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Reviewer 1 
 

Are you able to assess all statistics in the manuscript, including the appropriateness of statistical 

tests used? No 

 

Comments to author: 
The authors present a thorough evaluation of the methods to detect somatic SNVs in the brain, using 

whole-genome sequencing of DNA mixtures and actual samples in order to identify best practices, 

without requiring matched 'normal' samples. Such guidelines are very valuable, as most work on 

somatic variants has been done in the context of cancer, and likely differences exist with the brain and 

other tissues in the absence of a proper control sample. 

Please find my minor questions below. 

Sincerely, 

Wouter De Coster 

 

1) The provided pipeline is very helpful, just like the PON mask. While I could not find an explicit 

mention of this, I have the impression that this PON is only available for GRCh37? 

2) The results using standard tools like Mutect2 and Strelka are sobering. I wonder if the authors have 

an opinion on this disappointing performance and if this can be attributed to these tools being mostly 

developed for tumor-normal based variant calling in a cancer setting, or are there other systematic 

issues? 

3) While some of the contributing groups also performed WES the paper mainly discusses WGS data 

analysis. Are there specific recommendations for using WES? One difference that comes to mind is 

the more uneven coverage distribution owing to PCR amplification. 

4) Do the authors think using UMIs could have an impact? 

 

Reviewer 2 
 

Are you able to assess all statistics in the manuscript, including the appropriateness of statistical 

tests used? No 

 

Comments to author: 

This is a technical tour de force effort by a cluster of investigators in the Brain Somatic Mosaicism 

Network, aiming to develop a systematic strategy to call somatic mutations from deep whole genome 

sequencing data on non-cancerous tissues, and to provide a best practice to the community. To this 

end, the authors followed a carefully designed plan, with many experimental and computational 

components being carried out by multiple groups in BSMN independently, followed by a joint 

analysis effort. The experimental part is quite comprehensive and rigor. They generated sequencing 

data from cell line mixtures with known variant frequencies to identify the most appropriate 

combination of variant calling methods and various parameters. Multiple groups in BSMN also 

performed independent deep sequencing (WGS, and some single-cell whole genome sequencing) on 

different tissue/cell types of the same donor for the calling of somatic mutations. Candidate variants 

were further validated extensively, with 10X linked reads and digital PCR. These data really represent 



what is possible nowadays with the cutting edge technologies. The computational component was 

very systematic. The biggest challenge with somatic variant calling is dealing with false positives. 

The authors carefully examined four different sources of false positives, and came up with strategies 

to filter them out. Some informative findings include how CNVs lead to false positives and how 

effective haplotype-based error detection is using 10X linked reads. The best practice developed in 

this study is to my knowledge the most comprehensive guideline for calling somatic SNVs, and is 

supported by a highly rigorous experimental validation. The authors made their data, and the entire 

computational workflow available at bsmn.synapse.org as well as  github.com/bsmn/bsmn-pipeline, 

which greatly facilitates the adoption by the community. Overall, I believe this paper would be of 

great interests to investigators in the field of genetics, medical genetics, neuroscience and even cancer 

genetics. 

 

I have only one critique. The authors stated that with their best practice they achieved a sensitivity and 

specificity of 90% on mosaic variant calling. This is probably the best estimate based on the results 

they obtained in this study. Nonetheless, most likely the true sensitivity and specificity depends on the 

variant frequency: variants at lower frequencies are always more difficult to call. The sensitivity and 

specificity of 90% was calculated based on the 43 variants and their allele frequencies present in that 

particular donor. If they were applying this to other donors, specificity might stay more or less the 

same, but sensitivity can fluctuate a lot depending on the spectrum of variant frequencies. With only 

43 variants called in this study, I don't think it is feasible to report the sensitivity at different ranges of 

variant frequencies. Nonetheless, I would strongly recommend that the authors discuss how to 

interpret these performance metrics. 

 

Authors Response 

Point-by-point responses to the reviewers’ comments:  

Reviewer 1 

The authors present a thorough evaluation of the methods to detect somatic SNVs in the brain, using 

whole-genome sequencing of DNA mixtures and actual samples in order to identify best practices, 

without requiring matched 'normal' samples. Such guidelines are very valuable, as most work on 

somatic variants has been done in the context of cancer, and likely differences exist with the brain 

and other tissues in the absence of a proper control sample. 

Response: We thank this reviewer for their positive comments and thorough evaluation of our 

manuscript. 

1) The provided pipeline is very helpful, just like the PON mask. While I could not find an explicit 

mention of this, I have the impression that this PON is only available for GRCh37? 

Response: We thank the reviewer for asking for clarification of this important point. Actually, 

because the high-coverage data in the 1000 Genomes Project samples is mapped to GRCh38, the PON 

mask used in our study is only available for GRCh38. We used a UCSC liftOver tool to map 

candidate somatic variants to GRCh38 and then applied the PON filter. We now explicitly state the 

reference genome for PON mask in the “Data availability” section of the revised manuscript. 

Excerpts from the manuscript: The PON mask for GRCh38 can be accessed from: 
https://www.synapse.org/#!Synapse:syn22024464. The PON mask was generated using 1000 
Genomes Project high 

coverage whole genome sequencing of 2504 individuals available at ftp://ftp-  
trace.ncbi.nlm.nih.gov/1000genomes/ftp/1000G_2504_high_coverage.  

https://www.synapse.org/#!Synapse:syn22024464
ftps://ftp-/
http://trace.ncbi.nlm.nih.gov/1000genomes/ftp/1000G_2504_high_coverage.


2) The results using standard tools like Mutect2 and Strelka are sobering. I wonder if the authors 

have an opinion on this disappointing performance and if this can be attributed to these tools being 

mostly developed for tumor-normal based variant calling in a cancer setting, or are there other 

systematic issues? 

Response: We thank the reviewer for asking for clarification and welcome the opportunity to clarify 

this point in our revised manuscript. Briefly, because the Mutect2 and Strelka callers were developed 

to detect variants in a tumor/normal-based cancer setting, we believe these tools lack the power to 

detect somatic variants present (even at different frequencies) in each of the compared samples. To 

address this point, we have expanded the manuscript section entitled, “The detection of simulated 

somatic SNVs in DNA mixing experiments”. 

Excerpts from the manuscript: Moreover, MuTect2 and Strelka2, which are designed to detect 
somatic SNVs that are present in tumors but not matched normal samples, lacked the sensitivity to 
detect simulated mosaic SNVs shared between two matched samples (Figs. 1b & Additional file 1: 
Fig. S2). Indeed, given the mixing proportion and sequencing coverage, the p-value of the difference 
in VAFs between Mix 1 and Mix 2 for a simulated somatic SNV is around 0.01. Thus, because there 
are ~4 million SNPs in an individual genome, the above p-value is not sufficient to differentiate 
somatic SNVs from germline SNPs. 

3) While some of the contributing groups also performed WES the paper mainly discusses WGS 

data analysis. Are there specific recommendations for using WES? One difference that comes to 

mind is the more uneven coverage distribution owing to PCR amplification. 

Response: We thank this reviewer for asking this question. Briefly, our workflow can be applied for 

WES libraries. However, due to uneven coverage of sequence data across the genome, the detection 

sensitivity of mosaic variants can vary in WES data. Moreover, filtering out germline variants in 

duplicated genomic regions is difficult due to the lack of precise copy number estimates from WES data; 

thus, we mainly focused our analyses on WGS data. In the revised manuscript, we now have added a 

relevant text to the “Discussion” section to explicitly address this point. 

Excerpts from the manuscript: In principle, the same workflow described above also can be 
applied to WES data. However, due to uneven coverage of sequence data across the genome, the 
detection sensitivity of mosaic variants can vary in WES data. Moreover, filtering out germline 
variants in duplicated genomic regions is difficult due to the lack of precise copy number estimates 
from WES data; thus, we mainly focused our analyses on WGS data. 

4) Do the authors think using UMIs could have an impact? 

Response: Yes, we believed that using UMIs in conjunction with duplex sequencing may improve 

mosaic variant calling accuracy. However, the use of UMIs for calling mosaic variants will likely 

require significantly greater sequencing depth; thus, the genome-wide application of using UMIs in 

conjunction with duplex sequencing is currently impractical. We now discuss this point in the 

“Introduction” section of our revised manuscript. 

Excerpts from the manuscript: Similarly, molecular barcoding approaches such as duplex 
sequencing can correct errors introduced by PCR amplification or sequencing and offer >10,000-
fold improvement of accuracy compared to conventional WGS. However, the most accurate 
molecular consensus approaches require extremely high sequencing depth (1000X or higher) to 
ensure that each DNA molecule is sequenced multiple times thereby effectively utilizing only a few 
percent of generated reads for variant calling. This requirement practically restricts the main benefit 
of barcoding to targeted approaches. 



Reviewer 2 

This is a technical tour de force effort by a cluster of investigators in the Brain Somatic Mosaicism 

Network, aiming to develop a systematic strategy to call somatic mutations from deep whole genome 

sequencing data on non-cancerous tissues, and to provide a best practice to the community. To this 

end, the authors followed a carefully designed plan, with many experimental and computational 

components being carried out by multiple groups in BSMN independently, followed by a joint analysis 

effort. The experimental part is quite comprehensive and rigor. They generated sequencing data from 

cell line mixtures with known variant frequencies to identify the most appropriate combination of 

variant calling methods and various parameters. Multiple groups in BSMN also performed 

independent deep sequencing (WGS, and some single-cell whole genome sequencing) on different 

tissue/cell types of the same donor for the calling of somatic mutations. Candidate variants were 

further validated extensively, with 10X linked reads and digital PCR. These data really represent what 

is possible nowadays with the cutting edge technologies. The computational component was very 

systematic. The biggest challenge with somatic variant calling is dealing with false positives. The 

authors carefully examined four different sources of false positives, and came up with strategies to 

filter them out. Some informative findings include how CNVs lead to false positives and how effective 

haplotype-based error detection is using 10X linked reads. The best practice developed in this study is 

to my knowledge the most comprehensive guideline for calling somatic SNVs, and is supported by a 

highly rigorous experimental validation. The authors made their data, and the entire computational 

workflow available at bsmn.synapse.org as well as github.com/bsmn/bsmn-pipeline, which greatly 

facilitates the adoption by the community. Overall, I believe this paper would be of great interests to 

investigators in the field of genetics, medical genetics, neuroscience and even cancer genetics. 

Response: We thank this reviewer for their kind words and thorough evaluation of our manuscript. 

I have only one critique. The authors stated that with their best practice they achieved a sensitivity and 

specificity of 90% on mosaic variant calling. This is probably the best estimate based on the results they 

obtained in this study. Nonetheless, most likely the true sensitivity and specificity depends on the 

variant frequency: variants at lower frequencies are always more difficult to call. The sensitivity and 

specificity of 90% was calculated based on the 43 variants and their allele frequencies present in that 

particular donor. If they were applying this to other donors, specificity might stay more or less the same, 

but sensitivity can fluctuate a lot depending on the spectrum of variant frequencies. With only 43 

variants called in this study, I don't think it is feasible to report the sensitivity at different ranges of 

variant frequencies. Nonetheless, I would strongly recommend that the authors discuss how to interpret 

these performance metrics. 

Response: We thank the reviewer for raising this important question. We believe our sensitivity 

estimate is precise but agree that this point was not adequately described in our original manuscript. 

Briefly, in addition to estimating sensitivity using the 43 validated mosaic SNVs, we also estimated 

sensitivity using simulated variants from the DNA mixing experiments (see Figure 4b & Figure 

S10). In the revised manuscript, we added Figure S10 to clarify this important point. Figure S10 

demonstrates that the estimated sensitivity across the whole genome is ~65% when considering 

mosaic SNVs with ~0.02 to ~0.25 VAFs. Figure 4b demonstrates that the estimated sensitivity is 

~90% when considering the accessible genome (P-bases). 

Excerpts from the manuscript: The sensitivity to detect simulated SNVs across the entire genome at 

VAFs ranging from -0.02 to -0.25 was -65% (Fig. 4b) but increased to -90% when we only 

considered simulated SNVs present in the accessible portion of the genome (Additional file 1: Fig. 

S10). The latter estimate is comparable to what we observed for a subset of 35 

 

http://bsmn.synapse.org/
http://github.com/bsmn/bsmn-pipeline,

