ng*h/mL. The mean
tissue/plasma exposure ratio of CLR457 based on AUC mea-
sured in brain, skin, spleen, eyes, pancreas and heart was 0.07,
1, 1.22, 0.51, 1.74 and 0.83, respectively, and indicated min-
imal central nervous system (CNS) penetration.
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Blood glucose and plasma insulin levels were assayed in
mice (Fig. 2a, b) and rats (Supplemental Fig. 2) treated with
CLR457. [22–24] Plasma insulin levels increased proportion-
ally to CLR457 concentration, and glucose levels were mod-
erately perturbed at the dose necessary for tumor regression.

Patient characteristics

A total of 31 patients were enrolled in the dose escalation
phase from August 2014 to November 2015 (Table 1). The
median age of patients was 61 years (range, 42–80 years), and
ECOG-PS status was 0 (38.7%) or 1 (61.3%). The most com-
mon cancers were endometrium (6 patients; 19.4%), breast (5
patients; 16.1%), and colon (4 patients, 12.9%). Activating
PIK3CA mutations (19 patients, 61.3%) followed by loss of
PTEN (6 patients, 19.4%) were the most common alterations.
Patients received CLR457 orally once daily at doses ranging
from 5 to 100 mg. The median duration of exposure was
7.1 weeks. The median actual dose intensity was 44.4 mg/
day (Table 2).

MTD determination and safety

Of the 31 patients treated with CLR457, DLTs were reported
in 4 patients. Among these DLTs, Grade 3 hyperglycemia was
reported in 1 patient dosed at 100 mg and maculo-papular rash
was observed in 3 patients, one at 40 mg and two at 100 mg,
respectively (Table 2). As 3 of 11 (27.2%) patients in the
100 mg cohort experienced a DLT, the BLRM model theoret-
ically would allow further dose escalation. The overall toxicity
profile described below; however, lead the study Investigators

and Sponsor to terminate the study. The MTD was therefore
not determined.

All patients were evaluable for safety (Table 3). The most
frequent study drug-related AEs of any grade included stoma-
titis (45.2%), diarrhea (38.7%), maculo-papular rash (35.5%),
fatigue and nausea (29% each), decreased appetite and hyper-
glycemia (22.6% each). Grade 3/4 drug-related AEs were ob-
served in 51.6% of patients. Maculo-papular rash (25.8%) was
the most common grade 3/4 AE in ≥10% of patients. Five
patients (16.1%) experienced drug-related AEs leading to dis-
continuation of study treatment, rash being the most common.
AEs requiring dose interruptions or dose reductions were re-
ported in 18 (58.1%) patients, the most frequent being
maculo-papular rash (8 patients, 44.44%) and diarrhea (4 pa-
tients, 22%). SAEs suspected to be related to the study treat-
ment were reported in 7 patients (22.6%). Colitis, diarrhea,
and pneumonitis (6.5% each) were the most frequently report-
ed SAEs. At the 100 mg dose, 7 of 11 pts. (63.6%) reported at
least one SAE irrespective of treatment during the study oc-
curring outside the 28 day DLT window, notably 1 case of
colitis and 2 cases of pneumonitis. Six on-study deaths oc-
curred, 5 due to radiographic disease progression and 1 due
to multi-organ failure, however none were attributed to the
study drug.

Pharmacokinetic analysis

CLR457 was rapidly absorbed, with median Tmax ranging
between 1 to 3.5 h post dosing. CLR457 showed approximate
dose-proportional pharmacokinetics on C1D1 as measured by
AUC (0-24 h) and Cmax across tested doses (Table 4).
Following repeated daily dosing, overall exposure of
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Fig. 1 Antitumor activity (a) and effect on body weight (b) of CLR457 against Rat1-myr-p110α tumors grown in nude rats
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CLR457 on C1D15 increased in a relatively proportional
manner as measured by AUCtau across tested doses, suggest-
ing CLR457 exhibited linear PK even after multiple dosing.
The geometric mean V/F and CL/F were similar across tested
doses (V/F: range 43,139 to 115,503 mL; CL/F range 2610 to
4742 mL/h), and indicated low apparent clearance and low
apparent volume of distribution. Steady state was reached by
C1D15. Exposure at steady state (AUC0-tau on Day 15) in
humans following a daily dose of 100 mg was 23,754 ng*h/
mL, which was similar to the exposure at which regression
was observed in preclinical tumor xenograft models. The me-
dian elimination half-life (T1/2) of CLR457 was estimated
from the observed accumulation ratio at steady state and

ranged between 7.92 to 16.8 h (Table 5). At the dose of
100 mg QD, there was an increase in the pharmacodynamic
markers glucose and insulin, consistent with that observed in
the preclinical models, however this increase was not clinical-
ly significant (CTCAE grade ≤ 2) (Fig. 3) and was within the
range of expected changes based on preclinical data (Fig. 2).

Efficacy

Of 31 patients treated, 27 were evaluable for tumor response
(Supplemental Table 1). No patient achieved a confirmed par-
tial or complete response. Interestingly, a patient with ovarian
carcinoma harboring a PI3KCA H1074R alteration, dosed at
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100 mg daily, had a partial response with greater than 30%
shrinkage of target lesions at first interval scan, though rash
and colitis complicated further dosing and a partial response
was not confirmed. The best objective response in evaluable
patients was 8 with SD (25.8%), 2 with non-CR/non-PD
(6.5%), and 17 with progression of disease (54.8%). The over-
all DCR was 32.3% (10 patients).

Discussion

In summary, CLR457 is a potent pan-class I PI3K inhibitor
with significant in vivo antitumor activity without CNS pen-
etration. In the first-in-human study, we investigated the
MTD, safety, PK, and efficacy of CLR457 in advanced

Table 1 Patient demographics and baseline characteristics

All Patients, N = 31

Median age (range) 61 (42–80)

Sex n (%)

Female 23 (74.2)

Male 8 (25.8)

Race n (%)

Asian 9 (29.0)

Caucasian 22 (71.0)

ECOG PS n (%)

0 12 (38.7)

1 19 (61.3)

Primary site of cancer, n (%)

Endometrium 6 (19.4)

Breast 5 (16.1)

Colon 4 (12.9)

Bladder 2 (6.5)

Cervix 2 (6.5)

Lung 2 (6.5)

Ovary 2 (6.5)

Thyroid 2 (6.5)

Esophago-gastric junction 1 (3.2)

Gall bladder 1 (3.2)

Left submandibular gland 1 (3.2)

Oral cavity 1 (3.2)

Stomach 1 (3.2)

Uterus 1 (3.2)

Mutational Status, n (%)*

PI3KCA mutant 19 (61.3)

PTEN mutant 6 (19.4)

ERBB2 amplified or over-expressed 3 (9.7)

EGFR mutant 1 (3.2)

c-MET amplified 1 (3.2)

*Due to co-occurring mutations, total may not summate to 100%
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PI3K-dependent solid tumors. CLR457 was poorly tolerated
due primarily to gastrointestinal and dermatological AEs and
doses above 100 mg were not explored. The MTD was not
determined. Modest insulin perturbations and hyperglycemia,
on-target effects of p110α blockade, were also observed indi-
cating target engagement. Pharmacokinetic modeling demon-
strated a favorable PK profile and at 100 mg daily dosing,

CLR457 exposure in human was similar to the exposure nec-
essary to achieve tumor regression in the preclinical models.
CLR457 exhibited no meaningful antitumor activity outside
of transient disease stabilization at this dose in humans. Taken
together, the narrow therapeutic index observed with continu-
ous oral dosing of CLR457 lead to cessation of clinical
development.

Table 4 Primary PK parameters for CLR457 at cycle 1 day 1 by treatment groups

Treatment Statistics AUC(0-24h) (hr*ng/mL) Cmax (ng/mL) Tmax (hr)

CLR457 5 mg (N = 2) n 2 2 2

Geometric mean (CV%) 1182 (40.8) 100 (0.40)

Median (range) 2.50 (1.00–4.00)

CLR457 10 mg (N = 3) n 3 3 3

Geometric mean (CV%) 2241 (7.5) 230 (24.5)

Median (range) 1.00 (0.92–2.00)

CLR457 20 mg (N = 4) n 4 4 4

Geometric mean (CV%) 6718 (41.6) 475 (24.2)

Median (range) 2.51 (2.05–3.95)

CLR457 40 mg (N = 5) n 5 5 5

Geometric mean (CV%) 9567 (34.9) 687 (47.2)

Median (range) 2.07 (0.98–6.00)

CLR457 70 mg (N = 6) n 6 6 6

Geometric mean (CV%) 10,537 (47.6) 732 (44.8)

Median (range) 3.50 (0.72–24.1)

CLR457 100 mg (N = 11) n 10 11 11

Geometric mean (CV%) 18,390 (25.8) 1449 (28.7)

Median (range) 2.93 (0.50–7.53)

AUC(0-24h), Area Under The Curve during 24 h; Cmax, maximum plasma concentration; Tmax, time to reach maximum (peak) plasma concentration
following drug administration

Table 5 Primary PK parameters for CLR457 at cycle 1 day 15 by treatment groups

Treatment Statistics AUCtau (hr*ng/mL) CL/F (mL/h) V/F
(mL)

Racc T1/2, acc (hr)

CLR457 5 mg (N = 2) n 2 2 2 2 2
Geometric mean (CV%) 1665 (81.7) 3003 (81.7) 43,139 (6.6) 1.4 (33.4)
Median (range) 13.9 (7.58–20.20)

CLR457 10 mg (N = 3) n 3 3 3 3 3
Geometric mean (CV%) 2846 (25.5) 3514 (25.5) 66,520 (11.5) 1.3 (24.3)
Median (range) 7.92 (6.53–18.40)

CLR457 20 mg (N = 4) n 4 4 4 4 3
Geometric mean (CV%) 7662 (45.3) 2610 (45.3) 55,193 (32.1) 1.1 (28.4)
Median (range) 11.8 (5.71–15.34)

CLR457 40 mg (N = 5) n 5 5 5 5 4
Geometric mean (CV%) 11,727 (39.0) 3411 (39.0) 115,503 (109.2) 1.3 (38.4)
Median (range) 11.0 (4.13–27.90)

CLR457 70 mg (N = 6) n 4 4 4 5 4
Geometric mean (CV%) 14,762 (37.1) 4742 (37.1) 72,822 (49.9) 1.4 (29.5)
Median (range) 16.8 (11.9–23.70)

CLR457 100 mg (N = 11) n 4 4 4 4 3
Geometric mean (CV%) 23,754 (40.4) 4210 (40.4) 67,311 (38.2) 1.3 (37.0)
Median (range) 12.1 (5.04–27.0)

AUCtau, Area Under the Plasma Concentration-time Curve for a dosing interval; CL/F, apparent total clearance of the drug from plasma after oral
administration; Racc, accumulation ratio; T1/2, acc, half-life for accumulation; V/F, apparent volume of distribution during terminal phase after non-
intravenous administration
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The preclinical experiments support that CLR457 is a po-
tent pan-class I PI3 kinase inhibitor. In biochemical assays,
CLR457 results in balanced isoform blockade that is similar to
other pan-class I inhibitors, albeit with varying potency. [11,
25, 26] CLR457 antitumor activity was observed and con-
firmed in multiple tumor xenograft models with constitutively
active PI3K pathway. [13, 27] Expected effects on glucose
homeostasis were also observed in vivo and are the result of
mobilization of glucose transporters through an Insulin
Receptor-Insulin Receptor Substrate-PI3K pathway-depen-
dent mechanism. [22–24, 27] Importantly, although insulin
resistance developed rapidly at most tested doses, such effects
were transient and not significantly perturbed at concentra-
tions necessary for in vivo tumor regression. Finally,
CLR457 showed limited CNS penetration. In sum, these data
supported clinical evaluation of this compound in patients
with advanced solid tumors with PI3K pathway addiction.

In the clinical study, the safety profile of CLR457 was con-
sistent with that described previously for other pan-PI3K inhib-
itors. Common AEs included gastrointestinal toxicity, rash, fa-
tigue and hyperglycemia. Colitis and pneumonitis occurred as
delayed toxicity. These AEs, thought to be on-target effects of
p110α and p110δ inhibition, provide clinical evidence of pan-
PI3K inhibition by CLR457. [7] Importantly, mood alterations
seen with pan-PI3K that cross the blood brain barrier were not
observed, and likely reflect the favorable pharmacokinetic
properties of the compound. Unfortunately, grade 3/4
treatment-related toxicities were frequent and required dose in-
terruptions, dose reductions, and treatment discontinuation.
Although intermediate dose levels between 70 mg and
100 mg could have been explored (Fig. 3), predicted exposures
based on the preclinical models and low levels of efficacy led

us to terminate the study. At exposures predicted to interfere
with oncogenic PI3K pathways, on-target effects in normal
tissue led to intolerable toxicity, preventing further dose esca-
lation. One caveat to this conclusion is that unidentified off-
target effects of CLR457 may have contributed to untoward
toxicity. However, our data and emerging clinical data, suggest
the therapeutic index of pan-PI3K inhibitors may curtail their
ultimate clinical potential. [12, 14, 15, 28] Phase III trials of the
combination of fulvestrant with or without buparlisib showed
that the addition PI3K inhibitor improved outcomes in patients
with hormone receptor positive breast cancer; however, toxic-
ities in the buparlisib arm limited treatment duration and inten-
sity. [14, 15] Pictilisib toxicity was similar, limiting efficacy
observed in combination with an aromatase inhibitor in hor-
mone receptor positive breast cancer. [28]

Although CLR457 produced intolerable toxicity, our data
argue for the continued development of PI3K inhibitors
through alternative strategies to improve efficacy and tolerabil-
ity. Pharmacologic manipulation of pan-class I inhibitors, such
as pulsatile dosing resulting in transient complete target inhibi-
tion or modification of the route of administration, may widen
the therapeutic index of this compound class. [11] Selective
targeting of specific PI3K isoforms is well-described and also
appears to be a viable therapeutic approach. [7] Provocative
preclinical data further indicate that novel schedules and dose
titration of combination PI3K isoform blockade might reduce
toxicity while improving efficacy. [29] Furthermore, selectively
targeting AKT driven tumors appears to have promising anti-
tumor activity. [30] Finally, integration of animal and human
dose-exposure relationships using model-based approaches, as
utilized effectively in this study, will be imperative to guide
estimation of a bioactive yet safe dose of PI3K inhibitors.
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Conclusions

In preclinical studies, CLR457 demonstrated pan-PI3K inhibi-
tion and inhibited growth of tumor xenografts having a consti-
tutively active PI3K pathway. However, in the first-in-human
study, CLR457 was associated with poor tolerability and limit-
ed activity, thus preventing further development of this agent.
Multiple strategies to improve the therapeutic index of agents
blocking the PI3K pathway are under clinical evaluation.
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