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The temporal mutational and immune tumour
microenvironment remodelling of HER2-negative primary
breast cancers
Leticia De Mattos-Arruda 1,2,3✉, Javier Cortes 4,5,6,7,8, Juan Blanco-Heredia1,2, Daniel G. Tiezzi 3,9, Guillermo Villacampa10,
Samuel Gonçalves-Ribeiro 10, Laia Paré11,12,13, Carla Anjos Souza1,2, Vanesa Ortega7, Stephen-John Sammut3,14, Pol Cusco10,
Roberta Fasani10, Suet-Feung Chin 3, Jose Perez-Garcia4,5,6, Rodrigo Dienstmann10, Paolo Nuciforo10, Patricia Villagrasa12,
Isabel T. Rubio10, Aleix Prat 11,12,13 and Carlos Caldas 3,14

The biology of breast cancer response to neoadjuvant therapy is underrepresented in the literature and provides a window-of-
opportunity to explore the genomic and microenvironment modulation of tumours exposed to therapy. Here, we characterised the
mutational, gene expression, pathway enrichment and tumour-infiltrating lymphocytes (TILs) dynamics across different timepoints
of 35 HER2-negative primary breast cancer patients receiving neoadjuvant eribulin therapy (SOLTI-1007 NEOERIBULIN-
NCT01669252). Whole-exome data (N= 88 samples) generated mutational profiles and candidate neoantigens and were analysed
along with RNA-Nanostring 545-gene expression (N= 96 samples) and stromal TILs (N= 105 samples). Tumour mutation burden
varied across patients at baseline but not across the sampling timepoints for each patient. Mutational signatures were not always
conserved across tumours. There was a trend towards higher odds of response and less hazard to relapse when the percentage of
subclonal mutations was low, suggesting that more homogenous tumours might have better responses to neoadjuvant therapy.
Few driver mutations (5.1%) generated putative neoantigens. Mutation and neoantigen load were positively correlated (R2= 0.94,
p= <0.001); neoantigen load was weakly correlated with stromal TILs (R2= 0.16, p= 0.02). An enrichment in pathways linked to
immune infiltration and reduced programmed cell death expression were seen after 12 weeks of eribulin in good responders. VEGF
was downregulated over time in the good responder group and FABP5, an inductor of epithelial mesenchymal transition (EMT), was
upregulated in cases that recurred (p < 0.05). Mutational heterogeneity, subclonal architecture and the improvement of immune
microenvironment along with remodelling of hypoxia and EMT may influence the response to neoadjuvant treatment.
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INTRODUCTION
Breast cancer is the most commonly diagnosed cancer and the
leading cause of female cancer death worldwide1. It represents a
heterogeneous group of tumours with characteristic molecular
features, prognosis and responses to available therapy2,3.
In the early stage breast cancer setting, treatment decisions are

guided by clinical subtypes, namely hormone receptor (HR) positive
(HR+/HER2−), human epidermal growth factor receptor 2 amplified
(HER2+) and triple-negative breast cancer (TNBC). This general
classification does not take into account the complex genomic
landscape and breast cancer evolution during therapy administration
and disease recurrence or progression4,5.
Currently, the biology of the neoadjuvant response to therapy is

underrepresented in the literature. Large-scale genomic studies have
mostly focused on the analysis of single primary breast cancers2,3,6–9,
which do not provide information on cancers over time. The analysis
of the gene expression landscape of tumours has been shown to
correlate with response to cytotoxic therapies10–12, though very
limited work has been done to characterise the genomic and

transcriptomic changes across breast cancer patients receiving
neoadjuvant therapy13. Therefore, the neoadjuvant setting in breast
cancer provides a window-of-opportunity to explore the genomic and
microenvironment modulation of tumours exposed to therapy over
time5,14.
In this study, we temporally characterised the mutational, gene

expression, pathway enrichment and tumour-infiltrating lymphocytes
(TILs) dynamics across different timepoints over a 12-week period in
HER2-negative primary breast cancers enrolled in the single-arm
SOLTI-1007 NEOERIBULIN phase II clinical trial (NCT01669252). We
show that the mutational and immune tumour microenvironment
remodelling of HER2-negative primary breast cancers provides a path
forward for gathering biological insights from primary breast cancers.

RESULTS
A clinical cohort of HER2-negative breast cancer patients
Primary breast cancer tumour specimens were obtained from the
open-label, single-arm SOLTI-1007 NEOERIBULIN phase II clinical
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trial (NCT01669252). We included sequential primary tumour
biopsies from 35 HER2-negative (22 HR-positive and 13 HR-
negative) breast cancer patients (1–3 tumour tissue samples per
patient) during eribulin administration. Whole-exome data (N=
88 samples) generated mutational profiles and candidate neoanti-
gens and were analysed along with RNA-Nanostring 545-gene
expression (N= 96 samples) and stromal TILs (N= 105 samples)
from 35 patients with HER2-negative breast cancer (Fig. 1a).
Eighty per cent of cases had Ki67 greater than 14% at diagnosis.

Disease recurrence after neoadjuvant therapy with eribulin was
observed in six patients, despite the use of anthracyclines as

adjuvant therapy. Although six patients presented clinic-radiologic
recurrence, tumour material was available at the time of
recurrence in one patient. The samples that passed quality control
(i.e., tumour cellularity, sequencing quality, see Fig. 1a and
“Methods”), were further processed and analysed.
Clinical features of the cohort are summarised in Table 1 and

the schematics of the study design are shown in Fig. 1b. The 5-
year relapse-free survival was 85.6% (95% CI: 74.7–98.1%) after
breast cancer was diagnosed and the overall survival rate at 5
years was 91.3% (95% CI: 82.4–100%) for the patients analysed
here.
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Fig. 1 The study schematics. a. Tumour tissue samples underwent (i) Whole-exome sequencing (WES) for mutation and clonality detection
followed by neoantigen prediction; (ii) Nanostring gene expression profiling; and (iii) stromal TILs counting. Our goal was to select samples
that passed quality control and perform the temporal characterisation of the mutational, gene expression and TILs in serial primary HER2-
negative breast cancers that were good responders or poor responders to eribulin. DNA sequencing (WES) was performed in 88 primary
invasive breast cancers and matched the normal DNA of each patient. Of these, 66 tumour samples were used for mutational and clonality
analyses. RNA-Nanostring gene expression profiling was performed in 96 primary invasive breast cancers. From the DNA sequencing data,
candidate neoantigens were predicted. Stromal TILs were counted from the H&E slides in 91 out of 105 tumour specimens. Clinical features
and the PAM50 intrinsic molecular subtypes of each of the sequential primary tumour’s biopsies were examined. TMB tumour mutation
burden, ORR overall response rate. b Schematics of the clinical trial. Temporal tumour sampling and a number of samples included in each
analysis and time point are depicted. Distribution of PAM50 molecular intrinsic breast cancer subtypes at V1 (diagnostic biopsy), and ORR at
V3 (surgery). E eribulin administration, V1 visit one, V2 visit two, V3 visit three, VR visit recurrence, CR complete response, PR partial response,
SD stable disease, PD progressive disease.
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The mutational and TILs profiling across temporal primary
breast cancers
We characterised the mutational landscape of the tumours
through an analysis of tumour mutational burden (TMB), breast
cancer driver identification15, mutational signatures16 and muta-
tional clonality17 at baseline (V1) (28 cases) and correlated these at
visit 2 (V2) (24 cases) and with the response after 12 weeks of
therapy at the time of surgery (V3) (13 cases).
TMB varied among patients at baseline (V1) (median 1.75

mutations per megabase (Mb) [range: 0.59–8.19], with a standard
deviation of 1.48) but there was no evidence of variation across
the three sampling time points (V2, median 1.62 mutations/Mb

(range: 0.13–8.19), p= 0.62; V3, median 1.73 mutations/Mb (range:
0.38–7.11), p= 0.81) (mean coverage was ~40×) (Fig. 2a). At least
one breast cancer driver gene18,19 was detected in 28 (80%)
patients further analysed. TP53 (n= 15) and PIK3CA (n= 11) were
the most prevalent mutated driver genes in the cohort
(Supplementary Fig. 1, Supplementary Data). Mutations within
these breast cancer drivers were detected at all time points as well
as in the recurrent sample (case N021). In V1, TP53 mutation was
more prevalent in basal cancers (N= 9), as compared to Luminal-A
(N= 4) and Luminal-B (N= 2). Relapse free survival was not
statistically significant when samples bearing TP53mutations in V1
(N= 15) were compared to those without the mutation (N= 20)
[HR= 2.07, 95% CI: 0.35–12.4, p value= 0.43]. Likewise, no
difference was found in patients with PIK3CA mutation (n= 11)
[HR= 1.46, 95% CI: 0.24–8.75, p value= 0.68] (Supplementary Fig.
1). However, this cohort was not adequately powered to detect an
association between mutations in driver genes and clinical
outcomes.
We next investigated signatures of mutagenic biological

processes to determine whether there were any detectable shifts
during neoadjuvant therapy. A non-negative matrix factorisation
technique to identify mutagenic processes in breast cancer
including ageing, APOBEC cytidine deaminases, defective DNA
repair, BRCA1/BRCA2 deficiency was used16. Mutational signatures
were studied in each tumour sample across neoadjuvant therapy
(Fig. 2a—bottom panel). Signature 1 (C > T transitions at CpG
dinucleotides) contributed to a relatively higher proportion of
mutations, but others were predominant in some patients, such as
APOBEC (signatures 2 and 13), were more prevalent in luminal B
patients, and BRCA-related (signature 3) in basal-like tumours.
Signatures were not always conserved across tumour samples
(defective DNA repair signature was conserved in 62.5% of
patients (n= 8) while APOBEC and BRCA-related in 40% (n= 7 and
n= 10, respectively). No statistical differences were observed
between mutation signatures and overall response rate (ORR) (all
p values > 0.05, Fisher’s test) (Supplementary Fig. 1), although the
study was not initially powered to detect this association.
We computed tumour clonal composition and CCFs by applying

the ABSOLUTE17 algorithm across temporal primary tumours from
each patient to determine how clonal composition relates to
outcomes. Mutations predicted to be clonal (found in every cancer
cell) or subclonal (found in a subset of cancer cells) were
identified: the proportion of clonal mutations was 44.7% on the
first visit, 21.0% on the second visit, 28.9% at surgery and 5% at
recurrence).
We studied the shape of the association of subclonal mutations

at baseline (V1) and the patientsʼ odds to obtain a complete or
partial response (PR) and also the hazard to relapse (Fig. 2b, see
“Methods”). Overall, there was a trend towards higher odds of
response and less hazard to relapse when the percentage of
subclonal mutations was low (i.e., from 0 to 40%), suggesting that
less heterogeneous tumours might have better responses to
neoadjuvant therapy. Further increases above 40% in the
percentage of subclonal did not seem to impact outcomes. The
same analysis was carried out for HR-positive and HR-negative
patients (Fig. 2b, bottom panels). Overall, HR-positive patients had
a trend to have better outcomes.
We generated HLA-class I binding predictions for somatic

mutations that may result in protein changes. Totally, 492 out of
2009 (24.50%) unique mutations were predicted to encode for at
least one strong binder (binding rank < 0.5%) of HLA-class I. We
analysed candidate neoantigens generated from nonsynonymous
mutations. A total of 1002 putative neoantigens (average of 36 per
patient, [range: 2–153]) were present in 27 patients (Supplemen-
tary Data).
We inferred candidate neoantigens derived from breast cancer

driver mutations (5.19% of total neoantigens) and whether they
were clonal or subclonal. Overall, 52 neoantigens (average of 3.11

Table 1. Clinicopathological characteristics of the study cohort.

Number of patients 35 p value (Fisher’s
exact test)

Age (mean) 52.8 years

Histologic grade Diagnosis Surgery

Grade 1 4 1

Grade 2 16 18

Grade 3 14 14 0.5

Missing or not available 1 2

ER status

ER+ 21 18

ER− 14 15 0.8

Missing or not available 0 2

PR status

PR+ 17 17

PR− 18 16 1

Missing or not available 0 2

KI67 at diagnosis

> or = 14% 28 30

<14% 7 3 0.3

Missing or not available 0 2

Clinical tumour stage at
diagnosis

T0 0 2

T1 1 21

T2 31 10

T3 2 1 <0.001

Node

N0 24 19

N1 11 12

N2 0 4 0.1

Histology

IDC 30 27

ILC 2 2

other 3 4 0.9

Missing or not available – 2

Treatment response

pCR 2

Good responders (CR or PR) 19 (5 CR, 14 PR)

Poor responders (PR or SD) 16 (12 SD, 4 PD)

Missing or not available 3

Residual cancer burden (RCB)
after neoadjuvant treatment

RCB1= 1, RCB2= 18, RCB3= 13
patients, NA= 3

Recurrence 6
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Fig. 2 Mutational landscape of HER2-negative primary breast cancers under neoadjuvant chemotherapy. a Landscape of mutational
alterations over time. Stacked plots display mutational burden (top), breast cancer drivers (tile plots, middle), PAM50 molecular intrinsic
subtypes, clinical–pathological responses per patient and purity (tile plots, middle), mutation signatures (filled histogram). b Mutation
clonality and subclonal distribution across different responses to eribulin. Left panels: odds for complete or partial response; right panels: a
relative hazard for relapse-free survival (RFS). The analysis was performed for all comers (top panels) and for HR-positive and HR-negative
patients (bottom panels). c Distribution of selected driver mutations generating neoantigens. Driver gene mutations are coloured whether the
mutation is clonal or subclonal. d TILs across PAM50 intrinsic subtypes. (*) refer to p value < 0.05; ns nonsignificant. For each box plot, the
centre line, the boundaries of the box, the ends of the whiskers and points beyond the whiskers represent the median value, the interquartile
range, the minimum and maximum values, and the outliers, respectively. e Relationship between predicted neoantigen load (y-axis) and
nonsynonymous mutational load (x-axis) and between predicted neoantigen load (y-axis) and mean stromal TILs per patient (x-axis).
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per patient [range: 1–11]) were generated by 22 (unique) driver
mutations in 17 patients. Driver mutations including TP53 (p.
R110P, p.R209Kfs*6), PIK3CA (p.H1047L, p.K111E), MAP3K1 (p.
R961Sfs*44, p.E504Vfs*36) predicted neoantigens in more than
one patient, and in general, they were clonal and present across
all samples of each patient (Fig. 2c). Each candidate neoantigen
was predicted to be bound to one or more HLA class-I molecule.
Finally, stromal TILs were counted in 91 samples of 34 patients

and had a median of 9.3% [range: 0–40] among patients. Among
the PAM50 intrinsic subtypes, basal-like tumours had significantly
more TILs than luminal A (p value= 0.02) but not luminal B (p
value= 0.11) (Fig. 2d, Supplementary Fig. 1).
We observed that the higher nonsynonymous mutation load

was strongly correlated with neoantigen load and the latter was
weakly correlated with stromal TILs. A significant positive
correlation was observed in both analyses (R2= 0.94, p= <0.001
and R2= 0.16, p= 0.02), respectively (Fig. 2e).
Therefore, although TMB and driver mutations were temporally

conserved across neoadjuvant therapy, cases with a lower
percentage of subclonal mutations, thus more homogeneous
breast cancers, had a trend for better responses. TILs were weakly
correlated with neoantigen load, and a small fraction of
neoantigens were derived from driver gene mutations.

Multiple expressed genes across temporal primary breast
cancers
To identify differentially expressed gene candidates during the
administration of neoadjuvant chemotherapy, we performed
targeted gene expression profiling using a custom 545-gene
Nanostring panel composed of breast cancer-related genes
among 35 patients (Supplementary Data).
We observed a total of 155 genes differentially expressed in

patients responding to eribulin at surgery (good responders, CR or
PR [N= 19]) vs. those with poor responses (PD or SD [N= 16]).
After a false discovery rate (FDR) adjustment p value < 0.05,
ALDH1A1, EVI2A, ADRA2A, LHFP, LOC400043 and PTGER4, were
upregulated while VEGFA, FANCA, ORC6, KIFC1 and ANGPTL4 were
downregulated in the good responder group (Fig. 3a, Supple-
mentary Data).
To assess variability within and between individuals, gene

expression levels were analysed over a 12-week period for each
patient (Fig. 3a bottom panels, Supplementary Fig. 2). Consistent
with the general trend in the previous analysis, increased levels of
ALDH1A1, EVI2A, ADRA2A, LHFP, LOC400043 and PTGER4 were
modulated over time in patients responding to eribulin.
Overall and across all time points, we analysed patients that

developed disease recurrence after curative therapy (n= 6) vs.
those that did not recur (n= 29). We observed 58 upregulated
genes in the group of patients with clinical recurrence as
compared to those who did not have a recurrence. Among those
were FABP5, YBX1, TUBB6, PLOD1 and CXCL8 genes that were
upregulated and analysed over 12 weeks during neoadjuvant
therapy.
Our analyses evidenced fatty acid-binding protein 5 (FABP5)

overexpression at surgery (V3) was the only statically significant
after FDR adjustment p < 0.05 in cases that recurred, as compared
to those that did not recur (FDR= 0.04) (Fig. 3b, Supplementary
Fig. 2). FABP5 is an inductor of the epithelial-mesenchymal
transition (EMT) transition process20. EMT has been reported to
contribute to tumour aggressiveness and eribulin resistance21,22.
Finally, we used pathway enrichment analysis to identify the

activity of the immune system and common cancer signalling
pathways before and after neoadjuvant therapy (see “Methods”,
Table 2). At the baseline V1 timepoint, it was observed an increase
in pathways associated with angiogenesis, hypoxia and epithelial
features, in patients that had poor responses to therapy (SD/PD).
In the good responder group, eribulin treatment was associated

with statistically significant enrichment of pathways associated to
lymphocyte and T cell activation in the end of therapy (V3 or
surgery), and with reduction in expression of the immunosup-
pressive programmed cell death pathway. In contrast, there was
an increase in cell proliferation and reduction in cytotoxic T cell
pathways for the poor responder group at V3 or surgery
timepoint. This suggests that eribulin apparent reversal of EMT
and restoration of hypoxia might lead to improvement of
immunosuppressive features in the primary tumours of good
responders, and an increase of proliferation and reduction of
immune cytotoxic activity in poor responders.

DISCUSSION
Our study describes a step forward in gathering insights related to
response to neoadjuvant therapy for HER2-negative primary
breast cancers. Whole-exome sequencing, gene expression, path-
way enrichment and TILs analyses of temporal primary breast
tumours of 35 HER2-negative breast cancer patients show cancer
remodelling during neoadjuvant chemotherapy.
The strengths of our analysis include the prospective design of

the study, and the orthogonal genomic and immune infiltration
data for each primary breast cancer systematically obtained from
the SOLTI-1007 NEOERIBULIN phase II clinical trial (NCT01669252).
Clonal driver mutations were maintained over time, but intratu-
moral genomic heterogeneity, measured as a fraction of subclonal
mutations may affect response to therapy. Heterogeneity in
mutational signatures across patients was considerably greater
than at the intrapatient level, which was, in general, not conserved
across temporal samples of each patient in 12 weeks of therapy
administration. It should be noted, however, that eribulin is a weak
chemotherapeutic agent which might explain the minimal change
within the genomic landscape21. Its efficacy might be related to
the fact that that it might change tumour phenotype (based on
the EMT hypothesis)21 rather than changing tumour genotypes.
Neoantigens have been predicted in a few primary breast

cancer datasets23,24. There is usually a discrepancy of neoantigens
predicted computationally and those actually shown to leverage
robust T-cell responses25,26. An immunosuppressive tumour
microenvironment might be associated with this fact. A recent
analysis of The Cancer Genome Atlas (TCGA) dataset of invasive
breast cancers, predicted HLA class I-binding neoepitopes for 870
breast cancer samples24. About 40% of the nonsynonymous
mutations led to the generation of candidate neoepitopes and the
neoepitope load was also highly correlated with the mutational
burden. Here, 21% of the nonsynonymous mutations led to the
generation of putative neoantigens. Candidate neoantigens and
stromal TILs were positively correlated and were more frequent in
basal-like primary tumours. Driver mutations such as frameshifts
mutations in TP53 and MAP3K1 genes or missense mutations in
the PIK3CA gene can generate tumour neoantigens, suggesting
that a T cell-mediated immune response, if present and properly
validated, would target all cancer cells15,27,28. The relevance of
neoantigens derived from clonal driver mutations, particularly
those arising from truncating mutations, is the possibility of being
incorporated as targets for adoptive T cell therapies and cancer
vaccines28,29.
The evaluation of TILs has been shown to represent a reliable

surrogate of the immune anti-tumour activity and a robust
independent prognostic biomarker in breast cancer patients,
especially in the TNBC and HER2-positive breast cancer sub-
types30,31. Retrospective reports analysed TILs as prognostic and
predictive markers in metastatic TNBC patients that received
eribulin32. In a previous analysis, the high TILs group vs low TILs
within the metastatic TNBC cases had better outcomes and
suggested TILs to predict treatment response to eribulin in the
TNBC metastatic setting32. In our early stage breast cancer cohort,
stromal TILs detected in H&E slides were more frequent in basal-
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Fig. 3 Gene expression profiling in longitudinal primary breast tumour biopsies. a ORR at surgery (V3) (patients with good response to
eribulin vs. poor response) (Top). Genes identified have a change corresponding to eribulin treatment. Volcano plots with the strength of the
association on the y-axis (−log10 p values) and the effect size on the x-axis (log 2-fold change (FC)). Differentially expressed genes were
highlighted during different timepoints across neoadjuvant therapy (V1–V3). Genes above the red dotted line represent those whose
expression levels were significantly different (p value < 0.01). A full list of the most up and downregulated genes can be found on
Supplementary Data. Boxplots of good and poor responders on eribulin over time, colour-coded by their corresponding poor response (red)
or good response (blue) in eribulin from baseline to surgery (Bottom). b Same as in (a). Patients with later clinical recurrence vs. no recurrence
(Top). Boxplots of individual patients on eribulin over time, colour-coded by their corresponding recurrence (purple) or nonrecurrence (grey)
in eribulin from baseline to surgery (Bottom).
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like primary tumours. A statistically significant higher percentage
of stromal TILs after the end of neoadjuvant therapy was not
observed possibly due to the small sample size and other
biological factors including immunosuppressive TME. However,
we observed an enrichment in pathways associated with immune
infiltration and reduced programmed cell death after 12 weeks of
eribulin administration corroborating findings observed in meta-
static breast cancer. In a recent study33, lymphocyte infiltration
increase and PDL1 expression turning to negative values were
suggested to be improvements in the immunosuppressed TME of
patients receiving eribulin for advanced breast cancer. Our
findings add to current evidence for potentially combining
checkpoint inhibitors to eribulin in the early breast cancer
setting34.
There is the emerging rationale for eribulin to activate the

immune system in pre-clinical and retrospective studies, through
EMT suppression, and vascular remodelling and improvement of
the tumour immune microenvironment21. Our analyses indicate
that temporal gene expression responses to eribulin might be
associated with the process of restoration of hypoxia, and the EMT
process, which should be contextualised with the immune TME.
Eribulin treatment has shown to suppress genes that are known to
be involved in hypoxic signalling cascades, including VEGF,
contributing to TME remodelling and restoring the scenario of
normoxia35,36. We observed that VEGF was downregulated over-
time during eribulin therapy in the good responder group. At
diagnosis, poor responders presented an overexpression of
angiopoietin-like 4 (ANGPTL4), a pro-angiogenic factor that is
modulated by hypoxia and associated with poor prognosis,
metastasis, cell differentiation and vascular permeability37. Pre-
viously, aldehyde dehydrogenase 1A1 (ALDH1A1) was reported as
a cancer stem cell marker and suggested to have a favourable
prognostic role for cervical cancer38,39. Although we observed
ALDH1A to be upregulated in good responders, its role in breast
cancer is undefined yet. Furthermore, FABP5 promotes tumour cell
growth in numerous cell types and is a negative prognostic
marker in renal cell carcinoma20,40. FABP5 was upregulated in
cases that presented further clinic-radiological recurrence. How-
ever, identification of FABP5 as a biomarker in HER2-negative
breast cancer requires substantially increased cohort size and
mechanistic validation for robust interpretation.
Our work has limitations which are mostly secondary to the

small sample size and therefore lack of power to detect specific
associations. Nonetheless, this HER2-negative breast cancer cohort
gives a glimpse of the changes in cancer biology during
neoadjuvant therapy administration. Another limitation is the
545 targeted gene expression panel used did contemplate only a
few immune markers including IDO1, LAG3 and STAT1. Further-
more, the primary endpoint of the present clinical trial is
pathologic complete response (pCR) in the breast. We used ORR
for analyses of responses after the neoadjuvant therapy since
there are only a few pCR cases; residual cancer burden was used
but was not informative in the dataset; thus, the association
between biomarkers and response is challenging.
Taken together, these results suggest that mutational hetero-

geneity, subclonal architecture and the immune microenviron-
ment along with remodelling of hypoxia and EMT may influence
the response to neoadjuvant treatment in early stage disease, with
possible implications for clinical decision-making and monitoring
of treatment efficacy.

METHODS
Patients and tissues
Primary breast cancer tumour specimens were obtained from the phase II
study, open-label, single-arm SOLTI-1007 NEOERIBULIN (NCT01669252). The
patients reported here were treated at the Vall Hebron Institute of
Oncology, Barcelona. In brief, eribulin was administered as neoadjuvantTa
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treatment for stage I-II HER2-negative breast cancer with a dose of 1.4 mg/
m2 intravenously on Days 1 and 8 every 21-day cycle, for 4 cycles, and the
pathological CR was defined as the absence of residual invasive tumour in
breast tumour specimens. All patients were negative for HER2 over-
expression on clinical assays. The Ethics Committee of the Vall Hebron
University Hospital, Barcelona, Spain approved the study. All patients gave
informed consent for DNA and RNA sequencing.

Clinic-pathological response analyses
We adopted a conservative method of defining ORR after neoadjuvant
therapy as CR or PR by response evaluation criteria in solid tumours
(RECIST) (major decrease in tumour burden following treatment) and poor
response as progressive disease (PD) or stable disease (SD) by RECIST
(major increase or stability in tumour burden following treatment) after
eribulin therapy.
Patients were classified into two groups depending on their clinical

response to therapy at surgery: good responders—patients that had CR or
PR; poor responders—patients that had PD or SD.

Tissue processing and DNA and RNA extraction
Frozen biopsies were embedded in a frozen tissue matrix (OCT; Sakura
Finetek, Torrance, CA) and cut at the cryostat for tumour cellularity
assessment by a pathologist. Genomic DNA was isolated from 10 × 10um
sections using the DNeasy Kit (Qiagen, Hilden, Germany). Samples with less
than 10% tumour material or that produced low DNA yield were excluded
from the analysis.
A section of the FFPE breast tissue was first examined with haematoxylin

and eosin staining to confirm the presence of invasive tumour cells (≥10%).
For RNA purification (High Pure Formalin-Fixed Paraffin-embedded RNA

Isolation Kit, Roche Diagnostics Limited, West Sussex, UK), one to five
10 μm FFPE slides were used for each tumour specimen (at diagnosis, cycle
2 and surgery).

Gene expression and Intrinsic subtype analyses
A minimum of ∼125 ng of total RNA was used to measure the expression
of 545 genes involved in breast cancer, including 5 housekeeping genes
(ACTB, MRPL19, PSMC4, RPLP0 and SF3A1), using the Prosigna assay
(NanoString Technologies, Seattle, USA). Samples with 20 or fewer counts
in at least 70% of the genes were removed. Data were log base 2
transformed and normalised using the housekeeping genes.
The same RNA was used to measure the expression of 50 genes of the

PAM50 intrinsic subtype predictor assay. For each sample, we calculated
the PAM50 signature scores (Basal-like, HER2-E, Luminal A and B) and the
proliferation signature score41. Differential gene expression analysis fold
change of each gene was calculated as the ratio of average gene
expression intensity of (i) the good responder group (n= 19 [5 CR, 14 PR])
to that of the poor responder group (n= 16 [12 SD, 4 PD]) or (ii) the
patients that recurred (n= 6) to that of the non-recurrent group (n= 29). A
two-sample t test was used to compare gene expression intensities
between groups.
A gene was claimed to be differentially expressed if it showed a fold

change of >1 (increased in good responders, or non-recurrent) or ≤ −1
(increased in poor responders, or in the later recurred) and further
adjustment FDR ≤ 0.05 was applied. Volcano plots were used to visualise
log 2-fold change on the x-axis and −log10 p values on the y-axis.
Pathway enrichment analysis was performed using the gprofiler toolkit42

comparing good responder vs. poor responder groups using two ontology
databases as reference: (i) Gene Ontology and (ii) Kyoto Encyclopaedia of
Genes and Genomes.

DNA sequencing
WES was performed to the breast cancer tumour and matched normal
DNA obtained from the buffy coat of each HER2-negative breast cancer
patient.
Libraries for Illumina sequencing were prepared using Illumina Nextera

Rapid Capture Exome kit (cat. FC-140-1003, Illumina) as we reported
previously. Prior to library preparation DNA concentrations for each sample
were quantified using a fluorescence-based method (Quant-IT dsDNA BR,
cat. Q33130, Thermo Fisher Scientific) and 50 ng of genomic DNA was used
for library preparation.
Samples were processed following the manufacturer’s instructions

(part# 15037436 Rev. J, Illumina) for WES. Prior to the first hybridisation,

all libraries were quantified using quantitative polymerase chain reaction
(qPCR). KAPA Library Quantification Kit (cat. KK4873, KAPA Biosystems) as
used as per manufacturer’s recommendations. A subset of libraries was
analysed using DNA 1000 Kit (cat. 5067-1504, Agilent).
Whole-genome libraries and exome libraries were normalised and

pooled in equal volumes to create balanced pools. Each pool was
normalised to molarity of 4 nM and used for sequencing with clustering
concentration 20 pM with 1% spike-in of PhiX control. Sequencing was
performed on an Illumina HiSeq2500 using v4 chemistry and 50 cycles
single-end for s-WGS and 75 cycles paired-end for WES. Demultiplexing
was performed using Illumina’s bcl2fastq2 v.2.17 software using default
options. FASTQ files were used for subsequent data analysis.

WES analyses
For WES analysis, reads were mapped to the human genome (GRCh37) and
base quality recalibration were performed using Novoalign v 3.02
(Novocraft). Coordinate sorting of reads and PCR-duplicate marking was
performed using Novosort (v 3.02). The resulting bam files for all samples
for the same patient were locally realigned using the Genome Analysis
Toolkit (GATK, v 3.4.46)43. MuTect (version 2) was run using default
parameters44. Strelka (version 1.0.14) was run with recommended starting
parameters for BWA and default parameters45. The mean coverage per
sample was calculated with CollectWgsMetrics (Picard). A joint calling was
done and filtered allelic fraction >10% in at least one sample of each
patient. Somatic mutations were annotated using Variant Effect Predictor
(VEP, http://grch37.ensembl.org/) and visualised using IGV. Output with
reads > 15 and purity > 20% were included in further analyses.

ABSOLUTE
ABSOLUTE (v1.0.6) was used to infer the cancer cell fraction (CCF) of
mutations and the mutations were classified as clonal or subclonal as
previously described17,46. A mutation was classified as clonal if its
probability of being clonal was >50% or if the lower bound of the 95%
confidence interval of its CCF was >90%. Mutations that did not meet the
above criteria were considered subclonal.
ABSOLUTE software was used to calculate tumour clonality, purity and

ploidy. For running the ABSOLUTE we obtained the mutation annotation
file by running vcf2maf script with VCF files for the corresponding tumour
and normal control samples, annotation was performed by VEP. To find the
segmentation we ran the CNVkit batch command with the.bam files from
tumour and normal samples47. For running ABSOLUTE we subset the.cns
files from the CNVkit output file for variant coordinates as well as probes
and log2 values. We used the options min.ploidy= 0.95, max.ploidy= 10.
Probability of a mutation to be clonal was defined essentially as described
in ref. 48.

Mutation signature
Decomposition of the mutational signature was performed using
deconstructSigs16, based on the set of 30 mutational signatures. These
signatures are largely defined by the relative frequency of the six possible
base substitutions (C > A, C > G, C > T, T > A, T > C, and T > G) in the
sequence context of their adjacent 5′ and 3′ base. Of these, COSMIC
signatures 1, 2, 3, 6, 13, 9, 10, 15, have been associated with breast cancer.
For clarity, we explored the following mutational signatures in this cohort:
ageing/clock-like signatures49,50 (signatures 1 and 5), APOBEC (signatures 2
and 13), BRCA-related (signature 3), defective DNA repair (signatures 6 and
15), polymerase n (signature 9), POLE mutations (signature 10), unknown
breast (signature 30) and other signatures.

Neoantigen prediction
The 4-digit HLA type was obtained from matched normal WES data and
the OptiType 1.3.1 analysis software package was used51. WES and HLA
typing was integrated, and NeoPredPipe pipeline52 was applied with minor
modifications for the neoantigen prediction. First, non-synonymous
cancer-specific mutations, i.e., present in all tumour cells and absent in
all normal cells, were used to generate a comprehensive list of peptides
(9–11 amino acids in length) with the mutated amino acid represented at
each peptide position and used as input was previous described.
Prioritisation of neoantigens: the selection of candidate neoantigens were
based on a %Rank < 0.5; epitopes already existing in the reference
proteome indicated by the Novelty parameter were excluded.
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Tumour infiltrating lymphocytes
Evaluations of stromal TILs were performed on haematoxylin and eosin-
stained sections by an experienced board-certified pathologist (R.F.)
according to the 2014 recommendations of the international TILs working
group53.

Statistical analysis
Continuous variables were expressed as median and range, while
categorical variables were expressed as absolute values or percentages.
For statistical comparison, we used Mann–Whitney test for independent
continuous variables, Wilcoxon signed-rank test for paired continuous data
and Fisher’s exact test for categorical data. To study if there was a
significant variation of TMB across sampling timepoints the Wilcoxon
signed-rank test was used to compare pairwise timepoints. In addition, the
range and standard deviation of TMB in each time point were calculated to
estimate intra-period TMB heterogeneity. To study the association
between mutations in driver genes and relapse-free survival the Cox
proportional hazard model was fitted. Furthermore, to analyse the
association between the percentage of subclonal mutations at baseline
and clinical outcomes, we used the logistic and Cox models after relaxed
linearity assumption using restricted cubic splines by means of rms R
package. Data analyses were carried out using R version statistical
software 3.6.3.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analysed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.1445426154. The whole-exome
sequencing bam files have been deposited at the European Genome-phenome
Archive (EGA), which is hosted by the EBI and the CRG, under the study accession
number https://identifiers.org/ega.study:EGAS00001004953 and dataset accession
number https://identifiers.org/ega.dataset:EGAD00001006980 55. The decreased and
increased pathway enrichment analyses are available via GitHub at https://github.
com/NeoVaCan/NPJBCANCER_DeMattos_2021/tree/main/Data_Supp_Table2. The
supplementary tables are also available in Excel format as part of the figshare data
record. The patient metadata and patient tumour-infiltrating lymphocytes data are
not publicly available for the following reason: data contain information that could
compromise research participant privacy. However, the data can be made available
upon reasonable request to the corresponding author.
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