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A B S T R A C T

Background: While SARS-CoV-2 similarly infects men and women, COVID-19 outcome is less favorable in
men. Variability in COVID-19 severity may be explained by differences in the host genome.
Methods: We compared poly-amino acids variability from WES data in severely affected COVID-19 patients
versus SARS-CoV-2 PCR-positive oligo-asymptomatic subjects.
Findings: Shorter polyQ alleles (�22) in the androgen receptor (AR) conferred protection against severe out-
come in COVID-19 in the first tested cohort (both males and females) of 638 Italian subjects. The association
between long polyQ alleles (�23) and severe clinical outcome (p = 0.024) was also validated in an indepen-
dent cohort of Spanish men <60 years of age (p = 0.014). Testosterone was higher in subjects with AR long-
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polyQ, possibly indicating receptor resistance (p = 0.042 Mann-Whitney U test). Inappropriately low serum
testosterone level among carriers of the long-polyQ alleles (p = 0.0004 Mann-Whitney U test) predicted the
need for intensive care in COVID-19 infected men. In agreement with the known anti-inflammatory action of
testosterone, patients with long-polyQ and age �60 years had increased levels of CRP (p = 0.018, not account-
ing for multiple testing).
Interpretation: We identify the first genetic polymorphism that appears to predispose some men to develop
more severe disease. Failure of the endocrine feedback to overcome AR signaling defects by increasing testos-
terone levels during the infection leads to the polyQ tract becoming dominant to serum testosterone levels
for the clinical outcome. These results may contribute to designing reliable clinical and public health meas-
ures and provide a rationale to test testosterone as adjuvant therapy in men with COVID-19 expressing long
AR polyQ repeats.
Funding: MIUR project “Dipartimenti di Eccellenza 2018-2020” to Department of Medical Biotechnologies
University of Siena, Italy (Italian D.L. n.18 March 17, 2020) and “Bando Ricerca COVID-19 Toscana” project to
Azienda Ospedaliero-Universitaria Senese. Private donors for COVID-19 research and charity funds from
Intesa San Paolo.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

Alongside the mode of transmission, viral load, comorbidities, and
demographic factors (such as age and sex), the host genetic back-
ground appears to play an important role in COVID-19 severity and
progression [1�8]. We hypothesized that common polymorphisms
may contribute to COVID-19 severity, including poly-amino acids
repeat polymorphisms, such as the polyQ tract of the Androgen
Receptor (AR). AR contains in its N-terminus domain a polymorphic
polyQ tract, ranging between 9 and 36 repeated CAG units in the nor-
mal population [9]. In vitro and in vivo studies have demonstrated
that the transactivation potential of AR is inversely correlated to
repeat length, and Q-tract size can significantly influence androgen-
dependent physiological functions [9�12].

Several lines of evidence lead to the concept that androgens are
relevant to both SARS-CoV-2 infection and COVID-19 disease presen-
tation; however, they seem to have a Janus bifacial way of action
[13,14]. On one side, androgens promote the transcription of the
TMPRSS2 gene that encodes a serine protease known to prime the
spike (S) protein of coronaviruses, facilitating viral entry into the cells
[15]. On the other hand, hypogonadism is known to correlate with
severe COVID-19 [16] and other chronic conditions, partly due to the
loss of attenuation of the inflammatory immune response exerted by
testosterone (T) [17�19].

2. Methods

2.1. Patients

We performed a nested case-control study (NCC). Cases and con-
trols were drawn from the Italian GEN-COVID cohort of 1178 subjects
infected with SARS-CoV-2 diagnosed by RT-PCR on nasopharyngeal
swab [2]. Demographic characteristics of patients enrolled in the
cohort are summarized in Table 1 according to their clinical status. In
the current NCC study, cases were selected according to the following
inclusion criteria: i. CPAP/biPAP ventilation (230 subjects); ii. endo-
tracheal intubation (108 subjects). As controls, 300 subjects were
selected using the sole criterion of not requiring hospitalization.
Exclusion criteria for both cases and controls were i. SARS-CoV-2
infection not confirmed by PCR; ii. non-caucasian ethnicity. Demo-
graphic characteristics of the subjects in the NCC study are summa-
rized in Table 1. A similar Spanish cohort, composed of male COVID-
19 patients (117 cases and 41 controls) was used to validate the
results in another representative European population highly
impacted by COVID-19. All subjects were white European. The Span-
ish Covid HGE cohort is under IRB approval PR127/20 from Bellvitge
University Hospital, Barcelona, Spain.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1
Demographics characteristics of the Italian GEN-COVID Cohort and NCC study.

Intubation CPAP/BiPAP
Ventilation

Oxygen Therapy Hospitalized w/o
respiratory support

Oligo^-asymptomatics w/o
hospitalization

GEN-COVID Number of Sybjects 108 230 352 188 300
Male/Female 80/28 157/73 208/144 104/84 116/184
Age males (years) 61,52§11,43 62,75§13,48 63,41§14,53 55,99§15,44 47,40§13,23
Age females (years) 63,71§13,96 66,23§15,25 68,40§14,74 52,88§16,39 48,61§11,06

Cases Controls
NCC study Number of Subjects 338 300

Male/Female 237/101 116/184
Age males (years) 62,34§12,84 47,40§13,23
Age females (years) 65,53§14,94 48,61§11,06

^ Oligosymtpomatic: individuals with minor symptoms of COVID-19 (mild fever, cough, sore throat, etc.)
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2.2. Ethics

The GEN-COVID study was approved by the University Hospital of
Siena Ethics Review Board (Protocol n. 16917, dated March 16, 2020).
This observational study has been inserted in www.clinicaltrial.org
(NCT04549831). The Spanish Covid HGE cohort is under IRB approval
PR127/20 from Bellvitge University Hospital, Barcelona Spain. Writ-
ten informed consent was obtained from all individuals who contrib-
uted samples and data.

2.3. Analysis of triplets size in the AR locus

To establish allele sizes of the polymorphic triplet in the AR locus,
we used the HUMARA assay with minor modifications [20]. Specifi-
cally, we performed a fluorescent PCR followed by capillary electro-
phoresis on an ABI3130 sequencer. Allele size was established using
the Genescan Analysis software.

2.4. Binary representation of WES data

Variants calling was performed according to the GATK4 best prac-
tice guidelines, using BWA for mapping, and ANNOVAR for annotat-
ing. WES data were represented in a binary mode on a gene-by-gene
basis. Poly-amino acids triplet repeats were represented in a binary
mode: long and short repeats in respect to the reference sequence on
the genome. A total of 40 genes with 43 triplet repeat regions were
taken from UniProtKB (Supplementary Table S1). In the boolean
representation of poly-amino acids triplet repeats, for each of these
40 genes two features were defined, Dij and Iij, with Dij being equal
to 1 if gene i in sample j has a repeated region shorter than the refer-
ence, 0 otherwise, and Iij being equal to 1 if gene i in sample j has a
repeated region longer than the reference, 0 otherwise.

2.5. LASSO logistic regression

We adopted the LASSO logistic regression that provides a feature
selection method within the classification tasks able to enforce both
the sparsity and the interpretability of the results. The weights of the
logistic regression algorithm can be interpreted as the importance of
the subset of the most relevant features for the task [21].

The input features of the LASSO logistic regression are the poly-amino
acids triplet repeats as well as gender, comorbidity (1 if there is at least
one comorbidity) and age, the latter as a continuous variable normalized
between 0 and 1. Comorbidities were defined as the presence of one or
more clinical conditions (i.e. cardiac, endocrine, neurological, neoplastic
diseases) at the time of infection. During the fitting procedure, the class
slight unbalancing is tackled by penalizing the misclassification of the
minority class with a multiplicative factor inversely proportional to the
class frequencies. The data pre-processing was coded in Python, whereas
for the logistic regression model we used the scikit-learn module with
the liblinear coordinate descent optimization algorithm.
2.6. Total T measurement

Blood samples were collected after an overnight fast, immediately
centrifuged at 4 °C and stored at -20 °C until assayed. Serum and
plasma total T (TT), SHBG levels in plasma and serum LH were mea-
sured following standard procedures.

Serum TT was measured using the Access testosterone assay
(Beckman Coulter Inc., Fullerton, CA, USA) with a minimum detection
limit of 0.35 nmol/L. Reference range for this assay was
6.07�27.1 nmol/L and liquid chromatography - tandem mass spec-
trometry (LC-MS/MS) according to a previously validated method
provided with reference values between 9.8�28.4 nmol/L [22].
Thawed plasma underwent 15 min incubation at 56 °C for virus inac-
tivation, and TT measured in 100 ml of plasma, with sensitivity limit
being 0.270 nmol/L, imprecision ranging 9.8 to 0.7% and accuracy
90.6 to 101.5% at concentration levels between 1.12 and 39.2 nmol/L.
A stability test under viral inactivation conditions was performed in 6
samples, revealing a T mean (min-max) % loss of 9.7% (4.6�16.7%).

SHBG levels were measured in plasma samples using Quantikine
ELISA Kit (DSHB G0B, R&D Systems, Minneapolis, MN, USA) according
to the manufacturers' instructions. Serum LH was measured using
“Access LH assay“ a chemiluminescenSert, two-step enzyme immu-
noassay (Beckman Coulter Inc., Fullerton, CA, USA). Sensitivity for the
LH determination is 0.2 mIU/mL. Reference range in adult males for
this assay is 1.2�8.6 mIU/mL.

2.7. Statistical analysis

Since serum and plasma T values were not normally distributed,
the statistical analyses were performed using non-parametric tests.
When appropriate, transformation was used for skewed data in
regression models. We used the Mann-Whitney U test to compare T
levels in males with AR long-polyQ (�23) versus males with short-
polyQ repeat (�22). Logistic regression analysis was performed to
test the contribution of age, T, and the number of polyglutamine rep-
etitions on COVID-19 outcome. The only prespecified interaction
tested was the T by polyQ (categorical). Box-Tidwell procedure was
used to assess linearity and the Hosmer and Lemeshow to assess
goodness of fit test. Multicollinearity was assessed by variance infla-
tion factor, and dealt with by dropping the offending variables from
the analysis on the basis of clinical grounds.

2.8. Role of funders

The work was financially supported by MIUR project “Diparti-
menti di Eccellenza 2018-2020” to Department of Medical Biotech-
nologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020)
and by “Bando Ricerca COVID-19 Toscana” project to Azienda Ospe-
daliero-Universitaria Senese. It was also funded by private donors for
COVID-19 research and charity funds from Intesa San Paolo “Fondo di
Beneficenza n. b/2020/0119”. The sponsors of the study had no role
in study design, data collection, data analysis, data interpretation, or
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writing of the manuscript. The authors collected the data, and had full
access to all of the data in the study. They also had the final decision
and responsibility to submit the study results for publication.

3. Results

3.1. Testing the role of common poly-amino acid repeat polymorphisms
in COVID-19 outcome

In order to test the role of common poly-amino acid repeat poly-
morphisms in determining COVID-19 clinical severity, we performed
a NCC, selecting the extreme phenotypic ends of our entire GEN-
COVID cohort (Table 1 and Fig. 1). Among 18,439 annotated genes,
Fig. 1. LASSO logistic regression. The bar of the LASSO logistic regression beta coefficients re
positive beta coefficients of the LASSO (upward bars) reflect a susceptible behaviour of the
bars) a protective action. The calculated odd ratio of AR short repeats (�22) is 0.79 i.e. protec
Table reporting the averages and the standard deviations of accuracy, precision, sensitivity, s
we selected those with amino acid repeats, namely 40 genes, and
represented them as a boolean variable. Logistic regression with
LASSO regularization analysis identified AR as the only protective
gene (Fig. 1, panel a). The 10-fold cross-validation provides good per-
formances in terms of accuracy (77%), precision (81%), sensitivity
(77%), specificity (78%) and Area Under the Curve (AUC) score (86%)
(Fig. 1, panel b). The performances of the logistic regression without
LASSO regularization for the selected set of features (age, gender,
comorbidity and AR gene) are 79% accuracy, 81% precision, 81% sensi-
tivity, 78% specificity, 88% roc-auc. The model shows a slight decrease
of almost all the performance measures when the AR gene is
removed from the set (accuracy -1.2%, precision -1.3%, sensitivity
-1.4%, specificity -1.2%, roc-auc +0.3%). Finally, the logistic regression
presents the importance of each feature for the classification task (Fig. 1) (Panel a). The
features to the target COVID-19 disease, whereas the negative coefficients (downward
tive. Therefore, the odd ratio of long repeats (�23) is 1/0.79 = 1.27 i.e. severity. Panel b:
pecificity, and ROC-AUC scores for the 10-folds of the cross-validation.



Table 3
Validation in Spanish cohort

Spanish validation (x2) Males global
�22 �23 Marginal Row Totals

Cases 51 (43,6%) 66 (56,4%) 117 (74,1%)
Controls 27 (65,9%)* 14 (34,1%) 41 (25,9%)
Marginal Column Totals 78 (49,4%) 80 (50,6%) 158 (Grand Total)

* p-value (cases vs controls)=0.014 (Significant at p<0.05)
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on the male cohort with the AR gene alone provides results quite
higher than the random guess (accuracy 58%, precision 71%, sensitiv-
ity 64%, specificity 55%, roc-auc 55%).

3.2. Validation of polyQ polymorphism by sizing the PolyQ repeat of the
AR gene

In order to validate the results on AR obtained by LASSO logistic
regression, we sized the number of triplets in the male subset (351
subjects) using the gold standard technique that uses a fluorescent
PCR reaction followed by the use of GeneScan Analysis software�

(Applied Biosystems) [20]. We identified a 98% concordance between
the results of the two techniques in measuring the polyQ repeats.
Based on the AR polyQ length, male patients were subdivided into
two categories, those having a number of PolyQ repeats less than or
equal to 22 repeats, and those having a number of PolyQ repeats
greater than or equal to 23 repeats, being 23 repeats the reference
sequence on genome browsers and the reported cut-off value [23-
24]. We found that PolyQ repeats below 22 are enriched in the
asymptomatic cohort of males. The difference was statistically signifi-
cant in the group of males younger than 60 years of age in which
genetic factors are expected to have a major impact (p-value 0.024
by x2 test) (Table 2; Supplementary Table S2).

3.3. Validation of polyQ polymorphism in the Spanish Cohort

We then sized the polyQ repeat in an independent cohort consist-
ing of 158 <60 years old Spanish males without known comorbidities
(117 cases and 41 controls). The association with shorter repeats (�
22) and protection was confirmed (p-value 0.014 by x2 test) (Table 3).

3.4. Males with longer polyQ have receptor resistance

To functionally link the length of the PolyQ repeats to AR function-
ality, we measured TT in 183 men using LCMS/MS (Supplementary
Table S2). TT was higher in patients carrying �23 vs �22 glutamines
(13.45 vs 11.23 nmol/L, p-value 0.042), reflecting reduced negative
feedback from the less active receptors present in patients carrying a
PolyQ repeat of �23. This difference was evident also comparing the
TT value and polyQ repeats in the case and the control group (Fig. 2).

3.5. Unbalanced T-AR axis in males with longer polyQ repeats

The hormonal status of the entire male cohort revealed lower TT
and calculated free T levels and higher SHBG levels with increasing
age (Supplementary Table S3).

To evaluate whether the AR receptor reduced activity resulted in
signs and symptoms of hypogonadism, subjects were interviewed,
post-infection, using a modified version of the Androstest� [25].
Interviews were available for 61 subjects (43 short and 18 long) rep-
resentative of the extremes genotypes (�19 and �25 repeats) of the
cohort. An Androtest score �8 was found in 38% of men with longer
repeats as compared to 16% of those with �19 glutamines (likelihood
ratio, p = 0.046). Similarly, cryptorchidism (11% in long repeats vs. 2%
Table 2
PolyQ alleles correlation with COVID-19 outcome - males with age <60.

Males <60
<22 >23 Marginal Row Totals

Cases 52 (59,1%) 36 (40,9%) 88 (48,1%)
Controls 71 (74,7%)* 24 (25,3%) 95 (51,9%)
Marginal Column Totals 123 (67,2%) 60 (32,8%) 183 (Grand Total)

* p-value (cases vs controls) =0.024
in short repeats), and anemia (11% in long repeats vs. 2% in short
repeats), two powerful sings of low androgenicity, and severe erectile
dysfunction (22% in long repeats vs. 9% in short repeats) were more
frequently reported in subjects with longer repeats, but not osteope-
nia/osteoporosis (6% in long repeats vs. 7% in short repeats) (Supple-
mentary Table S4). These results indicate a trend toward clinical
hypogonadism for those with longer repeats. Conversely, in the
entire male dataset, 6 cases of prostate cancer were found annotated
in the past-medical history, all in the �22 glutamines group, suggest-
ing an increased prostate sensitivity to androgens in this group. No
difference was found in the prevalence of BPH or 5-alpha-reductase
inhibitors use.

As the reduced signal transduction of AR might be partially com-
pensated by higher T levels, we tested whether the decreased AR
negative feedback was sufficient to overcome larger polyQ repeats
size (Fig. 2). Logistic regression was performed to investigate the
joint effect of T level and polyglutamine receptor length on the likeli-
hood that subjects require intensive care during COVID infections,
adjusting for age in the model. The logistic regression model was
highly significant (x2 (3) = 18,881, p < 0.0001), with the model
explaining 7.5% (Nagelkerke /R2) of the variance in COVID-19 out-
come (Supplementary Table S5). To test whether the association
between T and the outcome changes when the polyQ is short (� 22)
or long (�23), an interaction term was included in the model. A sig-
nificant interaction was found (p-value 0.018), suggesting impaired
feedback as a predictor of the worst outcome, namely intubation or
CPAP/BiPAP versus hospitalization not requiring respiratory assis-
tance. To provide an intuitive graphical representation, we plotted
the ratio between TT serum concentrations and polyQ number vs.
clinical outcome (Supplementary Figure 1). Results show a
decreased mean ratio, a sign of an inappropriate rise of TT for increas-
ing polyglutamine repeats, and association with a worse outcome
(p = 0.0004).
3.6. Inflammatory phenotype in males with longer polyQ repeats

Finally, we tested the relationship between the AR polyQ repeat
size and 5 laboratory markers of immunity/inflammation, including
CRP, Fibrinogen, IL6, CD4 and NK count. We found that older (�60)
males with AR polyQ tract �23 have a higher (55.92 versus 48.21 mg/
dl) mean value of CRP (p-value 0.018, not accounting for multiple
testing) and lower mean value of Fibrinogen and a trend of higher IL6
(Table 4).
4. Discussion

We employed machine learning methodologies to identify a set of
genes involved in the severity of COVID-19. In the presence of very
high dimensionality, as for instance in a WES study, it is crucial to
select the most predictive genes representing patterns of variation
(mutations or variants) in subjects with different classes of response
(i.e., disease state: from asymptomatic to severe cases). This problem
is even more complex in diseases where multiple genes are involved
in determining the severity and clinical variability of the pathology.
Here, we wanted to represent poly-amino acids repeat



Fig. 2. Relationship between Total Testosterone and polyQ repeats in the case and the control group. Box-plot showing values of Total Testosterone (TT), expressed in nmol/L, in
subjects with shorter (�22) and longer (�23) polyQ repeats in AR gene grouped between controls (left panel) and cases (right panel). The TT median value, represented by the black
horizontal line, is higher in patients with �23 polyQ repeats in the case group, (**p-value = 0.023; Mann-Whitney U test). No statistically significant difference was present in the
control group (p-value = 0.088; Mann-Whitney U test).
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polymorphisms that are typically missed in classical GWAS analysis,
which concentrates on bi-allelic polymorphisms.

We used a machine learning approach and logistic regression with
a LASSO regularization to test if using such a simplified representa-
tion could lead to a reliable prediction of extreme clinical outcomes
(asymptomatic versus severely affected). This approach enabled us to
predict such clinical outcomes with 77% sensitivity.

AR contains a highly variable polyglutamine repeat (poly-Q)
located in the N-terminal domain of the protein, spanning from 9 to
36 glutamine residues in the normal population [5]. AR polyQ length
correlates with receptor functionality, with shorter polymorphic glu-
tamine repeats typically associated with higher and longer PolyQ
tracts with lower receptor activity [5]. AR is expressed in both males
and females, but the bioavailability of its ligands T and dihydroT
(DHT) differs significantly, being much higher in males. As previous
studies linked male hypogonadism to a poorer outcome in COVID-19
patients we decided to focus on male patients and demonstrated that
shorter polymorphic glutamine repeats (�22) confer protection
against life-threatening COVID-19 in a subpopulation of individuals
with age <60 years.

We also confirmed the association between polyQ size and recep-
tor activity. Specifically, we showed that longer polyQ size (�23) is
associated with higher serum T levels, suggestive of impaired nega-
tive feedback (p=0.004 at Mann-Whitney U test) at the level of the
hypothalamus and pituitary gland. While this is compensated in
healthy subjects [26], during non-gonadal illnesses (NGI) such as
COVID-19, some patients are unable to compensate for the reduced
AR activity with higher T levels [27]. The result is a status of reduced
androgenicity even in the presence of apparently normal T values
[27].

As T is known to have an immunomodulatory activity attenuating
inflammatory immune responses [26�32], we hypothesized that a
long PolyQ repeat would lead to a pro-inflammatory status heralded
by increased proinflammatory markers [19,33] by conferring
decreased AR transcriptional activity. Conversely, men with a more
active receptor (short PolyQ tract) would be protected because they
can tame the inflammatory response and increase survival regardless
of serum T levels. We found that -CRP-, one of the main inflammatory
markers, was higher in subjects with a long AR PolyQ tract. This
observation not only is in line with the known anti-inflammatory
function of T, but also reinforces the functional importance of the AR
PolyQ tract and its association with COVID-19 clinical outcome. Fur-
thermore, this observation suggests that CRP is hierarchically more
relevant than serum T level, which can be inappropriately normal
and mask a status of low androgenicity in men with a long PolyQ
repeat.

The allele distribution of the PolyQ repeat length varies among
different populations, with the shortest in Africans, medium in Cau-
casians, and longest in Asians [34]. Interestingly, WHO data on mor-
tality rates during the first pandemic wave indicated a higher fatality
rate in China and Italy (https://covid19.who.int/) [35] with respect to
African. Hence, AR polyQ length variability could represent an

https://covid19.who.int/


Table 4
Correlation between polyQ repeats in AR gene and laboratory values

CRP M�60y cases CRP M<60y cases

Triplets Mean Count Triplets Mean Count

�22 48,21 78 �22 54,5 43
�23 55,92 38 �23 26,41 29
p-value = 0.018 (Significant at p<0,05) p-value = 0.2

Fibrinogen M�60y cases Fibrinogen M<60y cases

Triplets Mean Count Triplets Mean Count

�22 401,33 57 �22 316,93 22
�23 320,34 27 �23 356,91 19
p-value = 0.093 p-value = 0.53

IL6 times the upper limit of normal M�60y cases IL6 times the upper limit of normal M<60y cases

Triplets Mean Count Triplets Mean Count

�22 54,56 40 �22 40,43 17
�23 75,78 16 �23 31,8 14
p-value = 0,249 p-value = 0,81

CD4 Lymphocytes M�60y cases CD4 Lymphocytes M<60 cases

Triplets Mean Count Triplets Mean Count

�22 264,06 32 �22 503,68 16
�23 357,52 21 �23 396,13 15
p-value = 0.22 p-value = 0.45

NK Cells M�60y cases NK Cells M<60y cases

Triplets Mean Count Triplets Mean Count

�22 70,71 28 �22 147,3 13
�23 102,25 16 �23 107,14 14
p-value = 0.179 p-value = 0.098
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explanation for the observed differences in death rate. Moreover,
Africans seem to be more prone to infection [36]. This observation
could be due to a more active AR receptor, leading to a higher expres-
sion of TMPRSS2, a protease essential for SARS-CoV-2 spread [15].

Different studies have shown an association between hypogonad-
ism or long polyQ repeats and severe COVID-19 [16,37] and other
chronic obstructive pulmonary diseases [17,18]. Our results are in
line with these initial observations and provide a possible mechanism
explaining these associations. The present study brings these obser-
vations to the next level, revealing that is the overall androgenic
effect -resulting from the interaction of polyQ polymorphism and cir-
culating T levels- that predicts the need for intensive care. In infected
men, we observed impaired feedback no longer sufficient to compen-
sate for the reduced AR transcriptional activity, leading to the conclu-
sion that polyQ tract length is hierarchically more important than
serum T levels. This concept helps to solve some inconsistencies,
including the early reports of a slightly better outcome in prostate
cancer patients -who tend to have smaller polyQ repeats, as in our
cohort - when compared to other cancers. Interestingly, previous
studies failed to link polyQ with mortality, in healthy subjects [26] or
individuals with chronic diseases such as diabetes mellitus [38].
Thus, the observed association between low androgenicity and out-
come seems related to the hyperinflammatory state present in severe
COVID-19.

An improvement in peak oxygen saturation in men receiving T
replacement therapy has been demonstrated in a randomized con-
trolled trial [39] and could be one of the mechanisms responsible for
the observed protective effect of AR’s with shorter polyQ tract in
COVID-19 patients. The observations reported in this study prompt
organizing a clinical trial where patients selected based on their
serum T concentration and polyQ repeat size are randomized to
receive T vs. placebo. Such study could introduce the concept that a
simple genetic test measuring the AR polyQ repeat can be used in
male patients to screen for those who are more likely to benefit from
T therapy.

Variants of another X-linked gene, TLR7, have been associated
with severe COVID-19 outcomes in young men [6]. In the 2 reported
families, the rare TLR7 mutations segregated as a highly penetrant
monogenic X-linked recessive trait. While variants in TLR7 gene are
expected to account for a small number of severely affected cases,
our findings involve a much larger number of subjects, as long polyQ
alleles are relatively common (27%) [40]. Overall, X-linked genetic
variants keep coming up as important for defining severe COVID-19
cases in males.

In conclusion, we present a method that can predict if subjects
infected by SARS-CoV-2 are at risk for life-threatening complications.
This approach has 77% accuracy, 81% precision, 77% sensitivity, and
78% specificity. Furthermore, we present evidence suggesting that a
more active AR has the potential to confer protection against COVID-
19 severity. If confirmed, these observations should be followed by
properly conducted clinical trials exploring if T replacement may
decrease morbidity and mortality in patients affected by the most
severe forms of the disease. Finally, as shown by regression analysis,
ORs ranges between 1.26 and 1.45, therefore the risk of carrying a
longer AR is much smaller than other already known strong predic-
tors such as age and sex, but still is highly significant, relatively com-
mon, and among the very few known genetic predictors of COVID-19
outcome.
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