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Role of POLE and POLD1 in familial cancer
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Purpose: Germline pathogenic variants in the exonuclease domain
(ED) of polymerases POLE and POLDI predispose to adenomatous
polyps, colorectal cancer (CRC), endometrial tumors, and other
malignancies, and exhibit increased mutation rate and highly
specific associated mutational signatures. The tumor spectrum and
prevalence of POLE and POLDI variants in hereditary cancer are
evaluated in this study.

Methods: POLE and POLDI were sequenced in 2813 unrelated
probands referred for genetic counseling (2309 hereditary cancer
patients subjected to a multigene panel, and 504 patients selected
based on phenotypic characteristics). Cosegregation and
case—control studies, yeast-based functional assays, and tumor
mutational analyses were performed for variant interpretation.

Results: Twelve ED missense variants, 6 loss-of-function, and 23
outside-ED predicted-deleterious missense variants, all with
population allele frequencies <1%, were identified. One ED variant

INTRODUCTION
Germline missense pathogenic variants in the exonuclease
domain (ED) of polymerases epsilon (POLE; a.a. 268-471)
and delta (POLDI; a.a. 304-533), which affect the proof-
reading capabilities of these polymerases, predispose to
multiple colorectal adenomas and carcinomas, causing the
so-called polymerase proofreading-associated polyposis
(PPAP) (MIM 615083; 612591)."7 Evidence of extracolonic
tumors has been reported, including endometrial, brain,
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(POLE p.Met294Arg) was classified as likely pathogenic, four as
likely benign, and seven as variants of unknown significance. The
most commonly associated tumor types were colorectal, endome-
trial and ovarian cancers. Loss-of-function and outside-ED variants
are likely not pathogenic for this syndrome.

Conclusions: Polymerase proofreading-associated syndrome con-
stitutes 0.1-0.4% of familial cancer cases, reaching 0.3-0.7% when
only CRC and polyposis are considered. ED variant interpretation
is challenging and should include multiple pieces of evidence.
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breast, ovarian, stomach, pancreas, and skin tumors, among
others.>*™1?

Somatic pathogenic variants in the ED of POLE have been
identified in 2-8% of colorectal cancer (CRC),""™"* 7-15% of
endometrial tumors,"”'® and more rarely in other tumor
types."”' Somatic pathogenic variants affecting POLDI
ED are extremely rare. Tumors with somatic POLE ED
pathogenic variants and tumors developed in the context of
PPAP exhibit a dramatically increased mutation rate known as
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ultramutated tumor phenotype,'””'™** characterized by a

specific mutation signature typified by C:G—A:T transversions
(TCT context) and C:G—T:A transitions (TCG context).!*>**
This corresponds to signature 10 in the COSMIC Signatures of
Mutational Processes in Human Cancer, or to signatures 14
and 20 if the POLE or POLDI pathogenic variant coexists with
mismatch repair (MMR) deficiency, respectively.'>**** Cancer
patients with somatic POLE ED pathogenic variants show
excellent prognosis and good response to immune checkpoint
inhibition, probably due to the immune response elicited by
these tumors as a result of the large number of neopeptides
generated as consequence of hypermutation.26

To assess the prevalence of POLE and POLDI pathogenic
variants in hereditary cancer and refine the tumor spectrum
of the associated clinical syndrome, we studied a prospective
cohort of 2309 unrelated hereditary cancer patients
subjected to a multigene hereditary cancer panel, and a
retrospective cohort of 504 unrelated cancer patients—
hereditary CRC and polyposis patients excluded—selected
based on previous reports of extracolonic manifestations in
PPAP, which include breast and ovarian cancer, endome-
trial, brain, or skin cancer, among other tumors, alone or in
combination with other tumor types or colonic polyps.
Cosegregation analyses, yeast-based assays, and tumor
mutational analyses were performed to facilitate variant
interpretation.

MATERIALS AND METHODS
Ethics statement
Patients signed consent forms and were assessed at genetic
counseling units at Catalan Institute of Oncology, Vall
d’Hebron Institute of Oncology, and Santa Creu i Sant Pau,
Parc Tauli and Manresa Hospitals (Catalonia, Spain). The
study received the approval of IDIBELL Ethics Committee.

Patients

Retrospective cohort

Five hundred and four unrelated cancer patients were
analyzed, including 192 high risk breast and/or ovarian
families, 178 patients with personal or familial history of
different tumor types previously associated with PPAP
(combinations include CRC and associated tumors, breast/
ovarian cancer, skin cancer or brain), 30 patients with
aggregation of other multiple tumors, either in the patient or
the family, and finally, 104 patients fulfilling the criteria for
TP53 genetic testing. None of the patients carried germline
pathogenic variants in the known high-penetrance cancer
genes associated with the patient and/or family’s phenotype
(Supplementary Table S1).

Prospective cohort

Two thousand three hundred and nine unrelated familial/
early-onset cancer patients, prospectively recruited from 2015
to 2018 in a hereditary cancer clinic-based context, were
subjected to a multigene hereditary cancer panel.””*® The
cohort comprised patients with personal and/or familial
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history of breast cancer (n = 884), ovarian cancer (n = 317),
and breast and ovarian cancer (n=267); 247 familial
(attenuated and classic) adenomatous polyposis cases; 354
Amsterdam- or Bethesda-positive hereditary nonpolyposis
CRC cases; 15 Li-Fraumeni-suspected cases; and 225 patients
with suspicion of other minor cancer syndromes.

Details of the cohorts are included in Fig. 1 and
Supplementary Table S1.

Mutational screening

In the retrospective cohort, direct automated (Sanger)
sequencing was used to sequence exons 8-13 (+/—20 b) of
POLDI and exons 9-14 (+/—20 b) of POLE, which contain
the sequences coding for the ED of each polymerase. Primer
sequences were previously described.” The hereditary cancer
multigene panel applied to the prospective cohort includes
the complete coding sequence of POLE and POLDI1.*”*®
Nonsynonymous variants located within coding exons or
variants affecting canonical splice sites with a population
minor allele frequency (MAF) <1% were considered.

In silico predictions

The pathogenicity of the identified missense variants was
analyzed by using the metapredictor REVEL, which combines
pathogenicity predictions and conservation information
obtained from 18 individual scores, and provides optimal
specificity and sensitivity results.””** REVEL score >0.35 was
used for pathogenicity in the current study, a lower cutoff
than the one recommended for clinical purposes (>0.5) and
defined based on the scores of known ED pathogenic variants
(Supplementary Table S2).

Functional assessments for variant interpretation and
classification

The exonuclease repair ability of POLE in the presence of ED
missense variants was tested in a Schizosaccharomyces pombe
system. Exome sequencing was performed on DNA extracted
from the tumors of carriers of POLE/D1 variants to assess the
presence of hyper or ultramutation (10 or 100 Mut/Mb
respectively) and/or the mutational signature(s) associated
with the presence of an ED pathogenic variant.”**>" POLE and
POLD1 variant frequencies in CRC and controls were
obtained from a Spanish population-based case-control study
(MCC-Spain, www.mccspain.org). ED variants were classified
by applying the American College of Medical Genetics and
Genomics/Association for Molecular Pathology (ACMG/
AMP) guidelines®® (Supplementary Table S$3). Additional
details are in Supplementary Methods.

RESULTS
Of the 2309 unrelated probands included in the prospective
cohort, 374 (16.2%) carried (likely) pathogenic germline
variants in known cancer-predisposing genes (Fig. 1; Supple-
mentary Table $4).
A total of 12 novel or rare (MAFgnomap<1%) missense
variants located within the EDs of POLE (n=7) or POLDI
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STUDY COHORTS
PROSPECTIVE COHORT RETROSPECTIVE COHORT
(N=2,309) (N=504)
REFERRAL Breast and/or CRC and/or Suspected Li-Fraumeni SELECTED
PHENOTYPES ovarian cancer polyposis and other phenotypes PHENOTYPES Non-BRCA1/2 HBOC Multiple primary
(n=1,468) (n=601) (n=240) (n=192) malignancies
BRCA! — MSH6  e— Fuéu — (n=30)
BROA? s MUTYH COKNo | i—
ATM MSH2 s BRCA? me— -
:’;‘-‘Ef - MLH1 TSC2 e CRC, EC or GC Brain cancer & other
MULTI-GENE CHEK? m APC == ST:#A rm— & BC or OC malignancies
PANEL wsHe b Puis2 b el (n=122) (n=22)
GERMLINE MUTYH POLE 1 g m—
TESTING RAD51C 1 ATM 1 BAP1 ==
ng.m ! MENS Sgﬁ[‘) - BC, EC BrC or Melanoma Non-TP53 suspected
RAD51D SMAD4 TSC1 == & >5 polyps Li-Fraumeni
SDHB PTEN S bH = (n=349) (n=104)
TP53 STK11 MUTYH =
CDKN2A RADS1D MSHS =
FLON BRIP1 =
APC CHEK2 =
PALB2
MSH2 BRCA2 BRCA1 =
0 50 100 0 20 40 60 0o 2 4 6 8

% CARRIERS OF
(L)P VARIANTS IN
KNOWN GENES

HBOC: 21% (55 / 267)
HBC: 4% (106 / 884)
HOC: 14% (44 / 317)

POLE/ POLD1
ED VUS

POLE p.K425R (HBOC)
POLD1 p.R525W (HBC)
POLD1 p.1307M (HOC)
POLD1 p.I325V (HBC)

POLE/ POLD1
ED (L)P VARIANTS

PPAP
PREVALENCE

0-0.27%
(0-47/1,468)

TUMOR
SPECTRUM
FOR (L)P
VARIANTS

HNPCC: 27% (95 / 354)
Polyposis: 13% (31 /247)

Suspected LF: 13% (2 / 15)
Others: 18% (41 / 225)

POLE p.G380C (Polyposis)
POLE p.A426V (HNPCC)

POLE p.1307V (Melanoma)

[POLE p.M294R: (2 HNPCC) ]

0-0.42%
(0-1/240)

0.33-0.67%
(2-4/601)

POLE p.M294R carriers
*CRC 67
*CRC 37
*CRC 57, 59, 69
*CRC 42, EC 55

Selection performed excluding cases with germline (L)P variants :

in genes associated with clinical phenotype

POLE p.G380C (Multiple tumors)

*OC 36, EC 36

Fig. 1 Schematic representation of the characteristics of the cohorts analyzed in this study, prevalence of (likely) pathogenic variants in
cancer-predisposing genes, and results of the current study for exonuclease domain (ED) missense variants in POLE and POLD1. BC breast
cancer, BrC brain tumor, CRC colorectal cancer, EC endometrial cancer, GC gastric cancer, HBC hereditary breast cancer, HBOC hereditary breast and ovarian
cancer, HOC hereditary ovarian cancer, HNPCC hereditary nonpolyposis colorectal cancer, LF Li—-Fraumeni syndrome, LP likely pathogenic, OC ovarian cancer,
PPAP polymerase proofreading—associated polyposis, VUS variant of unknown significance.

(n = 5) were identified in 15 families (Table 1). Five loss-of-
function (LoF) variants were found in five families, and 23
predicted-deleterious POLE (n=19) and POLDI (n=4)
variants outside the ED were identified in 29 probands
(Supplementary Fig. S1).

Mutational screening of the region coding the ED of POLE
and POLDI in the retrospective cohort (n =504 unrelated
probands) identified a missense POLE ED variant, c.1138G>T
(p-Gly380Cys), and a frameshift variant, POLE c.1185_1188del
(p-Glu396Thrfs*15).

Phenotypic characteristics of carriers of ED variants
Twelve rare or novel missense variants located within the EDs
of POLE (n=7) and POLDI (n=>5) were identified in 16
unrelated individuals of the 2813 cancer patients studied
(Table 1; pedigrees in Supplementary Figs. S2 and S3).
POLE c.861T>A (p.Asp287Glu) (MAFgnomap_nre = 0.17%)
was identified in two unrelated breast cancer patients, one of
whom was also diagnosed with an MMR-deficient CRC
(Table 1). This variant had been previously reported in three
unrelated families diagnosed with melanoma at ages 22-73

GENETICS in MEDICINE | Volume 22 | Number 12 | December 2020

and other tumors, including breast cancer, squamous cell
carcinoma, and non-Hodgkin lymphoma,m’33 and in a patient
with a Lynch syndrome-associated MLHI-deficient colorectal
tumor (Supplementary Table $5).** Of the 13 studied cancer-
affected individuals (in this and previous reports) only 7
carried POLE ¢.861T>A. No association with cancer was
detected for this variant in a Spanish case—control study,
either for CRC or breast cancer (source: MCC-Spain;
Supplementary Table S6).

The novel, predicted pathogenic POLE ¢.881T>G
(p-Met294Arg) variant, which affects a highly conserved
amino acid, was identified in two families. One proband was a
woman diagnosed with ovarian and endometrial tumors at
age 36. Her mother, diagnosed with CRC and endometrial
cancer at ages 42 and 55 respectively, and her CRC-affected
uncle, were also carriers. POLE ¢.881T>G was also identified
in a patient diagnosed with an MMR-proficient CRC at age
37, and in his maternal uncle, affected with three metachro-
nous CRCs. The variant has been recently reported in a
patient affected with multiple colonic adenomas, breast
cancer, and endometrial cancer, diagnosed at 48, 50, and 55
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years old respectively, and in her sister, with seven colonic
adenomas at age 58.%

POLE ¢919A>G (p.lle307Val), affecting a conserved
residue and not reported in public databases, was identified
in an individual with four melanomas diagnosed at age 81 and
in two of his sisters, diagnosed with melanoma at 55 and
breast cancer at 83.

POLE ¢c.1007A>G  (p.Asn336Ser) (MAFg,omap NrFE =
0.02%) was identified in two families. One of the probands,
of Moroccan origin, was diagnosed with rectal cancer at age
38, and the other one with melanoma at 48. This variant is
relatively frequent in African populations (MAF = 2.6%),
where a total of 10 homozygous carriers have been identified
among 11,975 Africans (gnomAD v.2.1.1).

POLE c1138G>T (p.Gly380Cys) (MAFgomap_neE =
0.005%), predicted deleterious, was identified in a woman
diagnosed with two synchronic breast tumors, and in an
unrelated individual with multiple (10-20) adenomatous
polyps and no familial cancer history.

POLE c1274A>G  (p.Lys425Arg) (MAFg omap_neE =
0.0025%) was identified in a woman affected with breast,
ovarian, and endometrial tumors before age 50. This
predicted pathogenic variant affects a highly conserved
residue located within the Exo IV motif active site. The
variant had been previously reported in six families, including
a melanoma patient,'’ a patient with early-onset CRC,” an
individual with colonic polyps and family history of CRC,* a
63-year-old CRC patient,”” a woman diagnosed with breast
cancer at age 31,”> and two first-degree relatives, who also
carried the MSH2 ¢.942+3A>T pathogenic variant, diagnosed
with three synchronic CRCs at age 30 and one CRC at age 33
respectively.”

POLE ¢.1277C>T (p.Ala426Val) (MAFgyoman nre = 0.0034%),
affecting a highly conserved residue within the Exo IV motif
active site, was identified in a male diagnosed with CRC and
multiple adenomas at age 44 and with renal cancer at 49, and in
his CRC-affected paternal uncle. The proband’s father, an
obligate carrier, was diagnosed with CRC at age 60. All three
relatives also carried a likely pathogenic variant in CHEK2,
¢.593-1G>T (rs786203229), a gene that confers a moderate risk
of breast cancer, and possibly other tumor types, including
CRC.”*® In this family, the carriers of the two variants did not
develop particularly aggressive phenotypes, two of them having
developed CRC late in life (ages 60 and 73).

The five ED variants identified in POLDI, p.Ile307Met,
plle325Val, p.Arg352Cys, p.Arg521Gln, and p.Arg525Trp,
were predicted to be neutral (Table 1; pedigrees in
Supplementary Fig. S3). POLDI c.1562G>A (p.Arg521Gln)
had been previously identified by our group in a 48-year-old
CRC patient.” POLDI ¢.1573C>T (p.Arg525Trp) co-occurred
with ATM ¢.7220C>A  (p.Ser2407*; rs1555122149) in a
woman affected with multiple tumors. ATM pathogenic
variants confer a moderate risk of breast cancer (two to
fivefold), but are not associated with bilateral breast
tumors.””*® Available studies have been unable to quantify
the postulated increased risk to CRC.” The carrier of POLDI
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p-Arg525Arg and ATM p.Ser2407* developed a very aggres-
sive phenotype, including three metachronous early-onset
breast tumors (ages 35-53) and a CRC at age 69, supporting a
cumulative effect of the two variants.

Functional assessment of ED variants: exonuclease repair
yeast-based assay and tumor analysis

The exonuclease repair ability of POLE in the presence of
missense ED variants was tested in a yeast system. The
number of revertant colonies was significantly higher for p.
Leu424Val (positive control), p.Asp287Glu, p.Met294Arg, p.
Gly380Cys, and p.Ala426Val, compared with the wildtype
(fold change increase of 7-13) (Fig. 2). No significant
differences were observed for POLE p.lle307Val, and a
previous study had shown no effect for p.Asn336Ser.*’
Notably, POLE p.Asp287Glu, p.Met294Arg, p.Leud24Val,
and p.Ala426Val, the ones with the highest number of
revertant colonies, were located within the DNA binding
pocket structure (Fig. 3). All POLD1 ED variants identified in
the study were predicted benign, and only two, p.Arg352Cys
and p.Arg521Gln, affected conserved amino acids in yeast.
Since all gathered evidence for those two was enough to
classify them as likely benign (Table 1), we did not perform
the yeast-based functional assay.

Exome sequencing was performed in tumors developed by
POLE p.Asp287Glu, p.Met294Arg, p.lle307Val, p.Gly380Cys,
p-Ala426Val, and POLDI1 p.Arg521Gln carriers, including, as
positive controls, tumors developed by POLE p.Leu424Val,
POLDI p.Asp316Gly, and POLDI p.Asp316His carriers™’
(Fig. 4; Supplementary Table S7). All positive controls showed
hyper- or ultramutation (range: 14-478 Mut/Mb). POLE/DI
ED-associated signatures were detectable in the POLDI
p-Asp316His carrier’s CRC tumor (signature 10 contribution:
20.66%), but barely identifiable in the POLDI p.Asp316Gly
carrier’s liver metastasis (signature 10: 0.75%; signature
20 [POLDI + MMR deficiency]: 2.65%) or in the POLE
p.Leu424Val carrier’s oligodendroglioma (signature 14
[POLE + MMR deficiency]: 4%), where MMR deficiency
hoarded most of the mutational signatures’ contribution.

Three primary tumors—one MMR-deficient ovarian can-
cer, one MMR-deficient endometrial cancer and one MMR-
proficient CRC—from two carriers of POLE p.Met294Arg,
were analyzed. All three displayed hyper/ultramutation
(10.96-300.85 Mut/Mb). Signature 10 was identified in the
CRC (contribution: 23%), and signature 14, linked to the co-
occurrence of MMR deficiency and POLE ED pathogenic
variant in the ovarian tumor (contribution: 15.32%). MMR-
deficient associated signatures were the major contributors in
the ovarian and endometrial tumors (Fig. 4; Supplementary
Table S7).

While the breast tumor from the POLE p.Gly380Cys carrier
showed no hypermutation (0.67 Mut/Mb), a breast tumor
from a POLE p.Asp287Glu carrier, a melanoma from a POLE
p-Ile307Val carrier, the MMR-proficient CRC from the POLE
p-Ala426Val and CHEK2 ¢.593-1G>T carrier, and a CRC
from a POLDI p.Arg521Gln carrier showed hypermutation
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p.N336S p.G380C
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Fig. 2 Functional analysis carried out in Schizosaccharomyces pombe for variants located within (or close to) the POLE exonuclease domain
(ED). (a) Alignment of human POLE and their homolog in yeast (Pol2). The identified variants are highlighted in yellow (conserved residues) and the POLE
p.Leud24Val, used as positive control, in green. ED is depicted in red (human: residues 268-471, yeast: residues 98-428) and its sequence motifs** are
shaded in gray. (b) Left panel: box plots showing mutation rates of ade6-485 S. pombe (number of colonies) for pol2 wildtype (WT, negative control), ED
mutation-positive control (pol2-Leu425Val; C+) and the corresponding variants. Right panel: fold rate increase relative to the median number of revertants
in the WT. Data obtained from two independent experiments performed in triplicate. *p value =0.01, **p value =0.01-0.001, and ***p value <0.001
indicate the differences with the WT clone, and were calculated using the Mann—-Whitney nonparametric test.

but none of the POLE/DI-associated mutational signatures
(Fig. 4; Supplementary Table S7).

To help characterize the identified variants, we used the
TCGA and COSMIC tumor sequencing data to see if those
variants, when occurring somatically and in absence of
additional somatic POLE/DI ED variants, caused a hyper/
ultramutated phenotype and the POLE/D1 ED-associated
signatures. Considering the ED variants identified in the
study, only two, POLDI p.Arg352Cys and p.Arg525Trp,
fulfilled the abovementioned conditions. A CRC and a
lymphoid neoplasm harboring POLDI p.Arg352Cys, as well
as a stomach carcinoma with POLDI p.Arg525Trp, displayed
hypermutation but not the POLE/DI1 ED-associated signa-
tures (Supplementary Table S8). In the case of the CRC and
the stomach carcinoma, the hypermutation detected was due
to the presence of microsatellite instability (MSI) (MMR
deficiency signatures’ contribution: 77%), and to the presence
of BRCA2 p.Pro1088Leufs*16 (BRCAI/2 signature contribu-
tion [3]: 52%), respectively. In the POLDI1 p.Arg352Cys
hematologic tumor, in absence of DNA repair alterations, no
POLE/D1 ED-associated signatures were identified.

GENETICS in MEDICINE | Volume 22 | Number 12 | December 2020

ED variant classification

Sixteen (16/2813; 0.57%) probands carried novel or rare ED
missense variants. Taking into account several lines of
evidence (functional data, tumor mutation burden and
signatures, in silico predictors, cosegregation, and
case—control data), and applying the ACMG/AMP guidelines
for variant classification, POLE p.Met294Arg was classified as
pathogenic; POLE p.Asp287Glu, POLE p.Asn336Ser, POLDI
p.Arg352Cys, and POLDI p.Arg521Gln as likely benign; and
POLE p.1le307Val, p.Gly380Cys, p.Lys425Arg, and p.Ala426-
Val, and POLDI p.Jle307Met, p.lle325Val, and p.Arg525Trp
as variants of unknown significance (VUS) (Table 1). Details
of the criteria considered for the classification of each variant
are shown in Supplementary Table S3.

Germline loss-of-function POLE and POLD1 variants

Six LoF heterozygous variants were identified in the retro-
spective (n=1) and prospective (n=6) cohorts: POLE
c.1185_1188delGGAG (p.Glu396Thrfs*15), c.4480C>T
(p-GIn1494%*), and ¢.2297_2298insA (p.Tyr766*); and POLDI
¢.230delC (p.Pro77Leufs*92), c.1195C>T (p.Gln399*), and
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Fig. 3 Structural representation of human POLE and POLD1 and location of the ED variants identified in the current study. (a) 3D structure of
POLE. (b) 3D structure of POLD1. Single-stranded DNA from the aligned bacteriophage T4 polymerase complex (PDB ID: 1NOY) is shown in yellow. Variants

in the DNA binding pocket are highlighted in red.

¢.3305delC (p.Prol1102Leufs*22) (Supplementary Table S9).
The most prevalent phenotype in the carrier families was
breast cancer (also the most represented tumor type in the
studied cohorts), diagnosed in eight carriers (five families)
(pedigrees: Supplementary Fig. S4). The POLDI p.GIn399*
carrier also carried a BRCAI pathogenic variant (exon 8-13
deletion).

POLE ¢.1185_1188delGGAG (p.Glu396Thrfs*15), novel
and disrupting the ED, perfectly segregated with breast cancer
in the carrier family: the variant was present in the proband,
her mother, and two maternal aunts, all four of whom were
diagnosed with breast cancer (ages at diagnosis: 28, 71, 64,
and 67, respectively). Two primary breast tumors from two
carriers of POLE p.Glu396Thrfs*15 were analyzed by exome
sequencing. None of the tumors showed hypermutation
(1.09-1.70 Mut/Mb) or a POLE-associated signature (Fig. 4;
Supplementary Table S7). Similar results were observed when
analyzing two CRC tumors with a somatic variant in that
same residue (Supplementary Table S8). No additional POLE
or POLDI somatic pathogenic variants were detected in the
tumors, discarding a somatic second hit.

Tumor exome sequencing performed in the MMR-deficient
colon cancer developed by the POLDI ¢.230delC (p.Pro77-
Leufs*92) carrier revealed that ~85% of the signatures
contribution corresponded to MMR deficiency and no
representation of POLE/DI-associated signatures (Fig. 4; Sup-
plementary Table S7). Sequencing data from a breast tumor
harboring a somatic frameshift variant in the same residue as
the germline POLDI ¢.3305delC (p.Pro1102Leufs*22) showed
neither hypermutation nor the POLE/DI-associated mutational
signature (Supplementary Table S8).

The frequency of LoF variants in familial cancer (and all the
subtypes considered separately) is almost identical to that

2096

observed in cancer-free controls (0.22% [5/2309] in cases vs.
0.20% [119/59,095] in controls, p value = 0.81), thus agreeing
with their lack of association with cancer predisposition*'
(LoF wvariants present in the European population data
set [gnomAD] are detailed in Supplementary Table S10).
Moreover, tumor sequencing demonstrated no increased
mutation burden, supporting intact DNA repair.

Variants identified outside the ED

We identified 142 missense variants outside the ED (POLE n
=92 and POLDI n=>50) in 354 patients, with no relative
overrepresentation among any of the phenotype-based
groups. Four POLDI and 19 POLE outside-ED variants,
identified in 29 individuals, were predicted deleterious
(Supplementary Table S11).

Cosegregation data suggested that POLE c.671A>G
(p.Tyr224Cys), the closest to the ED (44 amino acids upstream),
was not associated with the increased breast cancer risk
observed in the carrier family (Supplementary Table S11);
observation supported by a yeast functional assay that revealed
no mutator effect (Fig. 2). No cosegregation analyses could be
performed for the remaining outside-ED predicted pathogenic
variants. Tumors harboring the same somatic outside-ED
missense variants in absence of other (likely) pathogenic POLE
variants did not have ED-associated mutational signatures.
Eight of the 23 predicted pathogenic variants (41/142 of all
variants) could be analyzed in different tumor types with this
approach (Supplementary Table S8). The frequency of outside-
ED predicted pathogenic variants in familial cancer (and all the
subtypes considered separately) does not differ from that
observed in cancer-free controls (1.26% [29/2309] in cases vs.
0.91% [539/59,095] in controls, p value = 0.10) (Supplementary
Table S12).

Volume 22 | Number 12 | December 2020 | GENETICS in MEDICINE
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a
Variants Family — Individual Tumor type Age atdx S| status® MMR expression MMR deficient Mut/Mb
p.L424V (C+) (Valle 2014; Bellido 2016) Oligodendroglioma 30 na. na. na. 477.60
p.D287E Fam A -I1.3 Breast cancer 40 MSS n.a. No l:l 185.74
p.M294R (1) Fam C-I1.2 Ovarian cancer® 36 na. MSHS6- Yes | 248.98
p.M294R (2) Fam C -Il.2 Endometrial cancer 36 na. MLH1/MSH2/MSH6- Yes /1 300.85
g p.M294R (3) Fam C —1.4 CRC 42 MSS Normal No | 10.96
a p.1307V Fam E -II.1 Melanoma 81 MSs n.a. No I] 32.35
p.G380C Fam H -I1.4 Breast cancer 61 n.a. n.a. n.a. 0.67
p.A426V Fam K -II.1 CRC 44 MSS Normal No D 41.18
p.E396Wfs*15 (1) FamQ-l.2 Breast cancer 64 MSS na. n.a. 1.09
p.E396Wfs*15 (2) Fam Q-1.3 Breast cancer 67 MSs n.a. na. 1.70
p.D316G (C+) Fam 2 —l11.2 (Bellido 2016) Liver metastasis® n.a. MSS n.a. n.a. | 13.66
5| pD316H (CH) Fam 1 -I11.8 (Bellido 2016) CRC 58 MSS na. No O 62.15
§ p.P77Lfs* 92 Fam T -lll.2 CRC 40 MSI MLH1/PMS2- Yes I:l 37.42
p.V295M Fam 5 —lI1.1 (Bellido 2016) CRC 48 MSs Normal No | 4.89
p.R521Q Fam 6 —II.1 (Bellido 2016) CRC 48 MSS Normal No |:| 38.54
®High-grade serous ovarian carcinoma
“Intstinal origin
°MSI classification using Bethessa panel
b POLE variants POLD1 variants
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Fig. 4 Somatic analysis performed in tumors from POLE/POLD1 variant carriers. (a) Tumor features including mismatch repair (MMR) deficiency
status and mutational burden (hypermutation was considered when the tumor had more than 10 exonic Mut/Mb). ®High-grade serous ovarian cancer.
PIntestinal origin. “Microsatellite instability (MSI) classification using Bethesda panel. C+, positive controls, i.e., tumors from carriers of variants affecting the
POLE/POLD1 ED previously classified as pathogenic. (b) Mutational signature contribution (DeconstructSigs) for hyper/ultramutated tumors (>10 Mut/Mb).

CRC colorectal cancer.

Tumor spectrum and prevalence of germline POLE and
POLD1 ED variants in hereditary cancer

Two hereditary cancer families (2/2813; 0.07%) carried a
pathogenic variant in POLE (p.Met294Arg), making a total of
5 carriers. The phenotypic spectrum of the carriers included
(1) CRC in absence of adenomatous polyposis, diagnosed in 4
of the 5 carriers (80%) (mean age at CRC diagnosis 51; range
37-57), one of whom had developed three metachronous
colorectal tumors; (2) endometrial cancer, diagnosed in two
carriers (40%) (mean age at diagnosis 46; range 36-55); and
(3) ovarian cancer, diagnosed in one carrier (20%) (age at
diagnosis 36). Three ED variant carriers (60%) developed >2
primary tumors. The prevalence of (likely) pathogenic ED
variants, being of 0.09% (2/2309) in the prospective familial

GENETICS in MEDICINE | Volume 22 | Number 12 | December 2020

cancer cohort, reached 0.33% (2/601) when restricted to CRC
and polyposis phenotypes (Fig. 1; Supplementary Table S13).

The frequency of rare ED missense variants—including
pathogenic and VUS—in POLE and POLDI in hereditary
cancer was 0.39% (9/2309). Almost half of the pathogenic
variants and VUS (4/9; 44.44%) were found in patients with a
referral of hereditary nonpolyposis CRC or polyposis, who
accounted for 26% (601/2309) of the total number of patients
tested. In this group of patients, the prevalence of ED variants
increased to 0.67%. With regard to the most represented
group of patients, i.e., those referred for genetic testing as
hereditary breast and/or ovarian cancer, the frequency of
ED variants was 0.27% (4/1468) (Fig. 1; Supplementary
Table S13).
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DISCUSSION

POLE and POLDI ED variant interpretation is challenging
and the inclusion of multiple pieces of evidence is highly
advisable. Population and cosegregation data, in silico
prediction of pathogenicity, location within the DNA binding
cleft, results of the functional repair assay, and tumor
mutational data were taken into consideration for variant
classification. Based the relevance of each piece of evidence,
we adapted the ACMG/AMP variant classification guidelines
to the particular conditions of POLE and POLD1 ED variants
and to the relevance of the functional information gathered,
i.e, tumor mutational signatures, yeast repair assay results,
and alteration of the DNA binding pocket (Table S3).

We consider tumor sequence analysis of utmost importance
for a proper classification of POLE and POLDI1 ED variants.
Mutational signature 10, in the presence of hyper/ultramuta-
tion, is unequivocally linked to the presence of an ED
pathogenic variant—a priori independently of the tumor type
analyzed—however, one must be certain of the inexistence of
a somatic ED pathogenic variant that could be causing the
presence of the POLE/DI-associated tumor molecular phe-
notype. Moreover, a challenging situation occurs when the
tumor we analyze has other DNA repair defects, e.g., MMR
deficiency (MSI). In this situation, if the mutational signature
analysis does not reveal any of the POLE/DI-associated
signatures, i.e., signatures 14 or 20 when the germline variant
affects the ED of POLE or ED respectively, it is highly
advisable to analyze a second tumor, ideally MMR proficient,
developed in the same family or harboring the same variant
but in a somatic context, verifying that no other somatic ED
variant is present.

Due to the high homology of the ED of POLE and POLDI
in human and yeast, this model has been widely used for
variant functional assessment. In our study, unequivocal
repair impairment (p<0.001) was observed for POLE
p-Leud24Val (positive control), p.Met294Arg (likely patho-
genic), and p.Ala426Val (uncertain significance), but also for
p-Asp287Glu, a variant classified as likely benign based on
cosegregation data, frequency in cases and controls, and
absence of an ED-associated mutational signature. It seems
evident that, in addition to the (likely) pathogenic variants
directly affecting the exonuclease catalytic residues, such as
POLD1 p.Asp316Gly, p.Asp316His, ED variants affecting
residues in direct contact or in very close proximity to the
DNA fragment, i.e., in the DNA binding pocket, have a very
high chance of being pathogenic. In fact, the vast majority of
POLE and POLDI (likely) pathogenic variants reported to
date are localized in the DNA binding cleft, including POLE
p.-Thr278Lys, p.Met294Arg (this study), p.P286L, p.N363K,
p- D368N, p.Leud24Val, and p.Pro436Ser, as well as POLDI
p-Leud74Pro and p.Ser478Asn (Supplementary Table S2).
Hamzaoui et al. observed that variants interfering with DNA
binding (p.P286L and p.N363K) produce a higher mutagenic
effect in yeast than variants disrupting ion metal coordination
at the exonuclease site.”” In line with Barbari et al.,'>*’ our
results indicate that any variant located in the DNA binding
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cleft shows a mutator effect in yeast, even if it is not
pathogenic, as occurs with p.Asp287Glu. Based on this and
the high variability of the yeast assay among replicates and
experiments, also observed in other studies,”*’ we have used
its results with caution. We posit that yeast assay observations
may be considered supporting or, at most, moderate
(not strong) evidence for ACMG/AMP variant classification,
depending on the level of significance when compared with
the wildtype clone.

In our study, two families carrying POLE and POLDI VUS
also carried pathogenic variants in ATM and CHEK2, two
genes that confer a moderate risk of breast cancer.””*® The
aggressive phenotype developed by the POLDI p.Arg525Arg
and ATM (p.Ser2407*) carrier supports a cumulative effect
of the two variants, while that may not be the case for the
carriers of POLE p.Ala426Val (VUS) and CHEK2
¢.593-1G>T, where two of the three carriers developed late-
onset CRC. Hamzaoui et al. identified two relatives who
carried both POLE p.K425R (VUS) and MSH2 c.942+3A>T
(pathogenic), in a family with multiple CRC-affected
members diagnosed at extremely young ages (range: 19-33),
suggesting a cumulative effect of the two variants.”> Whether
the aggregation of cancer in these families is explained only by
the pathogenic variants in ATM, CHEK2, or MSH2, or the
combined effect with the POLE/DI variants (all of them
classified as VUS until now), remains to be elucidated.

The role of LoF and outside-ED POLE and POLDI
heterozygous variants has been a matter of controversy since
the description of PPAP in 2013. Our data suggest that these
variants are most likely nonpathogenic, at least not associated
with PPAP—this being relevant to avoid misdiagnoses in
the clinical setting. A particular case is that of POLE
p-Glu396Thrfs*15, identified in four breast cancer-affected
women of the same family in absence of additional pathogenic
variants in known or candidate hereditary cancer genes
(exome sequencing; data not shown). Despite the absence of
tumor hypermutation and POLE-associated mutational sig-
natures, whether the variant is the cause of the cancer
aggregation in the family remains to be elucidated, and if so,
what is the molecular mechanism underlying its potential
causal effect.

In conclusion, our findings indicate that PPAP constitutes
0.1-0.4% of familial cancer cases referred to a hereditary
cancer clinic, 0.3-0.7% when considering nonpolyposis CRC
and polyposis patients, with the most commonly associated
tumor types being colorectal, endometrial, and ovarian
cancers. ED variant interpretation is challenging and should
include multiple pieces of evidence. LoF and outside-ED
variants are not associated with PPAP, a cancer-predisposing
syndrome characterized by a defect in the proofreading
activity of polymerases epsilon and delta.
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