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1. One-stage design with binary outcomes 

The hypotheses of a superiority analysis about the true response rate (RR) (p) for a single arm 

design are: 

H0: p ≤ p0,          (eq. 1) 

H1: p ≥ p1,           (eq. 2) 

where “p0” represents the pre-specified fixed null response probability, which can be given by 

the historical RR of an active control treatment; and “p1” is the minimum desired response 

probability required to progress the treatment to a subsequent trial phase.[1] 

For a specified type I error rate α, the rejection value α is defined as the smallest number 

satisfying the following: 

B(a|n, p0) ≥ 1- α         (eq. 3) 

And the power should be calculated by: 

1 - β = 1 - B(a|n, p1)         (eq. 4) 



 2 

where “a” is the expected number of responding patients, “n” is the expected number of 

patients included in the study and “s” represents the observed number of responding patients. 

The cumulative distribution function and the probability mass function (PMF) are defined as 

follows: 

B(s|n, p) = ∑ 𝑏(𝑖|𝑛, 𝑝)𝑠
𝑖=0 ;        (eq. 5) 

and 

b(s|n,p) = (
𝑛
𝑠

)p
s
 (1 - p)

n-s
         (eq. 6) 

respectively.[2] 

Accordingly, the study will achieve a positive finding when “p” will be higher than “p0” and 

when significance level evaluated by binomial test will be ≤ α. Although “p” may not be 

higher than p1. 

 

2. Non-inferiority (NI) analysis 

The goal of NI analysis is to show that the effect of the test compound (p) is not inferior to 

the effect of the active control (p0) by a specified amount, also known as the NI margin 

(NIM). The null and alternative hypotheses should be defined as follows [3]: 

H0: p0 – p ≥ NIM (p is inferior to the control (p0) by NIM or more);  (eq. 7) 

Ha: p0 – p < NIM (p is inferior to the control (p0) by less than NIM).  (eq. 8) 

Although the NI margin used in a trial can be no higher than the entire assumed effect of the 

active control against placebo (M1), it is generally desirable to choose a lower margin (M2) 

that reflects the largest loss of effect clinically acceptable [3]. Showing NI to M1 provides 

assurance that the test drug had an effect greater than zero, but in many cases that is sufficient 

to conclude that the test drug had a clinically acceptable effect [3]. In a fixed margin approach 

the NIM could be estimated as risk ratio or risk difference, through the average effect of the 
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active control over placebo in historical studies [(p control / p placebo) > 1 or (p control - p placebo) > 

0], for example:  

Relative risk = 2.64, 95% confidence interval (CI): (1.72 to 3.56).  (eq. 9) 

Risk difference = 0.15, 95% CI: (0.07 to 0.22).     (eq. 10) 

 

We selected the 95% CI lower bound (1.72 or 0.07) and adjusted to retain at least 50% of the 

historical effect of active control versus placebo arms ([1.72^(1-0.5) = 1.31] or [0.07*(1-0.5) 

= 0.035]) [3]. Accordingly, the NIM calculated describes a ratio or a difference reflecting the 

largest loss of effect in control group RR (p0) considered clinically acceptable. Therefore, the 

null and alternative hypothesis of NI analysis can be defined as follows and depending on 

p0/NIM: 

H0: p ≤ (p0 / NIMas ratio) or H0: p ≤ (p0 - NIMas difference);    (eq. 11) 

H1: p > (p0 / NIMas ratio) or H1: p > (p0 - NIMas difference);    (eq. 12) 

Risk ratio is preferred because it is less affected than risk differences by variability in the 

event rates of the placebo group.[3] 
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3. Include a NI analyses in a superiority based single-arm design  

In a superiority analysis design with tumor response as the primary endpoint, analyze firstly a 

NI hypothesis does not inflate the type I error rate when NI analysis and NIM are properly 

pre-specified [4]. Additionally, the final number of responders needed to achieve the NI 

objective will always equal or lower than the prespecified superiority efficacy boundary (a). 

We assumed the same number of patients as superiority analysis (n); and “ani” (number of 

responding patients in NI analysis) is chosen as the highest integer satisfying the type I error 

rate in NI analysis (αni) ≤ α.   

B(ani|n, p0 / NIM) ≥ 1- α        (eq. 13) 

The power should be calculated as: 

1 - βni = B(ani -1|n, p0/NIM)       (eq. 14) 

where 

ani ≤ a; 1 - β ≤ 1 - βni.         (eq. 15) 

Accordingly, the study achieves a positive finding when “p” is equal to or higher than “p0 / 

NIM” and significance levels evaluated by binomial test in NI analysis are ≤ α. As the NI 

analysis has the same expected accrual and lower or equal number of responders needed to 

declare significance than superiority analysis (ani ≤ a), power always will be equal or greater 

in NI than superiority criteria. Thus, this design can assess superiority and NI criteria with the 

same sample size, type I and type II error rates used in the superiority strategy. Thus, this 

design evaluates superiority and NI criteria with the same sample size and type I and type II 

error rates used in the superiority strategy.  
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4. Two-stage design 

A two-stage design is defined by the number of patients to be treated during stages one and 

two (M = 1 and M = 2), n1 and n2; the expected number of patients to accept (≤a1) or reject 

(≥b1) null hypothesis at stage one and the expected number of patients to declare superiority at 

final analysis (>a), where (a1 <b1 < a). So, we specify them by: 

[(a1,b1) / n1, a / n],       (eq. 16) 

where n= n1 + n2 is the maximal sample size. The values of [(a1,b1) / n1, a / n] were 

determined based on pre-specified design parameters (p0, p1, α1, 1-β) as in single-stage design 

cases [2]. Final analysis depends on the cumulative number of responding patients observed 

(s) by the stopping stage (i.e. s = s1 if M = 1 and s = s1+ s2 if M = 2) and on the number of 

patients accrued during the study stages 1 (n1) and 2 (n2). 

Considering that for K = 1, 2, Xk were independent B(nk,p) random variables, the probability 

of rejecting the treatment (or equivalent failing to reject H0: p ≤ p0) for two-stage design is 

expressed as:  

R(p) = B(a1|n1,p) + ∑ 𝑏(𝑠|𝑛1, 𝑝)𝐵(𝑎 − s|𝑛2, 𝑝)𝐽
𝑥=𝑎1+1     (eq. 17) 

where J = min(n1,a) in a two-stage design with only an stage one futility boundary (Simon’s 

design); and J = (b1-1) for a two-stage design with both futility and efficacy boundaries.  

When the true response is p, the constraints on type I error probability and power are 

expressed as: 

R(p0) ≥ 1-α and R(p1) ≤ β.       (eq. 18) 

Given (p0, p1, α1, 1-β), there are many two-stage designs [(a1/b1)/n1, a/n] satisfying the 

constraints with an upper limit for n, usually between 0.85 and 1.5 times the sample size for a 

single stage design. The probability of concluding the study early, PET(p), is the first term in 

Eq.(1). B(a1|n1,p), and the expected sample size for this design, E(N|p), is n1PET(p) + n (1 − 
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PET(p)). In a previous work, Simon proposed two criteria for selecting a good two-stage 

design among these designs [5]. The minimax design minimizes the maximum sample size 

“n” satisfying (α, 1 - β)-constraint. On the other hand, the so-called optimal design minimizes 

the expected sample size EN under the null hypothesis. 

The most popular estimator of RR p for (M, S) = (m, s) is the sample proportion. For 

example: 

 

 

             s/n1             if m=1 

𝑝̅=       (eq. 19) 

             s/(n1+n2)     if m=2 

 

The so-called maximum likelihood estimator (MLE) is always negatively biased for standard 

two-stage trials with futility stopping only.[6] For (M, S) = (m, s), the Uniformly Minimum 

Variance Unbiased Estimator (UMVUE) of p for two-stage phase II trials is given by: 

 

              s/n1                     if m=1 

𝑝̅=       (Eq. 20) 

             
∑ (

𝑛1−1
𝑥1−1

)(
𝑛2

𝑠−𝑥1
)

s ∧(b1−1)
x1=(a1+1) ∨(s−n2)

∑ (
𝑛1
𝑥1

)(
𝑛2

𝑠−𝑥1
)

s ∧(b1−1
x1=(a1+1) ∨(s−n2)

        if m=2 

where 

“a ∧ b = min(a, b)”; 

“a ∨ b = max(a, b)”; 

“x! = x× (x ‒ 1) × … × 2 × 1 ([7])”; 
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“b1 = n1+1” for Simon’s two-stage designs and “b1” represents the expected number of 

patients for rejecting “H0” at stage one if a two-stage design with both futility and efficacy 

boundaries. 

It is interesting to remark that the UMVUE and the MLE are identical if the trial stops after 

stage one, (i.e. m = 1). For a true RR of p, the probability mass function (PMF) of (M, S), f(m, 

s|p) = Pr(M = m, S=s), is given as [7]: 

 

                          p
s
(1-p)

n1-s
 (

𝑛1
𝑠

)                                        if m=1, 0 ≤ s ≤ a1 or b1 or b=1,1 

f(m,s|p) =        (Eq. 21) 

                         p
s
(1-p)

n1+n2-s
 ∑ (

𝑛1
𝑥1

) (
𝑛2

𝑠 − 𝑥1
)

s ∧(b1−1
x1=(a1+1)           if m=2, a1+1  s ≤ b1 – 1+ n2 

 

Since the UMVUE of p is a function of (M, S), its PMF is derived from f(m, s|p). 

Through a phase II trial, we intend to conduct a statistical test to reject or accept its 

therapeutic potential. If we reject or fail to reject the null hypothesis, we should be able to 

provide a p-value as a measure of how much evidence the decision is based on against the null 

hypothesis. 

By using the stochastic ordering of the UMVUE, Jung et al. proposed a p-value method for 

two-stage phase II clinical trials . A p-value is defined as the probability of observing an 

extreme test statistic value toward the direction of H1 when H0 is true, so they propose 

calculating the probability of observing a UMVUE value larger than that obtained from the 

study under H0. Let p˜ denote the UMVUE for the RR observed in a two-stage phase II trial 

specified by (a1, b1, a, n1, n2). Given (M, S) = (m, s), p-value = Pr{p˜ (M, S) ≥ p˜ (m, s)|p0} 

based on UMVUE can be calculated as follows: 
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                     ∑ 𝑓(1, 𝑗|𝑝0)n1
j=s                                             if m = 1, s1 

  p-value=     1- ∑ 𝑓(1, 𝑗|𝑝0)s−1
j=0                                       if m = 1, s1       (eq. 22) 

                     ∑ 𝑓(1, 𝑗|𝑝0) + ∑ 𝑓(2, 𝑗|𝑝0)b1−1+n2
j=s

n1
j=b1     if m = 2 

 

UMVUE-based calculation of p-value does not require specification of the critical values at 

the terminal stage. It can be used to test H0: p = 0 against H1: p > p0 based on the pre-specified 

type I error rate α when the realized sample size is different from that specified in the design 

at the stopping stage (M1 or M2). Additionally, power may be calculated with UMVUE-

based calculation for p1. 

In accordance with previous explanations in single-stage studies, we can include a NI analysis 

in superiority based clinical trial provided that NI analysis and NIM must be pre-specified 

properly) ([4]). We should assume the same (a1, b1, n1 and n) as superiority analysis and 

substitute p0 by p0 / NIM in equations 20, 21, and 22. The sni is chosen as the lowest integer 

satisfying αni ≤ α. Where sni ≤ a and 1 - βni ≤ 1 - β. 

 

5. Implementation 

A user-defined function has been written in R software [8] (additional files) to calculate point 

estimator, p-value, and power in two-stage designs with a binary outcome, according to the 

UMVUE method [7]. R “Clinfun” library (function “ph2simon”)[9] was used to find the 

optimal and minimax two-stage Simon’s designs (a1, n1/a, n) under specific constraints (p0, p1, 

α and 1 ‒ β). We calculated all possible p0 ranging between 0.05 to 0.95 in 0.05 increments. 

We assumed in all designs a 0.15 percentage difference with p1. Six scenarios have been 

assumed in accordance with type I and II error constraints. The type I error values were 0.1, 

0.05, and 0.01 and the type II error values were 0.2 and 0.1. For each design, we calculated 
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the lower number of responding patients at final analysis (ani), required to declare the NI 

hypothesis to be statistically significant for type I and II errors assumed in superiority design. 

The NIMs selected to formulate the rejection proportion (p0ni = p0 / NIM) ranged between 

1.15 to 1.45 in 0.05 increments.[10] Moreover, we consider the NIM with value of 1 to 

include the designs where superiority analysis was not include the NI analysis. A total of 

12,768 two-stage Simon’s optimal and minimax designs were computed. 

Simulation was used to calculate probability of type I (alpha) and II (beta) errors in every 

design under the number of events selected at final analysis (ani). We generated binomial 

random samples (function “Rbinom”) based on (a1,n1/a,n) (additional files). Additionally, we 

calculated the number of random samples generated (NSim) needed to attain a 95% 

confidence (z(0,025)) that simulated values of alpha and beta errors (E) are within 0.5% of true 

values [11]. Therefore, we accepted maximum differences between calculated and simulated 

values (alpha and beta errors), which ranged from 0.095 to 0.0105. The random seed was 

computed using R function “sample.int(.Machine$integer.max, 1)” and was the integer 

1440679596. 

According to the [11]: 

 

NSim = (Zα/2* 100* sd / (E * y))^2       (eq. 23) 

 

where “sd” and “y” represent standard deviation and sample average of type I and II errors 

with 30 simulations, respectively.  

Eighty thousand (80,000 ≈ 74,861) and eigthy-five thousand (85,000 ≈ 83,015) random 

samples were run for type I and II errors, respectively.  

Agreement between calculated and simulated values was analyzed with Bland-Altman plots. 

We plotted the differences between calculated and simulated scores (calculated-simulated) 
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against the average of calculated and simulated scores (calculated + simulated) / 2. The 95% 

limits of agreement were calculated with traditional methods or the V-shaped procedure if 

proportional bias was detected between the two measures. Finally, we presented minimum 

and maximum differences observed between values, because the latter was easier to interpret 

in terms of clinically acceptable limits [12,13].  
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