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ARTICLE INFO ABSTRACT

Dysregulated activation of the MET tyrosine kinase receptor is implicated in the development of solid tumors and
can arise through several mechanisms, including gene amplification, overexpression of the receptor and/or its
ligand hepatocyte growth factor (HGF), and the acquisition of activating mutations. The most common acti-
vating mutations cause exon 14 to be skipped during MET mRNA splicing. This in-frame deletion, known as MET
exon 14, results in production of a shortened receptor that lacks a juxtamembrane domain but retains affinity for
HGF. However, the negative regulatory function located within this protein sequence is lost, leading to receptor
accumulation on the cell surface and prolonged activation by HGF. MET mutations causing exon 14 skipping
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appear to be true oncogenic drivers and occur in patients and tumors with distinct characteristics.
Increasing evidence suggests that tumors carrying such mutations are sensitive to MET inhibition, raising the
hope that selective MET inhibitors will provide patients with optimal anticancer activity with minimal toxicity.
We discuss the prospects for selective MET inhibitors in the treatment of non-small cell lung cancer harboring

MET exon 14 skipping.

Introduction

Molecules that inhibit receptor tyrosine kinases (RTKs) have shown
promise as therapies in a range of tumor types. This is because activated
RTKs are able to act as primary driver oncogenes: through acquired
mutations, they can initiate carcinogenesis and play a key role in tumor
development. For example, oncogenic activation of the epidermal
growth factor receptor (EGFR) through EGFR mutation is observed in
non-small cell lung cancer (NSCLC), and such tumors are sensitive to
EGFR-targeted tyrosine kinase inhibitors (TKIs). Although the MET RTK
is also often aberrantly active in NSCLC, its clinical significance in
NSCLC was primarily thought to be in conferring resistance to certain
therapies, including EGFR TKIs. However, interest in MET as a ther-
apeutic target, particularly in NSCLC, has increased with the realization
that it may act as a bona fide primary oncogenic driver when activated
by mutations causing skipping of exon 14 in the MET gene (MET exon
14).

To date, there have been three therapeutic approaches to targeting
MET: MET TKIs, anti-MET or anti-hepatocyte growth factor (HGF;
natural ligand of MET) antibodies, and anti-MET antibody—drug con-
jugates [1,2]. Anti-MET antibodies have failed to show efficacy better
than placebo in patients selected for MET overexpression; two phase III
trials were halted due to poorer survival with anti-MET antibodies than
with placebo [3,4]. Anti-MET antibody-drug conjugates are a more
recent approach; telisotuzumab vedotin, an anti-MET antibody con-
jugated with monomethyl auristatin E (a tubulin polymerization in-
hibitor), has shown favorable antitumor activity in patients with NSCLC
and MET overexpression in a phase I study and is being investigated in a
phase II trial (NCT03539536) [5-7]. MET TKIs have been investigated
in patients with NSCLC harboring MET overexpression, MET amplifi-
cation, or MET exon 14 skipping; case reports have reported activity in
NSCLC with MET fusions [8-10].

In this review, we discuss the prospects for selective MET TKIs in the
treatment of NSCLC harboring MET exon 14 skipping.
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Fig. 1. MET gene and the encoded MET receptor. IPT: found in Immunoglobulins,
Plexins, Transcription factors; PSI: found in Plexins, Semaphorins, Integrins; Sema:
semaphorin domain.

The MET receptor tyrosine kinase

The MET gene is located on human chromosome 7 (7q31), includes
21 exons and 20 introns, and encodes a protein with an apparent mo-
lecular weight of 190 kDa [11] (Fig. 1). MET is a RTK normally ex-
pressed by epithelial cells, and is also found on endothelial cells, neu-
rons, hepatocytes, and hematopoietic cells [12]. MET has one known
natural ligand: HGF. HGF binding to MET induces receptor dimeriza-
tion and autophosphorylation of tyrosine residues located in the in-
tracellular portion of the receptor [13] (Fig. 2). These residues can also
be transphosphorylated by other RTKs, such as the EGFR and, in par-
ticular, receptor originated from Nantes (RON), a receptor with struc-
tural homology to MET that appears to be required for oncogenic ad-
diction to MET in some circumstances [14,15]. Phosphorylation of
tyrosine residues in the MET cytoplasmic tail creates docking sites that
engage molecules involved in intracellular signaling pathways, in-
cluding mitogen-activated protein kinase (MAPK), phosphoinositide 3-
kinase (PI3K), signal transducers and activators of transcription (STAT),
and nuclear factor kappa B (NFk-B) [13]. These pathways regulate the
transcriptional activity of genes that mediate the cellular effects of MET
activation.

Phosphorylation of tyrosine residue Y1003 in the cytoplasmic jux-
tamembrane domain, encoded by exon 14 of MET, creates a docking
site for the E3 ubiquitin ligase Casitas B-lineage lymphoma (CBL), in-
itiating the ubiquitination of MET and removal of HGF-bound MET
from the cell surface [16]. MET activity depends upon a dynamic bal-
ance between MET activation and its removal from the cell surface,
with both processes driven by binding of HGF [17]. CBL can also be
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deleted or mutated in NSCLC, which can lead to activation of MET
[16,18].

MET activation induces cellular proliferation, survival, mobiliza-
tion, and invasion, while altered cell morphology and remodeling of
cell-cell and cell-matrix adhesions initiate epithelial-mesenchymal
transition [12]. MET has a critical role in embryogenesis, enabling
tissue remodeling, and in adults plays a more subtle role in tissue repair
[19].

Abnormal MET activity is observed in a wide range of solid tumors
[20], and can be caused by activating MET mutations, MET amplifica-
tion, overexpression of MET or HGF, or transactivation by other RTKs
such as RON [17,18]. MET aberrations are associated with rapid tumor
growth, aggressively invasive disease, and poor prognosis [21], as well
as resistance to anticancer therapy. Different MET aberrations may,
however, vary in their oncogenic potential; for example, poor prognosis
in NSCLC appears to be more clearly associated with MET amplification
than with MET overexpression.

MET exon 14 skipping

Following transcription of the MET gene, the 21-exon precursor
messenger ribonucleic acid (RNA) is spliced, guided by specific se-
quences in the 5 and 3’ introns [22]. Skipping of exon 14 during
splicing is associated with a mutation in one of the exon 14 splice re-
gions located within the exon-intron boundaries (MET exon 14 muta-
tion hotspots; Fig. 3), although additional genomic alterations within
exon 14 have also been noted [23,24]. The resulting in-frame deletion
of 141 base pairs leads to translation of a shortened MET receptor
lacking the juxtamembrane domain on the cytoplasmic side of the
plasma membrane. Because the deletion is in frame and exon 14 en-
codes a discrete domain, the resulting shortened MET receptor retains
affinity for HGF and a transmembrane location with catalytic activity.

The first somatic mutation causing MET exon 14 skipping was found
in the 5’ splice site junction of MET exon 14. This mutation was re-
ported in deoxyribonucleic acid (DNA) isolated from small cell lung
cancer (SCLC) in 2003, with the occurrence of mutations in NSCLC
being reported in 2005 [23,24]. A mutational analysis of a series of
NSCLC samples in 2006 subsequently identified a 22-base-pair deletion
in the 5’ splice site junction of exon 14, a 28-base-pair deletion in the 3’
splice site, and a point mutation in the 3’ splice site, all of which gen-
erated MET exon 14 transcripts [25]. Moreover, in 2015, Frampton
et al. conducted comprehensive genome profiling of 38,028 tumor
specimens from unique patients, and identified 224 mutations re-
sponsible for MET exon 14 transcripts, including 126 distinct sequence
variants in 221 specimens [26].

MET exon 14 skipping alterations are distinct from other MET
aberrations and are strong oncogenic drivers

As a result of MET exon 14 skipping, MET lacks the juxtamembrane
domain, which contains multiple sites involved in the regulation of
MET signaling and cell survival, including the CBL binding site (Y1003)
and associated ubiquitination sites [27] (Fig. 4). Consequently, en-
docytosis of HGF-activated MET exon 14 is compromised, leading to its
accumulation as an active ligand/receptor complex on the cell surface
[28] and sustained dysregulated activation of downstream signaling
pathways [29]. In addition, the juxtamembrane domain is key to ne-
gative regulation of the intracellular kinase domain via protein kinase C
phosphorylation of S985 [27]. Therefore, its disruption through MET
exon 14 skipping can likely transition the closed kinase conformation to
a more active conformation [30].

MET exon 14 skipping has been shown to drive the growth of tumor
cells in preclinical models through high and persistent MET signaling
[25,31]. MET exon 14 skipping is often found to be mutually exclusive
with other known oncogenic drivers such as Kirsten rat sarcoma (KRAS),
epidermal growth factor receptor (EGFR), and human epidermal growth
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Fig. 2. Wild-type MET signaling. HGF: hepatocyte growth factor.

factor receptor 2 (HER2), indicating that MET exon 14 can promote on-
cogenesis in the absence of other oncogenic drivers [26,32].

The prevalence of MET exon 14 skipping across different cancer
types differs from those of other MET aberrations. MET amplifications
and MET protein overexpression are common in many solid tumors,
particularly hepatocellular carcinoma [33]. In contrast, an extensive
study by Frampton et al. detected MET exon 14 skipping most fre-
quently in lung adenocarcinoma (3%), other lung neoplasms (2.3%),
brain glioma (0.4%), and tumors of unknown origin (0.4%) [26]. Si-
milarly, analysis of 4422 samples from 12 different malignancies
showed that MET exon 14 skipping was most common in lung adeno-
carcinoma (~3%), with lower prevalence in bladder urothelial carci-
noma, head and neck squamous cell carcinoma, kidney renal clear cell
carcinoma, lung squamous cell carcinoma, and colon adenocarcinoma,
and none in other tumor types [34]. Comprehensive genomic profiling
of 11,205 lung cancers identified 298 MET exon 14 NSCLC samples
(2.7%) [35]. MET exon 14 skipping was most frequently detected in
patients with adenosquamous (8.2% of 98 samples) or sarcomatoid
(7.7% of 104 samples) histologies. In patients with adenocarcinoma
(n = 7149), squamous cell carcinoma (n = 1206), or NSCLC histologic
subtype not otherwise specified (n = 1659), MET exon 14 skipping was
detected in 205 (2.8%), 25 (2.1%), and 49 (3.0%), respectively. At a
lower frequency, MET exon 14 skipping was also reported in patients
with large cell NSCLC (0.8%) or SCLC (0.2%). In a large cohort of
Chinese patients with NSCLC, MET exon 14 skipping rates were 2.6% in
adenocarcinoma, 4.8% in adenosquamous carcinoma, and 31.8% in
sarcomatoid carcinoma [36].

The prognostic impact of MET exon 14 skipping has not been stu-
died extensively, although both MET exon 14 skipping and high-level
MET amplification have been found to be independent prognostic fac-
tors of poor survival in a multivariable analysis [36]. The prognosis of
patients with MET dysregulation who do not receive treatment with a
MET inhibitor appears to be inferior, for both NSCLC harboring MET
exon 14 skipping or MET amplification, or both alterations concurrently
[37,38].
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In another study of East Asian patients with stage I to stage IIIA
NSCLC, multivariate analysis showed that patients with tumors har-
boring MET exon 14 skipping had a higher recurrence rate post-resec-
tion than patients with ALK (ALK fusion versus MET exon 14 skipping,
hazard ratio [HR] 0.283; 95% confidence interval [CI], 0.119-0.670;
P = 0.004), although overall survival was similar to that in patients
with other mutations (EGFR mutation, ROS1 fusion, ALK fusion, RET
fusion) or none of these mutations, after adjusting for pathologic stage
and other factors [39]. Overall, there is evidence that MET exon 14
skipping alterations are associated with poorer outcomes in patients
with NSCLC, which, together with its oncogenic driver potential and
prevalence in NSCLC, makes MET exon 14 an attractive therapeutic
target.

Tumors with MET exon 14 skipping are sensitive to MET TKIs

Preclinical and clinical evidence suggest that tumors with MET exon
14 skipping alterations are sensitive to MET TKIs (see Table 1 for an
overview of MET TKIs that have shown activity and/or are in ongoing
clinical development). In particular, MET exon 14 skipping tumor
models have been shown to respond to MET TKIs [31], including cap-
matinib [26,40], glesatinib [41], AMG337 [42], and tepotinib [43].

The first clinical evidence of MET exon 14 skipping tumors re-
sponding to MET TKIs came from studies using crizotinib, an inhibitor
of anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1), and
RON, as well as MET [16,44]. Crizotinib showed efficacy in patients
with MET exon 14 skipping tumors, possibly due to its MET-inhibitory
activity [16,45-48]. Data from a large dose-expansion cohort (N = 69)
of a phase I trial with crizotinib (PROFILE 1001; NCT00585195) re-
ported encouraging outcomes in patients with advanced NSCLC and
MET exon 14 skipping [49]. Based on this, crizotinib received break-
through therapy designation from the United States Food and Drug
Administration (US FDA) in May 2018 for the treatment of metastatic
NSCLC in patients with MET exon 14 skipping alterations and pro-
gression on or after platinum-based chemotherapy [48,50]. The AcSé
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Fig. 3. MET exon 14 skipping and loss of the juxtamembrane domain. IPT:
found in Immunoglobulins, Plexins, Transcription factors; PSI: found in Plexins,
Semaphorins, Integrins; Sema: semaphorin domain.

crizotinib program developed by the French National Cancer Institute
performed biomarker testing to identify patients with molecular al-
terations targeted by crizotinib and enrolled them into a phase II study
of crizotinib [51]. Tumor samples of 1192 NSCLC patients were tested
for MET mutations (exons 14 and 16-19) using next-generation se-
quencing: 74 (6.2%) were positive and 28 enrolled in the study (25
patients had MET exon 14 skipping). In these 25 pretreated patients, an
encouraging overall response rate of 40% was reported. However, a
phase II trial of crizotinib in 26 patients with pretreated NSCLC with
MET amplification (n = 16) or MET exon 14 mutation (n = 10 [one
patient had both MET amplification and MET exon 14 mutation])
(METROS study, NCT02499614) recently reported limited benefit in
terms of objective response rate (ORR), progression-free survival, or
overall survival among patients with MET exon 14 skipping [52]. A
phase II study of crizotinib in Japanese patients with NSCLC harboring
MET alterations is ongoing (Co-MET; UMIN000031623). Nineteen pa-
tients with MET exon 14 skipping will be recruited in Cohort A; Cohort
B will recruit ten patients with tumors harboring MET amplification.
The primary endpoint is ORR [53].

The TKI cabozantinib, which inhibits multiple RTKs in addition to
MET, has also been reported to have efficacy in MET exon 14 skipping
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tumors [54,55]. An Italian phase II trial is currently evaluating cabo-
zantinib in patients with MET-amplified NSCLC or MET exon 14 skip-
ping NSCLC (CABIinMET study, NCT03911193). A phase II trial of the
multitargeted TKI merestinib (LY2801653) [56] in patients with ad-
vanced NSCLC with MET exon 14 skipping is ongoing (NCT02920996).
An overview of pivotal clinical trials of MET inhibitors in patients with
NSCLC harboring MET exon 14 skipping is presented in Table 2.

A multicenter retrospective analysis conducted to determine whe-
ther treatment with MET TKIs impacts survival in patients with NSCLC
harboring MET exon 14 skipping found that, of 27 patients with me-
tastatic disease who received at least one MET TKI (including crizotinib,
glesatinib, and capmatinib), median overall survival was 24.6 months.
A model adjusting for first- or second-line MET TKI therapy as a time-
dependent covariate showed that MET TKI treatment significantly
prolonged survival versus no MET TKI treatment (HR 0.11; 95% CI,
0.01-0.92; P = 0.04) [57]. Further data from 87 patients with MET
exon 14 skipping NSCLC reported a median overall survival of
25.3 months for those who had received a MET inhibitor (n = 36)
versus 10.9 months for those who had not (n = 51) [38]. MET exon 14
skipping NSCLC tumors can also express high levels of programmed cell
death-ligand 1 (PD-L1) [38,58,59]; however, notably, this does not
appear to translate into clinical benefit with PD-L1-targeted im-
munotherapies [58,59]. This finding, together with the evidence of
clinical activity of MET inhibitors, suggests that targeted therapy with
selective MET inhibitors is a more appropriate treatment choice than
immunotherapy in patients with NSCLC harboring MET exon 14 skip-
ping.

Given that MET exon 14 skipping alterations drive carcinogenesis
through MET activity in the absence of other oncogenic drivers, it is
likely that despite the lack of selectivity of the aforementioned TKIs,
MET inhibition is central to their activity in tumors harboring MET exon
14 skipping. However, appropriate trials of agents that are potent and
selective inhibitors of MET will confirm this.

Selective MET inhibitors are promising therapies for patients with
MET exon 14 skipping-positive tumors

MET-selective TKIs are attractive potential treatments for MET exon
14 skipping tumors because they target only the activity associated with
this primary driver. Thus, unlike non-selective MET inhibitors, they
cause little off-target toxicity. Reduced toxicity improves tolerability
and enables dosing at levels that cause profound inhibition of MET
kinase activity, thus maximizing efficacy. Based on this rationale, sev-
eral selective MET inhibitors are being investigated in patients with
MET exon 14 skipping lung tumors, including capmatinib, savolitinib,
and tepotinib (Table 1, Table 2).

Capmatinib (INC280) is an oral, adenosine triphosphate (ATP)-
competitive MET inhibitor that has shown potent and selective in-
hibitory activity against MET in vitro, as well as antitumor activity in
MET-dependent cell lines and in a MET-driven mouse xenograft model
[60,61]. A phase I study (NCT01324479) recruiting patients with ad-
vanced NSCLC and aberrant MET expression identified four patients
harboring MET exon 14 skipping. Of these, two patients had a con-
firmed partial response and one a complete response [62]. A current
phase II trial of capmatinib (GEOMETRY mono-1; NCT02414139) in-
cludes cohorts of patients with advanced EGFR wild-type, ALK re-
arrangement-negative NSCLC with MET alterations, including MET
exon 14 skipping, who are either treatment naive or have received 1-2
prior lines of therapy, but not with a MET inhibitor. Data from 97
capmatinib-treated patients with MET exon 14 skipping advanced
NSCLC, reported a higher ORR in treatment-naive patients (which in-
cluded patients with MET gene amplifications) than in the subgroup
who had received 1-2 previous lines of therapy. Additionally, pro-
gression-free survival was also higher in treatment-naive patients, while
duration of response was similar between groups [63]. Notwithstanding
these promising response results, longer-term data will be required to
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inform the ideal treatment sequence. Capmatinib was recently granted
breakthrough therapy and orphan drug designation for patients with
NSCLC harboring MET exon 14 skipping by the US FDA [64]. A phase II
study under an umbrella trial for NSCLC is ongoing in Korea in pre-
treated patients with NSCLC carrying MET exon 14 skipping alterations
who have not received more than two lines of prior systemic therapy
(STARTER_cMET study, NCT03693339). An additional phase II trial is
ongoing in patients with MET exon 14 mutation-positive NSCLC who
have received or refused prior platinum-containing chemotherapy and
received MET inhibitor therapy immediately prior to trial therapy
(NCT02750215). In patients with treatment-naive NSCLC harboring
MET exon 14 skipping, a randomized phase II trial is evaluating the
combination of capmatinib with immunotherapy (spartalizumab, an
anti-PD-1 antibody) compared with capmatinib alone (NCT04323436).

Savolitinib is an orally available, selective MET inhibitor that has
demonstrated inhibitory activity against cell lines with exon 14 skip-
ping mutations [65], and is being assessed in a phase II trial of patients
with locally advanced/metastatic MET exon 14 mutation-positive
NSCLC of sarcomatoid and other histologies (NCT02897479). Pre-
liminary data from 50 patients with MET exon 14 skipping mutation-
positive NSCLC showed an encouraging ORR [66].

Bozitinib (APL-101/PLB-1001, formerly CBT-101) is an ATP-com-
petitive, small-molecule oral MET inhibitor currently under investiga-
tion in phase I/II trials as a single agent in patients with solid tumors,
NSCLC, and glioblastomas, and in combination with PD-L1 inhibitors in
patients with hepatocellular carcinoma and renal cell carcinoma. The
drug has demonstrated anticancer effects in a variety of human xeno-
graft tumor models with MET dysregulation and has shown promise in
glioblastoma owing to its ability to cross the blood-brain barrier. The
safety and preliminary efficacy of the drug have been demonstrated in a
limited number of patients with chemotherapy-resistant, MET-altered
gliomas [67,68]. A phase II trial is evaluating bozitinib in patients with
NSCLC harboring MET exon 14 skipping in China (NCT04258033).

Tepotinib, an oral, ATP-competitive, and highly selective MET in-
hibitor, showed potent inhibitory activity against MET in cancer cell
lines, and antitumor activity in mouse xenograft models of human
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tumors, regardless of whether MET activation was HGF dependent or
independent [43]. A phase II study is ongoing, assessing tepotinib in
treatment-naive or previously treated patients with advanced NSCLC
harboring MET exon 14 skipping as detected by tissue or liquid biopsy
(VISION study, NCT02864992). The primary endpoint is ORR and
preliminary data has shown encouraging signs of activity [69]. The
Japanese Ministry of Health, Labour and Welfare approved tepotinib for
use in patients with advanced NSCLC harboring MET exon 14 skipping
in March 2020 [70], alongside Archer®MET companion diagnostic for
detection of MET exon 14 skipping [71]. In September 2019, tepotinib
received US FDA breakthrough therapy designation in patients with
metastatic NSCLC harboring MET exon 14 skipping alterations who
progressed following platinum-based cancer therapy [72].

Outstanding questions regarding MET inhibition in MET exon 14
skipping tumors

How do MET exon 14 mutations interact with other tumor aberra-
tions? MET exon 14 mutations are notable in that they appear to drive
tumors in the absence of other driver oncogenes but do co-exist with
mutations in KRAS, ROS1, and EGFR, likely as a result of low MET exon
14 mutant allele frequency in these tumors [26,32,38,73,74]. Genomic
profiling of 298 MET exon 14 NSCLC samples found concurrent MDM2
amplification in 35% of tumors [35]. In another study, overexpression
of mouse double minute 2 (MDM2) or p53 protein was found in nine
(60.0%) and two (13%) tumors, respectively [39]. Resistance to cri-
zotinib has also been shown to occur due to wild-type KRAS amplifi-
cation [75] and KRAS G12 mutations have been found in 4% of patients
with MET exon 14 mutations [76], suggesting this pathway could be a
resistance mechanism to MET TKI inhibitors [77]. Therefore, it may be
necessary to combine selective MET inhibitors with other targeted
therapies where co-mutations have the potential to confer resistance to
MET inhibitor monotherapy [74].

Has resistance to MET inhibitors been described in patients with
MET exon 14 mutation skipping? Impressive tumor responses to MET
inhibitors such as crizotinib, cabozantinib, tepotinib, and capmatinib
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Table 3

Comparison of assays for detecting MET exon 14 skipping used in pivotal trials in patients with NSCLC.

PlasmaSELECT™ 64

[110]

Oncomine Focus Assay

Archer® FusionPlex™ Guardant360® [108]
[109]

Lung [107]

Archer® LiquidPlex™

[106]

FoundationOne® CDx [105]

FoundationOne® Liquid [104]

Category

Liquid biopsy

Tumor biopsy

Liquid biopsy

Tumor biopsy

Tissue biopsy Liquid biopsy

Liquid biopsy

Biopsy type
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have been reported in NSCLC harboring MET exon 14 skipping
[16,26,45-48,54,69,78]. However, several resistance mechanisms have
been reported, including additional mutations in MET exon 14 [79,80],
upregulation of bypass signaling pathways, and/or the acquisition of
additional oncogenic mutations. A study of mechanisms of resistance to
the MET TKIs crizotinib and glesatinib reported acquired mutated MET
exon 14 allele amplification or MET tyrosine kinase domain secondary
site mutations and bypass track activation, including amplification of
wild-type KRAS, BRAF, and/or EGFR [81]. Interestingly, the same study
showed that one patient who acquired resistance to glesatinib through
mutated MET exon 14 allele amplification reported a confirmed partial
response after switching to crizotinib [81]. Another study of paired
tumor biopsies reported resistance acquired via additional MET
pathway alterations or via activation of other pathways, including
EGFR and RAS [82]. Assessment of cell-free circulating tumor DNA
from 289 patients with NSCLC harboring MET exon 14 skipping found
frequent RAS-MAPK pathway alterations were associated with a lower
response to MET TKIs [77]. This resistance to MET TKIs was overcome
by co-treatment with crizotinib and the MEK inhibitor trametinib. An-
other preclinical study, in which resistance was induced in a cell line
harboring MET exon 14 skipping by exposure to high levels of MET
TKIs, provided evidence that resistance to type I and II MET TKIs may
often be through different pathways [83].

Taken together, these findings suggest that mechanisms of re-
sistance to different MET inhibitors are complex and diverse, and may
vary due to differing mechanisms of action of MET inhibitors [41].
Clearly, novel therapeutic strategies will be needed to combat multiple
complex resistance mechanisms [81], possibly in the form of sequen-
cing or combination approaches [77,83].

What is the optimal position in the treatment sequence for selective
MET inhibitors for patients with NSCLC harboring MET exon 14 skip-
ping? Most patients treated with MET inhibitors in clinical studies will
have received prior therapy, although ongoing studies with capmatinib,
savolitinib, and tepotinib are also enrolling previously untreated pa-
tients. Data from capmatinib suggest the objective response could be
higher if MET inhibitors are used for first-line treatment [63]; however,
this was not observed in the studies with tepotinib [69] or savolitinib
[66]. Confirmation of whether selective MET inhibitors are most ef-
fective in first or later lines, and as monotherapy or in combination with
other therapies — including chemotherapy or immunotherapies (e.g.
programmed cell death-1/PD-L1 inhibitors) — will require dedicated
studies.

Challenges ahead for trials of MET inhibitors in patients with MET
exon 14 skipping tumors

A major challenge is to identify enough patients with MET exon 14
skipping for ongoing and planned trials. The relatively low incidence of
MET exon 14 mutations, estimated to be approximately 3% in NSCLC,
as well as additional criteria such as poor patient health and in-
appropriate clinical histories, limit the number of eligible patients.
Until recently, screening for MET exon 14 skipping was technically
challenging. Despite being appropriate for analyzing MET over-
expression [84], immunohistochemistry has proved unsuitable for de-
tecting MET exon 14 skipping, as, so far, anti-MET antibodies are not
able to distinguish the exon 14-skipped splice variant from wild-type
MET [85]. DNA- or RNA-based approaches are more appropriate. DNA-
based sequencing approaches are able to detect a range of genomic
changes in the MET gene (point mutations, insertions, or deletions), any
of which can interfere with the exon 14 splice sites [86] and lead to
exon 14 skipping. RNA-based approaches need only to detect the fusion
of exons 13 and 15 in the transcribed product [86]. As such, RNA in situ
hybridization is possible [85], although RT-PCR-based sequencing ap-
proaches are also commonly used [86,87]. However, high-quality RNA
is harder to obtain than DNA, as RNA is more susceptible to degradation
[86,88].
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Genomic analysis of resected tumor tissue has historically been the
standard of care for identifying guideline-recommended biomarkers in
metastatic NSCLC [89]. The presence of MET exon 14 skipping can now
be analyzed in circulating tumor DNA or RNA extracted from patient
plasma (‘liquid biopsies’). Indeed, liquid biopsies can overcome lim-
itations imposed by tumor inaccessibility and allow the impact of
therapies to be tracked over time [90-92]. Commercial liquid and tissue
assays are now readily available for detection of MET exon 14 skipping.
Assays are available that use both DNA sequencing and detection of
exon 13-15 fusion in mRNA; see Table 3 for an overview of assays used
in pivotal MET inhibitor NSCLC clinical trials. Other multi-gene assays
are also available, as well as single tests for MET exon 14 skipping (such
as NeoGenomics MET Exon 14 Deletion Analysis) [93].

The ongoing VISION trial of tepotinib is prospectively recruiting
patients with tumors that are positive for MET exon 14 as assessed by
liquid biopsy testing or tissue biopsy testing (NCT02864992). In addi-
tion to the diagnostic techniques described above, it would be useful to
identify clinicopathologic features that may help to characterize a pa-
tient population with MET exon 14 skipping, who would most likely be
amenable to treatment with selective MET TKIs. Numerous studies
suggest that patients with tumors harboring MET exon 14 mutations
tend to be of older age (median age 72-73 years in most studies)
[35,36,38,39,57,94-96]. Consequently, screening for MET exon 14
skipping in elderly patients may be particularly beneficial [97]. Like-
wise, MET exon 14 mutations appear to be enriched in tumors with
sarcomatoid carcinoma [35,36,57], and some studies suggest that they
are most commonly identified in females, non-smokers, and at an ear-
lier pathology stage [57,96]. The baseline characteristics of patients
with NSCLC harboring MET exon 14 skipping enrolled in pivotal clin-
ical trials for MET TKIs broadly reflect the characteristics described
above (Table 2). Patients in these trials were older in age (69-74 years)
and approximately 50% had a smoking history (36-62%), although
proportions of female:male patients were quite variable, with the cri-
zotinib and capmatinib trials enrolling more female patients than the
savolitinib and tepotinib trials.

Conclusions

MET has been pursued as a therapeutic cancer target for many
years, but phase III trials of MET inhibitors in patients with solid tu-
mors, including NSCLC, have been largely disappointing [98]. One
possible reason for trials failing to meet their efficacy endpoints is the
inclusion of patients with MET aberrations that are dispensable for
tumor growth and thus insensitive to MET inhibition. MET exon 14
mutations have been identified as primary oncogenic drivers, raising
the possibility that tumors with these specific mutations will be largely
sensitive to MET inhibitors, as supported by clinical evidence with non-
selective MET TKIs. If MET activity is a primary driver of MET exon 14
mutation-positive tumor growth, there is good reason to suppose that
selective MET inhibitors have the potential to deliver better efficacy
with a favorable safety profile.
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