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Elena López-Camacho, Andrea Zapater-Moros, Victoria Heredia, Miriam Cuatrecasas,
Pilar Garcı́a-Alfonso, Jaume Capdevila, Carles Conill, Rocı́o Garcı́a-Carbonero, Ricardo Ramos-Ruiz,
Claudia Fortes, Carlos Llorens, Paolo Nanni, Juan Ángel Fresno Vara, and Jaime Feliu
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In Brief
Anal squamous cell carcinoma is
a rare tumor and the treatment
standards have not suffered any
improvement since 1970s. For
this reason, a molecular charac-
terization of the disease is still
necessary. In this work, two mo-
lecular groups with a different
protein and genetic profile were
described. Additionally, some of
these differences suggested bio-
logical processes that may be
therapeutic targets.
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• Difference in the frequency of ATM variants, related to PPAR inhibitors.
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Genetic Profile and Functional Proteomics of
Anal Squamous Cell Carcinoma: Proposal for a
Molecular Classification*□S

Lucía Trilla-Fuertes‡§§§§§, Ismael Ghanem§ §§§§§, Angelo Gámez-Pozo¶,
Joan Maurel�, Laura G-Pastrián**‡‡, Marta Mendiola‡‡§§, Cristina Peña**,
Rocı́o López-Vacas¶, Guillermo Prado-Vázquez‡, Elena López-Camacho¶,
Andrea Zapater-Moros¶, Victoria Heredia§§¶¶, Miriam Cuatrecasas��,
Pilar Garcı́a-Alfonso‡‡‡, Jaume Capdevila§§§, Carles Conill¶¶¶,
Rocı́o Garcı́a-Carbonero���, Ricardo Ramos-Ruiz‡‡‡‡, Claudia Fortes§§§§,
Carlos Llorens¶¶¶¶, Paolo Nanni§§§§, Juan Ángel Fresno Vara¶§§, and
Jaime Feliu§ §§����‡‡‡‡‡

Anal squamous cell carcinoma is a rare tumor. Chemo-
radiotherapy yields a 50% 3-year relapse-free survival rate
in advanced anal cancer, so improved predictive markers
and therapeutic options are needed. High-throughput pro-
teomics and whole-exome sequencing were performed in
46 paraffin samples from anal squamous cell carcinoma
patients. Hierarchical clustering was used to establish
groups de novo. Then, probabilistic graphical models were
used to study the differences between groups of patients at
the biological process level. A molecular classification into
two groups of patients was established, one group with
increased expression of proteins related to adhesion, T
lymphocytes and glycolysis; and the other group with in-
creased expression of proteins related to translation and
ribosomes. The functional analysis by the probabilistic
graphical model showed that these two groups presented
differences in metabolism, mitochondria, translation, splic-
ing and adhesion processes. Additionally, these groups
showed different frequencies of genetic variants in some
genes, such as ATM, SLFN11 and DST. Finally, genetic and

proteomic characteristics of these groups suggested the
use of some possible targeted therapies, such as PARP
inhibitors or immunotherapy. Molecular & Cellular Pro-
teomics 19: 690–700, 2020. DOI: 10.1074/mcp.
RA120.001954.

Anal squamous cell carcinoma (ASCC)1 is a relatively rare
cancer. In the United States there are 8000 new estimated
cases per year, accounting for �2.7% of all gastrointestinal
cancers. Of these, more than 1000 cases will result in death
(1).

Since the 1970s, the standard treatment has consisted of
the combination of 5-fluorouracil (5FU), mitomycin C or cis-
platin and radiotherapy (2). This treatment is particularly ef-
fective in T1/T2 tumors, achieving complete regression in
80–90% of cases. However, in advanced anal cancers (T3–4
or N�), the disease-free survival (DFS) rate is only around
50% (3). Therefore, because of the lack of advances in the last
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years, new therapeutic strategies are needed to improve
these outcomes.

Whole-exome sequencing (WES) focused on the identifica-
tion of disease-causing genes is now being implemented into
clinical practice (4). The first work that announced entire ex-
ome sequencing was published by Ng et al. (5). Since then,
personalized medicine has focused on identifying the cause
of rare diseases and cancers.

With the recent improvements in mass-spectrometry (MS)
techniques, high-throughput proteomics has made it possible
to identify thousands of proteins (6). Proteins are the effectors
of biological processes, being closer to the phenotype than
genes or transcripts. On the other hand, probabilistic graph-
ical models (PGMs) were successfully used in previous stud-
ies to characterize tumors from a functional perspective
(7–9). Moreover, when used in combination, proteomics and
genomics provide complementary information.

Previous studies in ASCC were focused in the character-
ization of genetic variants in this disease using next-genera-
tion sequencing techniques. The most frequent mutated
genes, such as PIK3CA, FBXW7, FAT1 or ATM, were charac-
terized (10–13). On the other hand, Herfs et al. used MS
proteomics in microdissected anal samples to establish dif-
ferential protein expression patterns depending of the loca-
tion (squamous or transitional) (14). However, until date, a
molecular classification of ASCC has not been established

In this study, we combined WES with high-throughput pro-
teomics to further characterize a cohort of 46 ASCC tumors.
This is the first time that a combined study of these charac-
teristics in ASCC has been done. Genomics provides infor-
mation about the genetic causes of disease and proteins are
the ultimate effectors of biological processes. Therefore, a
study of these two -omics allows us to obtain a broader
picture of the molecular features of ASCC tumors.

EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—Forty-six paraffin
samples from ASCC patients were analyzed by whole-exome se-
quencing and by mass-spectrometry proteomics. Neither replicate
analyses nor control normal tissue samples were necessary because
of the nature of the samples and the objectives of the study. We used
a large cohort of clinical samples so replicates are not necessary. In
addition, this study was focused in the molecular characterization of
the disease instead of the carcinogenesis mechanisms (in which
comparing normal and tumor tissues are necessary); therefore, nor-
mal tissue cannot be used as a control.

Patient Cohort—Forty-six formalin-fixed, paraffin-embedded (FFPE)
samples from patients diagnosed with ASCC, obtained before any

treatment, were analyzed by WES and MS proteomics. The study was
approved by the Ethical Committee of Hospital Universitario La Paz.
Informed consent was obtained for all patients in the study. Samples
were reviewed by an experienced pathologist and all the samples
included at least 70% invasive tumor cells. Patients were required to
have a histologically-confirmed diagnosis of ASCC, be 18 years of
age or older; have an Eastern Cooperative Oncology Group perform-
ance status (ECOG-PS) of 0 to 2; have received no prior radiotherapy
or chemotherapy for this malignancy and present with no metastasis.
Demographic information related to the tumor and the treatments was
collected. Human papilloma virus (HPV) infection was determined by
CLART® HPV2 (Genomica, Madrid, Spain).

DNA Isolation—One 10 �m section from each FFPE sample was
deparaffinized and DNA was extracted using GeneRead DNA FFPE
Kit (Qiagen, Hilder, Germany), in accordance with the manufacturer’s
instructions. Once eluted, the DNA was frozen at �80 °C until use.

Protein Isolation—Ten to thirty slides of 3 �m (depending on the
tumor surface area) were used for protein isolation. Proteins were
extracted from FFPE samples as previously described (15). Briefly,
FFPE sections were deparaffinized in xylene and washed twice with
absolute ethanol. Protein extracts were prepared in a 2% SDS buffer
by a protocol based on heat-induced antigen retrieval. Protein con-
centration was measured using the MicroBCA Protein Assay Kit
(Pierce-Thermo Scientific, Massachusetts). Protein extracts (10 �g)
were digested with trypsin (1:50) and SDS was removed from the
digested lysates using Detergent Removal Spin Columns (Pierce).
Peptides were desalted using self-packed C18 stage tips, dried and
resolubilized with 10 �l of 3% acetonitrile, 0.1% formic acid.

Whole-exome Sequencing Experiments—WES from 46 ASCC
FFPE samples was performed. The isolated DNA was quantified by
Picogreen and mean size was controlled by gel electrophoresis.
Genomic DNA was fragmented by mechanical methods (Bioruptor) to
a mean size of �200 bp. At that point, DNA samples were repaired,
phosphorylated, A-tailed and ligated to explicit connectors, trailed by
PCR- mediated labeling with Illumina-explicit sequences and sample-
specific barcodes (Kapa DNA library age unit).

Exome capture was performed utilizing the VCRome framework
(capture size of 37 Mb, Nimblegen, Roche, Switzerland) under a
multiplexing of 8 samples for every capture response. Capture was
performed entirely in accordance to manufacturer’s instructions. After
capture, libraries were purified, quantified and titrated using Real
Time PCR before sequencing. Samples were then sequenced to an
approximate coverage of 4.5 Gb per sample in Illumina-NextSeq
NS500 (Illumina Inc., Cambridge, UK) utilizing 150 cycles (2 � 75)
High Output cartridges.

Raw data files were available in Sequence Read Archive (SRA,
https://www.ncbi.nlm.nih.gov/sra) under the name PRJNA573670.

Bioinformatics Analyses of Whole-exome Sequencing Data—The
quality of the WES experiments was verified using FASTQC (http://
www.bioinformmaticsbabraham.ac.uk/projects/fastqc). First, primers
were removed using Cutadapt. Then, FASTQ files were filtered by
quality using PrinSeq. Both tools are available in GPRO tool (16).
Sequence alignment was performed using the human genome h19 as
the reference and BWA tools (17), Samtools (18) and Picard Tools
(http://picard.sourceforge.net). Variant calling was performed using
the MuTect tool from the GATK4 package (19) combined with Pica-
rdTools, first, to create a panel of normal samples (PON) and second,
to perform the variant calling (20). The PON was built using 11
samples from Iberian exomes from a 1000 genome database (http://
www.ncbi.nlm.nih.gov/sra/).

Finally, variants were annotated using Variant Effect Predictor
(VEP) (21). The information about the genetic variants provided by
VEP was used to filter the genetic variants. The filtering criteria were:
a frequency in the general population, according gnomAD database,

1 The abbreviations used are: ASCC, anal squamous cell carci-
noma; WES, whole-exome sequencing; MS, mass-spectrometry;
5FU, 5-fluorouracil; DFS, disease-free survival; FFPE, formalin-fixed
paraffin-embedded; ECOG-PS, eastern cooperative oncology group
performance status; PON, panel of normal samples; VEP, variant
effect predictor; PGM, probabilistic graphical model; SAM, signifi-
cance analysis of microarrays; HPV, human papillomavirus; PARPi,
PPAR inhibitors.
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of less than 1%, a high or moderate impact, and the presence of a
variant of this gene in our cohort in at least 10% of the patients.

Liquid Chromatography-Mass Spectrometry Analysis—MS analy-
sis was performed using a Q Exactive HF-X mass spectrometer
(Thermo Scientific) equipped with a Digital PicoView source (New
Objective) and coupled to a M-Class UPLC (Waters, Massachusetts).
Solvent composition at the two channels was 0.1% formic acid for
channel A and 0.1% formic acid, 99.9% acetonitrile for channel B. For
each sample 3 �l of peptides were loaded on a commercial MZ
Symmetry C18 Trap Column (100Å, 5 �m, 180 �m � 20 mm, Waters)
followed by nanoEase MZ C18 HSS T3 Column (100Å, 1.8 �m, 75
�m� 250 mm, Waters). The peptides were eluted at a flow rate of 300
nL/min by a gradient from 8 to 27% B in 85 min, 35% B in 5 min and
80% B in 1 min. Samples were acquired in a randomized order. The
mass spectrometer was operated in data-dependent acquisition
mode (DDA), acquiring full-scan MS spectra (350–1400 m/z) at a
resolution of 120,000 at 200 m/z after accumulation to a target value
of 3,000,000, followed by HCD (higher-energy collision dissociation)
fragmentation on the twenty most intense signals per cycle. HCD
spectra were acquired at a resolution of 15,000 using normalized
collision energy of 28 and a maximum injection time of 22 ms. The
automatic gain control (AGC) was set to 100,000 ions. Charge state
screening was enabled. Singly, unassigned, and charge states higher
than seven were rejected. Only those precursors with an intensity
above 110,000 were selected for MS/MS. Precursor masses previ-
ously selected for MS/MS measurement were excluded from further
selection for 30 s, and the exclusion window was set at 10 ppm. The
samples were acquired using internal lock mass (22) calibration on
m/z 371.1012 and 445.1200.

The MS proteomics results were handled using the local laboratory
information management system (LIMS) (22) and all relevant data
have been deposited to Chorus under the project name “Anal squa-
mous cell carcinoma proteomics, Project ID: 1578.”

Protein Identification and Label-free Protein Quantification—The
acquired raw MS data was processed by MaxQuant (version 1.6.2.3),
followed by protein identification using the integrated Andromeda
search engine (23). Spectra were searched against a Uniprot refer-
ence proteome (taxonomy 9606, canonical version from 2016-12-09,
20,913 entries), concatenated to its reversed decoyed fasta database
and common protein contaminants. Methionine oxidation and N-ter-
minal protein acetylation were set as variable modifications. None
fixed modifications were used. Enzyme specificity was set to tryp-
sin/P allowing for a minimal peptide length of 7 amino acids and a
maximum of two missed-cleavages. MaxQuant Orbitrap default
search settings were used. Mass tolerance for precursor and frag-
ment ions was fixed to 20 ppm. The maximum false discovery rate
(FDR) was set to 0.01 for peptides and 0.05 for proteins. Label-free
quantification was enabled and a 2 min window for match between
runs was applied. In the MaxQuant experimental design template,
each file is kept separate in the experimental design to obtain indi-
vidual quantitative values.

As quality criteria, the detectable measurement in at least 75% of
the samples and the presence of two unique peptides were applied.
Log2 of the data was calculated and missing values were imputed to
a normal distribution using Perseus software (24).

Statistical Analyses—Statistical analyses were performed in Graph-
Pad Prism 6 and SPSS IBM Statistics 20. Network analyses were
performed using Cytoscape software (25). Hierarchical cluster and
Significance Analysis of Microarrays (SAM) were performed using
MeV software (26). First, all the identified proteins were used to build
a hierarchical cluster based on Pearson correlation. In this hierarchi-
cal cluster, two different groups were identified. Then, a Significance
Analysis of Microarrays was used to determine those proteins that
were differentially expressed between the two identified groups of

patients. SAM analysis allows the identification of differential proteins
between groups by a t test corrected by permutations over the
number of samples. The significance was determined using the False
Discovery Rate (FDR) (27). The Genomics of Drug Sensitivity in Can-
cer database (https://www.cancerrxgene.org/) was used to find pos-
sible therapeutic targets. p values are two-sided and considered
statistically significant under 0.05.

Tumor Infiltrating Lymphocyte Quantification—For the quantifica-
tion of tumor infiltrating lymphocytes (TILs), hematoxylin-eosin prep-
arations were evaluated for those samples in which they were avail-
able. Percentage of TILs was blind quantified by a person that did not
know clinical data and proteomic group classification.

Samples were classified according the percentage of lymphocytes
counted in these preparations into two groups: 0–25% and 25–
75%of TILs (28). In general, none of the samples presented a per-
centage of TILs higher than 75%.

Network Construction and Functional Node Activity—With the aim
of studying proteomics data from a functional point of view, proba-
bilistic graphical models (PGMs) compatible with high-dimensional
data, were used. Briefly, grapHD (29) and R v3.2.5 were used to
generate the PGM. For the construction of this PGM proteomics
expression data without any a priori information was used, and cor-
relation was employed as associative measurement. The PGM net-
work was built in two steps: first, the spanning tree with maximum
likelihood was found and, then, the edges was chosen based on the
reduction of the Bayesian Information Criteria (BIC) and the preser-
vation of the decomposability of the graph (30). The resulting network
was analyzed to define a functional structure by gene ontology anal-
yses, as in previous works (7–9). Briefly, the network was split in
branches. These branches were analyzed by gene ontology analyses
which allow us assigning an overrepresented function for each
branch, thereby determining different functional nodes in the network.
Gene ontology analyses were performed using DAVID 6.8 webtool
(31) using “homo sapiens” as background and GOTERM-FAT, Bio-
carta and KEGG as categories.

Once each branch had been assigned a function, functional node
activities were calculated as the mean of the proteins of each branch
related to the main function of that branch (8, 9). Then, comparisons
between groups using Mann-Whitney test were done.

Metabolic Modeling and Estimation of Tumor Growth Rate—Flux
Balance Analysis is a method used to model the flow of metabolites
through biochemical networks (32). It allows the growth rate or pro-
duction rate of a given metabolite to be estimated using as input gene
or protein expression data. In this study we used the whole human
reconstruction Recon2 and the biomass reaction included in this
model as the objective function and as representative of tumor growth
(33). Proteomics data was introduced into the model to make accu-
rate predictions by solving Gene-Protein-Reaction rules (GPRs),
which contain the relationships between genes and enzymes, using a
modified algorithm of Barker et al. (34) and a modified E-flux (7, 35).
Flux Balance Analysis calculations were performed using the COBRA
Toolbox library, available for MATLAB (36).

RESULTS

Patient Cohort—Forty-six patients diagnosed with non-
metastatic ASCC were recruited for this study. Twenty-eight
patients came from the VITAL clinical trial (GEMCAD-09-02,
NCT01285778), treated with panitumumab, 5FU, Mitomycin
C, and radiotherapy. The other 18 patients were included from
the routine clinical practice at Hospital Universitario La Paz
and Hospital Clinic and were treated with cisplatin-5FU or
Mitomycin C-5FU, and concomitant radiotherapy.
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For the survival analyses, 4 patients that could not receive
chemo-radiotherapy were excluded (two of them had stage I
anal carcinomas, and the other two had stage III tumors). The
median follow-up was 33.18 months (5.53–116.4) and there
are 13 relapse events. All clinical characteristics are shown in
Table I.

Whole-exome Sequencing Experiments—Forty-six FFPE
samples were analyzed by WES. The mean coverage of the
samples was 42.6x, except for one sample that presented a
coverage of 3.57x. This sample was dismissed from the sub-
sequent analyses. Once this sample was dismissed, all the
samples presented a mapping efficiency of 90–98%, except
for one sample (with a mapping efficiency of 75.4%). Human
exome has � 195,238 exonic regions, of which only 23,021
(11.21% of the human exome) have not been mapped in any
sample.

After VEP analysis and filtering, 382 genes that presented a
genetic variant with high or moderate impact in at least 10%
of our cohort were identified (supplemental Table S1). These
genes were mostly related to DNA repair, chromatin binding
and focal adhesion processes. PIK3CA was mutated in the
40% of the patients of our cohort, FBXW7 in 16%, FAT1 in
18%, and ATM was mutated in 27% of the patients. Fig. 1
summarizes the high and moderate impact alteration land-
scape in our ASCC cohort.

Proteomics Experiments—After dismissing one sample in
the WES experiments, 45 FFPE samples were analyzed by
MS and 6035 proteins were identified. After applying quality
criteria (detectable measurement in at least 75% of the sam-
ples and at least two unique peptides), 1,954 proteins were
used for the subsequent analyses (supplemental Table S2).

De Novo Identification of Groups Based on Differential Pro-
teomics Profiles—With the aim of defining de novo molecular
groups of patients, a hierarchical cluster was used. Two dif-
ferent molecular groups of patients were obtained based on
their protein profiles (supplemental Fig. S1). After the identi-
fication of the two groups of patients, a Significance Analysis
of Microarrays (SAM) was performed to define the differential
proteins between these two groups, yielding 318 proteins
which were differentially expressed between these groups
(supplemental Table S3). Group 1 showed underexpression of
proteins related to translation and ribosomal processes and
overexpressed proteins related to metabolism, specially
glycolysis, T lymphocytes, and adhesion. On the other
hand, Group 2 showed underexpression of proteins related
to metabolism, T lymphocytes, and adhesion processes and
overexpressed proteins related to translation and ribo-
somes (Fig. 2).

With respect to the clinical data distribution between these
two groups, both were comparable; there were no significant
differences in the distribution of clinical parameters (supple-
mental Table S4). In addition, there were not significant dif-
ferences in disease-free survival or overall survival (supple-
mental Fig. S2).

A search in the Genomics of Drug Sensitivity in Cancer
database (https://www.cancerrxgene.org/) suggested RAC1
(overexpressed in Group1 and underexpressed in Group 2,
supplemental Fig. S3) as a possible therapeutic target. The
drug associated with this gene is EHT-1864.

Tumor Lymphocyte Infiltration—The two proteomics groups
of patients presented a differential expression in proteins
related to T lymphocytes. For this reason, TILs were quanti-
fied in each sample in order to establish if a relationship exists
between the expression of these proteins and tumor lympho-
cyte infiltration. It was possible to quantify TILs on 39 of the 45
ASCC samples. For Group 1, 13 samples presented a per-
centage of TILs between 0 to 25%, and 11 samples showed
a percentage of TILs between 25 to 75%. On the other hand,
in Group 2, 13 samples showed an infiltration between 0 to
25% and only two samples presented a percentage of TILs
between 25 to 75% (Fig. 3). Therefore, Group 2, which is the
group that underexpressed proteins related to T lymphocytes,
presented a lower percentage of TILs in their samples.

Functional Characterization of Proteomics Data—To study
proteomics data from a functional perspective, a probabilistic
graphical model network was created using the 1,954 pro-
teins obtaining from the MS experiments with no other a priori
information. The resulting network was looking for functional
structure and it was divided into 10 functional nodes, one of

TABLE I
Patient characteristics

Number of
patients

Percentage

Number of patients 46 100%
Age at diagnosis (median and

range)
61 (41–86)

Age at diagnosis (mean) 61
Gender

Male 23 50%
Female 23 50%

HPV
16 26 57%
Other subtypes 8 17%
Negative 6 13%
Unknown 6 13%

HIV
Positive 2 4%
Negative 44 96%

Lymph node status
N0 19 42%
N positive 24 54%
Unknown 3 4%

TNM stage AJCC 6th edition
I 3 7%
II 16 35%
III 27 58%

Treatment
Chemoradiotherapy 14 31%
Chemoradiotherapy-Panitumumab 28 60%
Other 4 9%
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them with an overrepresentation of two biological functions
(metabolism and mitochondria) (Fig. 4).

Then, functional node activities were used, as in previous
works (7–9), to study the differences in biological processes
between the two identified groups of patients. There were
significant differences between the two groups in membrane
category, in the two functional nodes related to metabolism,
and in the functional nodes associated with adhesion, ribo-
somes, translation, extracellular matrix and splicing (Fig. 5).
This analysis offered complementary information to classical
analyses.

Metabolism Nodes—We found two different nodes related
to metabolism, both of which showed a higher expression in
Group 1. The metabolism 1 node was formed by 158 proteins,
mostly related to mitochondrial metabolism, especially the
tricarboxylic acid cycle. Among them, three were also identi-
fied as differentially expressed by the SAM analysis: P09622
(DLD), P06744 (GPI) and P14550 (AKR1A1). The metabolism 2
node included 104 proteins related to mitochondria and me-
tabolism, especially oxidative phosphorylation, such as
P04406 (GAPDH), P06733 (ENO1), P07954 (FH), or Q9UI09
(NDUFA12).

Adhesion Node—The adhesion node showed a higher ex-
pression in Group 1. The adhesion node included 654 pro-
teins, 25 of them classified by SAM as differentially expressed
between the two groups of patients.

Genetic Variants with Different Frequencies Between the
Two Groups of Patients Established by Proteomics—The fre-
quencies of genetic variants for each gene were compared
with determine whether the groups of patients defined using

proteomics data also showed differences in genetic variants.
In general, the distribution of the mutations of each gene
across the two proteomic groups was homogeneous. Only 12
genes presented different frequencies of genetic variants be-
tween the two groups (Fig. 6). It is remarkable the presence of
ATM, which presented missense variants.

Tumor Growth Rate Predicted by Metabolic Modeling—
Finally, Flux Balance Analysis allows for the comparison of the
estimated tumor growth rate between groups of tumors. The
tumor growth rate predicted for Group 1 was significantly
higher than the tumor growth rate predicted for Group 2 (Fig.
7). Therefore, Group 1 tumors seem to be more proliferative
than tumors of Group 2.

DISCUSSION

ASCC is an infrequent tumor. With no targeted therapy yet
established, the molecular characterization of these tumors
is still necessary. In this study, we combined the two
main -omics, WES and proteomics, to further characterize a
cohort of 46 patients diagnosed with primary ASCC. To our
knowledge, this is the first study combining WES and pro-
teomics in ASCC. The results of this study allow us to estab-
lish two molecular subgroups in ASCC with different molec-
ular features. Moreover, the analyses of these two groups
pointed out some drug-susceptible processes, such as me-
tabolism, and suggested other possible therapeutic targets,
like ATM and its relationship with PARP inhibitors (PARPi).

Previous studies have analyzed both primary and metastatic
ASCC paraffin samples using WES or gene panels (10–13). A
previous study using proteomics data to characterize different

FIG. 1. High and moderate impact genetic variants located in genes mutated in at least 20% of the ASCC patients of this cohort.
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locations of anal cancer was also existed (14). However, this
is the first study that performs proteomics experiments in
localized ASCC samples and combines proteomics data with

WES information. Previous WES studies served to identify fre-
quently-occurring mutations in this disease, including mutations
in the PIK3CA, FBXW7, FAT1 and ATM genes (11–13). In our

cohort, PIK3CA presented a genetic variant with a high or
modifier impact in 40% of the patients, FBXW7 in 16%, FAT1 in
18%, and ATM in 27% of the patients. The mutation landscape
identified in these tumors was mostly related with DNA repair
and chromatin processes.

On the other hand, using proteomics data and HCL, it was
possible to establish two different molecular groups of pa-
tients. Differential proteins were mainly related to the metab-
olism of glucose, translation and ribosomes, tumor lympho-
cytes and adhesion. Although these molecular groups have
not been associated with any clinical or prognostic features,
these processes may be relevant in the development of new
therapeutic strategies. For instance, those tumors that over-

FIG. 2. Significance Analysis of Microarrays identified 318 differential proteins between two groups of ASCC patients. Green �
underexpressed. Red � overexpressed. In green, Group 1. In blue, Group 2.

FIG. 3. Number of patients in each proteomics group classified
according their TILs.
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expressed proteins related to glycolysis may be candidates
for drugs targeting metabolism such as metformin, which has
been shown to have cytostatic effects on other tumors, such
as breast or bladder carcinoma (7). On the other hand, one of
the main differences between these two groups is that Group
1 had a higher expression of proteins related to T lympho-
cytes. With the bloom of immunotherapies, immune proteins
have acquired great relevance. Therefore, this group of pa-
tients may be good candidates for immunotherapy. In fact,
nivolumab has been reported to be an effective therapy in
metastatic ASCC and its efficacy is related to the presence of
cytotoxic T cells (37). Moreover, pembrolizumab has demon-
strated its antitumor activity in PD-L1-positive advanced
ASCC (38). Strikingly, the two proteomics groups presented a
different infiltration of lymphocytes, being Group 2 (which
underexpressed proteins related to T lymphocytes) the group
with a lower percentage of TILs in their samples.

On the other hand, the search in Genomics of Drug Sensi-
tivity in Cancer database to establish possible therapeutic
targets suggested RAC1 (overexpressed in Group 1 and un-
derexpressed in Group 2) as a potential therapeutic target.
RAC1 has as associated drug, EHT-1864, which affects the
cytoskeleton (39).

In addition, MS experiments and PGMs allow for the func-
tional characterization of these two groups of patients, offer-
ing complementary information about the relevance biological
processes involved in the disease. In this functional analysis,

differences in metabolism were confirmed. There were also
differences at the mitochondria level, which is the target for
metformin. Metabolism nodes showed a higher expression in
Group 1. P06744 (GPI, glucose 6-phosphate isomerase), in-
cluded in the metabolism 1 node, is the enzyme that converts
glucose -phosphate into fructose 6-phosphate and a higher
expression has been associated with tumorigenesis and poor
prognosis in gastric cancer (40).

The adhesion node also had a higher expression in Group 1
and contained 25 proteins identified by SAM as differentially
expressed. P46940 (IQGAP1) has been associated with poor
prognosis in head and neck squamous cell carcinoma (41)
and has also been associated with response to chemo-radio-
therapy in rectal adenocarcinomas (42). P27797 (CALR) in-
duces an immune response in esophageal squamous cell
carcinoma (43). P08133 (ANXA6) promotes EGFR deactiva-
tion (44). P62829 (RPL23) negatively regulates apoptosis and
inhibits growth in colorectal cancer (45). On the other hand,
RPL23 has been identified as an oncogene in head and neck
squamous cell carcinoma (46). O43707 (ACTN4) increases
cell motility and invasion in colorectal cancer (47). Previous
studies have described how P84077 (ARF1) forms a complex
with EGFR and promotes invasion in head and neck squa-
mous cell carcinoma (48). P35579 (MYH9) plays an important
role in adhesion and migration, and its overexpression is
correlated with metastasis in colorectal cancer through the
MAPK pathway (49). Aberrant activity of P63000 (RAC1),

FIG. 4. Functional network created using the proteomics data from the ASCC patients. Ten nodes with different biological functions
were identified.
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which is involved in metastasis and proliferation, is a hallmark
in cancer, (50). At the same time, O75131 (CPNE3) promotes
cell migration through RAC1 (51). Finally, P61586 (RHOA), a
tumor suppressor gene, plays a relevant role in colorectal
cancer, being associated with metastasis and is deactivated
in a significant number of colorectal tumors (52). In conclu-
sion, the majority of the proteins included in this adhesion
node play well-established roles in metastasis processes.

Moreover, the combination of the proteomics and genetic
variants information showed that the two molecular groups

defined by proteomics also had a different mutational profile.
Group 2 showed a higher frequency of ATM genetic variants.
Previous studies have described a high response rate to
PARPi, as olaparib, in prostate tumors with mutations in ATM
(53). Therefore, Group 2 patients may also be candidates for
the treatment with PARPi.

In addition, FBA predicted a higher tumor growth rate for
Group 1 than for Group 2. It may be possible that, given their
higher proliferation, the tumors of Group 1 may also be more
responsive to chemotherapy.

FIG. 5. Functional node activities between the two proteomic groups. ****: p � 0.0001; ***: 0.0001 �p � 0.001; **: 0.01�p � 0.05. G1,
Group 1; G2, Group 2.
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This study has some limitations. The results need to be
validated in an independent cohort. The information in ASCC
is scarce so a prospective validation will be needed. The
number of proteins detected by MS still needs technical im-
provement to be at the same level as genomics. However,
proteomics offers a more direct measurement of the effectors
of biological processes. Finally, a consensus analysis pipeline
to apply in cancer sequencing data is still necessary.

In conclusion, two different molecular groups of patients
have been proposed based on proteomics expression. This
may be the first step toward a personalized therapy approach
in ASCC. In addition, some possible targeted therapies, such
as PARPi or immunotherapy, according to the molecular fea-
tures (genetic and protein-based) defined in the two proteom-
ics groups were suggested.
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de Muga, S., Reverter, M., Alvarez-Guaita, A., Monastyrskaya, K.,
Hughes, W. E., Swarbrick, A., Tebar, F., Daly, R. J., Enrich, C., and
Grewal, T. (2013) Annexin A6 is a scaffold for PKC� to promote EGFR
inactivation. Oncogene 32, 2858–2872

45. Qi, Y., Li, X., Chang, C., Xu, F., He, Q., Zhao, Y., and Wu, L. (2017)
Ribosomal protein L23 negatively regulates cellular apoptosis via the
RPL23/Miz-1/c-Myc circuit in higher-risk myelodysplastic syndrome.
Sci. Rep. 7, 2323

46. Russo, N., Wang, X., Liu, M., Banerjee, R., Goto, M., Scanlon, C., Metwally,
T., Inglehart, R. C., Tsodikov, A., Duffy, S., Van Tubergen, E., Bradford,
C., Carey, T., Wolf, G., Chinnaiyan, A. M., and D’Silva, N. J. (2013) A
novel approach to biomarker discovery in head and neck cancer using an
autoantibody signature. Oncogene 32, 5026–5037

47. Honda, K., Yamada, T., Hayashida, Y., Idogawa, M., Sato, S., Hasegawa,
F., Ino, Y., Ono, M., and Hirohashi, S. (2005) Actinin-4 increases cell
motility and promotes lymph node metastasis of colorectal cancer. Gas-
troenterology 128, 51–62

48. He, L., Gao, L., Shay, C., Lang, L., Lv, F., and Teng, Y. (2019) Histone
deacetylase inhibitors suppress aggressiveness of head and neck squa-
mous cell carcinoma via histone acetylation-independent blockade of
the EGFR-Arf1 axis. J. Exp. Clin. Cancer Res. 38, 84

49. Wang, B., Qi, X., Liu, J., Zhou, R., Lin, C., Shangguan, J., Zhang, Z., Zhao,
L., and Li, G. (2019) MYH9 promotes growth and metastasis via activa-
tion of MAPK/AKT signaling in colorectal cancer. J. Cancer 10, 874–884

50. Kazanietz, M. G., and Caloca, M. J. (2017) The Rac GTPase in cancer: from
old concepts to new paradigms. Cancer Res. 77, 5445–5451

51. Ahmat Amin, M. K. B., Shimizu, A., Zankov, D. P., Sato, A., Kurita, S., Ito,
M., Maeda, T., Yoshida, T., Sakaue, T., Higashiyama, S., Kawauchi, A.,
and Ogita, H. (2018) Epithelial membrane protein 1 promotes tumor
metastasis by enhancing cell migration via copine-III and Rac1. Onco-
gene 37, 5416–5434

52. Dopeso, H., Rodrigues, P., Bilic, J., Bazzocco, S., Cartón-García, F.,
Macaya, I., de Marcondes, P. G., Anguita, E., Masanas, M., Jiménez-
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