

Supplementary Materials

The Mutational Landscape of Acute Myeloid Leukaemia Predicts Responses and Outcomes in Elderly Patients from the PETHEMA-FLUGAZA Phase 3 Clinical Trial

Rosa Ayala, Inmaculada Rapado, Esther Onecha, David Martínez-Cuadrón, Gonzalo Carreño-Tarragona, Juan Miguel Bergua, Susana Vives, Jesus Lorenzo Algarra, Mar Tormo, Pilar Martinez⁰, Josefina Serrano¹, Pilar Herrera, Fernando Ramos, Olga Salamero, Esperanza Lavilla, Cristina Gil, Jose Luis Lopez-Lorenzo, María Belén Vidriales, Jorge Labrador, Jose Francisco Falantes, María José Sayas, Bruno Paiva, Eva Barragán, Felipe Prosper, Miguel Ángel Sanz, Joaquín Martínez-López and Pau Montesinos and on behalf of the Programa para el Estudio de la Terapeutica en Hemopatias Malignas (PETHEMA) Cooperative Study Group

FLUGAZA Clinical Trial (PETHEMA)

Patients

Two-hundred and eighty-three patients aged over 65 with newly-diagnosed acute myeloid leukemia (AML; excluding those with acute promyelocytic leukemia according to World Health Organization criteria 1) and with an Eastern Cooperative Oncology Group PS (ECOG PS) <4. were enrolled in the PETHEMA phase 3 FLUGAZA clinical trial (NCT02319135). Exclusion criteria included prior treatment with hypomethylating agents or standard chemotherapy for AML secondary to myelodysplastic syndrome or myeloproliferative neoplasms, inadequate renal and hepatic function unless attributable to AML, and presence of other major coexisting illnesses (except *in situ* carcinoma or concomitant malignancy in complete remission [CR] for more than one year). All patients provided written informed consent. The trial was approved by appropriate institutional review boards or ethics committees at all sites before initiation and was conducted according to the tenets of the Declaration of Helsinki and the Harmonization E6 Guidelines for Good Clinical Practice.

Treatment.

Patients were randomized 1:1 to receive open-label treatment with azacytidine or with low-dose cytarabine plus fludarabine (FLUGA). The induction phase consisted of three cycles. Patients in the experimental arm received subcutaneous (s.c.) azacytidine in standard doses (75 mg/m²) on days 1 to 7 of each cycle (5-2-2 administration was allowed). Concomitant or al hydroxycarbamide (0.5-1 g every 8 hours) was administered in addition to azacytidine when white blood cell (WBC) counts were between 15-50 × 109/L until leukocytes decreased to <15 × 109/L. Patients assigned to the azacytidine arm with WBC >50 × 109/L received the FLUGA scheme instead of azacytidine in cycle 1. Patients in the FLUGA arm received cytarabine (75 mg/m²) by s.c. administration or 6-hour intravenous (i.v.) perfusion when they were outpatients or hospitalized, respectively, together with fludarabina, either oral at 40 mg/m² if an outpatient or i.v. at 25 mg/m² if hospitalized. on days 2 to 6 (days 2 to 5 when they were ≥75 years old). Patients in this arm also received s.c. filgrastim (granulocyte-colony stimulating factor; 5 µg/kg) on days 1-3 except when WBC were >25 × 10⁹/L. Cycles were repeated every 28 days. Criteria to receive treatment as an inpatient included WBC >25 x10⁹/L. high risk of tumor lysis syndrome coagulopathy or other serious uncontrolled complication. Patients in CR. complete remission with incomplete blood count recovery (CRi), partial remission (PR), hematology improvement or stable disease after the induction phase continued with the consolidation phase., which consisted of six cycles that also lasted for 28 days. In the experimental arm, the dose route and days of administration of azacytidine were the same as those used in the induction

phase. In the FLUGA arm, daily doses and routes of administration of FLUGA were the same as those used during induction, but drugs were given only on days 1 and 2 of every cycle (mini-FLUGA). All patients could receive supportive care (transfusions. antimicrobial and antifungal agents) as per institutional standard practice. An allogeneic hematopoietic stem cell transplant was not indicated as part of the front-line strategy in this clinical trial.

At the end of the ninth cycle, patients in CR/CRi had bone marrow aspirates for assessment of measurable residual disease (MRD). Those with MRD levels ≥0.01% continued treatment (azacytidine or mini-FLUGA) until relapse or progressive disease was documented. Patients whose MRD levels were <0.01% suspended treatment and entered the follow-up phase.

Supplemental Methods.

Mutational profile workflow and filtering and classification of variants was performed as previously published (Onecha E. Haematologica 2020)

Patients were evaluated for mutations in NPM1 and FLT3 by methods other than next generation sequencing (NGS) (PCR and GeneScan. respectively). We used a separate script and detected the FLT3-ITD mutation by NGS. Although this panel was not designed to detect large InDels. we only missed 5 cases in the series who were positive using GeneScan analysis and these cases were considered as positive FLT3-ITD.

Custom NGS panel which included 43 genes implicated in myeloid pathology outlined below.

	CHD	CT A DT	END	COLUED A CE (0/)
GENE	CHR	START	END	COVERAGE (%)
ASXL1	20	30954122	31025231	98.59
BCOR	X	39911228	39937243	100
BCORL1	X	129139130	129190192	97.03
CALR	19	13049460	13054786	100
CBL	11	119077080	119170509	96.95
CEBPA	19	33792147	33793455	97.57
CSF3R	1	36931652	36945167	100
DNMT3A	2	25457047	25536929	96.81
EGLN1	1	231502062	231557733	89.26
EPAS1	2	46525036	46611847	95.38
EPOR	19	11488599	11495008	93.96
ETV6	12	11802967	12044078	100
EZH2	7	148504657	148544423	100
FLT3	13	28578144	28644795	98.36
IDH1	2	209101731	209116356	100
IDH2	15	90627367	90635017	84.96
JAK2	9	5021946	5126835	100
KDM6A	X	44732709	44970753	99.01
KIT	4	55524176	55604767	100
KMT2A	11	118307241	118393002	97.7
KRAS	12	25362705	25398385	100
MPL	1	43803488	43818462	99.26
NF1	17	29422227	29701206	99.66
NPM1	5	170814868	170837656	95.27
NRAS	1	115251106	115258821	100
PHF6	X	133511597	133559416	89.4
PRPF40B	12	50017325	50038043	99.18
RAD21	8	117859710	117878977	100
<i>RUNX1</i>	21	36164287	36421263	98.42
SETBP1	18	42281301	42643812	100
SF3A1	22	30730553	30752861	100
SF3B1	2	198256921	198299857	98.87

SH2B3	12	111855923	111886159	88.57
SMC1A	X	53406965	53449648	98.28
SRSF2	17	74732208	74733436	100
STAG2	X	123156407	123234509	100
TET2	4	106154899	106197684	100
THPO	3	184090090	184096202	100
TP53	17	7572852	7579966	94.5
U2AF1	21	44513191	44527685	98.86
VHL	3	10183360	10191667	96.58
WT1	11	32410545	32456973	91.46
ZRSR2	Χ	15808512	15841397	100

Table S1. Patient characteristics.

	Variables	NGS study (N = 207)
Age at diagnosis	Years. median (range)	75 (65–90)
Blasts at diagnosis	%. median	53
WBC at diagnosis	×10 ⁻⁹ /L. median (range)	6.7 (0.56–235)
Dyserythropoiesis	n. cases. %	92 (44%)
Dysmyelopoiesis	n. cases. %	80 (39%)
Dysthrombopoiesis	n. cases. %	54 (26%)
	de novo	116 (56%)
AML origin	AML secondary MDS	92 (44%)
	AML secondary treatment	16 (8%)
FAB classification	M0/M1/M2/M4/M5/M6/M7/NOS	32/ 36/ 35/ 1/ 43/ 24/ 10/ 19
Cytogenetics	Abnormal karyotype	97 (47%)
Cytogenetics Risk	Low	16
Group	Intermediate	84
(ELN criteria)	High	97
	AML with certain recurrent genetic abnormalities	18
WHO classification	AML wth myelodysplasic-related changes	92
	AML related to previous chemother- apy or radiation	16
	AML NOS	80
In dustion tweeter out	AZA	96
Induction treatment	LDAC (FLUGA)	111
2md arrala maamamaa	CR	54 (26%)
3rd cycle response	PR	21 (10%)
Progression cases		131 (63%)
Death cases		167(81%)

Table represents the clinical data of patients included in the FLUGAZA clinical trial with an NGS gene panel study at diagnosis. WBC = white blood cells. AML = acute myeloid leukemia. AZA = azacitidine. ELN = European leukemiaNet (2017). MDS = myelodysplastic syndromes. FAB= French-American-British. NOS = not otherwise specified. LDAC (FLUGA) = low-dose cytabrine plus fludarabine. CR = complete remission and PR = partial remission. Clinical data were collected from the FLUGAZA trial (NCT02319135).

Table S2. Comparison of clinical and biological characteristics of the 207 patients who were included in this study and 78 not included The number of partial responses in the 78 cases without molecular evaluation is in agreement with that obtained in the population included in this study in function of treatment received.

Age at diagnosis Years. media 75 76 76 76 76 76 76 76	Var	iable	AZA-Arm (N = 96)	FLUGA-Arm (<i>N</i> = 111)	AZA-arm =4 7 FLUGA-arm	<i>p</i> -Value
Blasts at diagnosis %. media 55 53 47 p = NS WBC at diagnosis x10°/L. media 22 21 19 p = NS Dyserythropoiesis n cases 45 47 28 p = NS Dysmyelopoiesis n cases 38 42 32 p = NS Dysthrombopoiesis n cases 23 31 18 p = NS Dysthrombopoiesis n cases 23 31 18 p = NS AML origin AML secondary 47 45 30 p = NS AML secondary 5 11 1 p = NS AML secondary 5 11 1 p = NS AML secondary 5 11 1 p = NS FAB classification M6/M7/NOS 12/5/9 12/5/10 0/4/16 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Risk Cov-Intermedite 63 68 50 <t< th=""><th></th><th>2/ 1:</th><th></th><th>7/</th><th>= 32</th><th>NIC</th></t<>		2/ 1:		7/	= 32	NIC
WBC at diagnosis x10 %L. media 22 21 19 p = NS Dyserythropoiesis n cases 45 47 28 p = NS Dysmyelopoiesis n cases 38 42 32 p = NS Dysthrombopoiesis n cases 23 31 18 p = NS AML origin AML secondary MDS 47 45 30 p = NS AML secondary MDS 5 11 1 p = NS FAB classification M6/M7/NOS 12/5/9 12/5/10 0/4/16 p = NS FAB classification Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Risk Low-Intermedite 63 68 50 p = NS Group High Risk 30 35 23 p = NS WHO classification mgenetic 5 13 2 p = NS WHO classification myelod						•
Dyserythropoiesis n cases 45 47 28 p = NS Dysmyelopoiesis n cases 38 42 32 p = NS Dysthrombopoiesis n cases 23 31 18 p = NS AML origin AML secondary MDS 47 45 30 p = NS FAB classification M0/M1/M2/M4/M5/ 16/15/13/121/ 16/21/22/0/22/ 6/11/13/10/1 p = NS FAB classification M6/M7/NOS 12/5/9 12/5/10 0/4/16 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Risk Low-Intermedite 63 68 50 p = NS Group High Risk 30 35 23 p = NS AML with certain genetic 5 13 2 p = NS WHO classification myelodisplasic 47 45 30 47 45 30 47 45 30 47 45 30 47 45	S					,
Dysmyelopoiesis n cases 38 42 32 p = NS Dysthrombopoiesis n cases 23 31 18 p = NS AML origin AML secondary MDS 47 45 30 p = NS FAB classification AML secondary MDS 5 11 1 p = NS FAB classification M0/M1/M2/M4/M5/ 16/15/13/1/21/ 16/21/22/0/22/ 6/11/13/10/1 p = NS Abnormal Abnormal 46/38 51/26 37/29 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Risk Low-Intermedite 63 68 50 p = NS Group High Risk 30 35 23 p = NS AML with certain genetic 5 13 2 p = NS WHO classification myelodisplasic-related changes 47 45 30 + F AML related to chemotherapy or related changes 5 11 1 + F AM		•				,
Dysthrombopoiesis n cases 23 31 18 p = NS AML origin AML secondary MDS 47 45 30 p = NS AML secondary MDS 5 11 1 p = NS FAB classification M0/M1/M2/M4/M5/ 16/15/13/1/21/ 16/21/22/0/22/ 6/11/13/10/1 p = NS FAB classification M6/M7/NOS 12/5/9 12/5/10 0/4/16 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Risk Low-Intermedite 63 68 50 p = NS Group High Risk 30 35 23 p = NS AML with certain genetic 5 13 2 p = NS WHO classification myelodisplasic-related changes 47 45 30 + F AML related to chemotherapy or related changes 5 11 1 + F AML NOS 38 42 46 + F				- -		,
AML origin de novo MDS AML secondary MDS 47 45 30 p = NS FAB classification AML secondary MDS 5 11 1 p = NS FAB classification M0/M1/M2/M4/M5/ 16/15/13/1/21/ 16/21/22/0/22/ 6/11/13/10/1 p = NS M6/M7/NOS 12/5/9 12/5/10 0/4/16 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Karyotype Karyotype 5 13 20 p = NS Group High Risk 30 35 23 p = NS AML with certain genetic 5 13 2 p = NS WHO classification myelodisplasic 47 45 30 p = NS WHO classification chemotherapy or 5 11 1 related changes AML related to chemotherapy or rediation previous 11 1 related models and related to chemotherapy or rediation previous 38 42 46 46						,
AML origin AML secondary MDS 47 45 30 p = NS FAB classification AML secondary 5 11 1 p = NS M0/M1/M2/M4/M5/ 16/15/13/1/21/ 16/21/22/0/22/ 6/11/13/10/1 p = NS M6/M7/NOS 12/5/9 12/5/10 0/4/16 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Risk Low-Intermedite 63 68 50 p = NS Group High Risk 30 35 23 p = NS AML with certain genetic 5 13 2 p = NS WHO classification AML with myelodisplasic- 47 45 30 y = NS WHO classification AML related to chemotherapy or 5 11 1 1 AML related to chemotherapy or 5 11 1 1 AML vidiation previous AML NOS 38 42 46 46	Dysthrombopoiesis	n cases	_	_		,
AML origin MDS 47 45 30 p = NS FAB classification AML secondary 5 11 1 p = NS FAB classification M0/M1/M2/M4/M5/ 16/15/13/1/21/ 16/21/22/0/22/ 6/11/13/10/1 p = NS M6/M7/NOS 12/5/9 12/5/10 0/4/16 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Risk Low-Intermedite 63 68 50 p = NS Group High Risk 30 35 23 p = NS AML with certain genetic 5 13 2 p = NS WHO classification myelodisplasic- 47 45 30 p = NS WHO classification myelodisplasic- 47 45 30 in the company of th			44	55	47	p = NS
FAB classification M0/M1/M2/M4/M5/ 16/15/13/1/21/ 16/21/22/0/22/ 6/11/13/10/1 p = NS M6/M7/NOS 12/5/9 12/5/10 0/4/16 p = NS Cytogenetics Karyotype/Normal 46/38 51/26 37/29 p = NS Cytogenetics Risk Low-Intermedite 63 68 50 p = NS Group High Risk 30 35 23 P = NS AML with certain genetic 5 13 2 p = NS abnormalities AML with AML with 47 45 30 Telated changes AML related to chemotherapy or radiation previous 5 11 1 1 AML NOS 38 42 46 46	AML origin	•	47	45	30	p = NS
FAB classification $M6/M7/NOS$ $12/5/9$ $12/5/10$ $0/4/16$ $p = NS$ Abnormal Cytogenetics Karyotype/Normal $46/38$ $51/26$ $37/29$ $p = NS$ Karyotype Cytogenetics Risk Low-Intermedite 63 68 50 $p = NS$ Group High Risk 30 35 23 AML with certain genetic 5 13 2 $p = NS$ abnormalities AML with myelodisplasic-related changes AML related to chemotherapy or 5 11 1 radiation previous AML NOS 38 42 46		AML secondary	5	11	1	p = NS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EAD 1 '6' 4'	M0/M1/M2/M4/M5/	16/15/13/1/21/	16/21/22/0/22/	6/11/13/10/1	NC
	FAB classification		12/5/9	12/5/10	0/4/16	<i>p</i> = NS
Cytogenetics Risk Low-Intermedite 63 68 50 $p = NS$ Group High Risk 30 35 23 AML with certain genetic 5 13 2 $p = NS$ abnormalities AML with myelodisplasic-related changes AML related to chemotherapy or 5 11 1 1 radiation previous AML NOS 38 42 46	Cytogenetics		46/38	51/26	37/ 29	p = NS
Group High Risk 30 35 23 AML with certain genetic 5 13 2 $p = NS$ abnormalities AML with myelodisplasic- related changes AML related to chemotherapy or 5 11 1 1 radiation previous AML NOS 38 42 46	Cytogenetics Risk		63	68	50	n = NS
AML with certain genetic 5 13 2 $p = NS$ abnormalities AML with WHO classification myelodisplasic-related changes AML related to chemotherapy or 5 11 1 1 radiation previous AML NOS 38 42 46						p 140
$ \begin{array}{c} \text{genetic} & 5 & 13 & 2 & p = \text{NS} \\ \text{abnormalities} & \\ \text{AML with} & \\ \text{WHO classification} & \begin{array}{c} \text{myelodisplasic-} \\ \text{related changes} \\ \text{AML related to} \\ \text{chemotherapy or} & 5 & 11 & 1 \\ \text{radiation previous} \\ \text{AML NOS} & 38 & 42 & 46 \end{array} $	Group	· ·	30	33	23	
related changes AML related to chemotherapy or 5 11 1 radiation previous AML NOS 38 42 46		genetic abnormalities	5	13	2	p = NS
radiation previous AML NOS 38 42 46	WHO classification	related changes	47	45	30	
AML NOS 38 42 46		1,7	5	11	1	
			38	42	46	
p 10	Follow-up time					v = NS
CR 23 31 15 $p = NS$					15	,
3^{rd} cycle response Cri 14 18 26 $p = NS$	3 rd cycle response		_			,
PR 16 5 11 $p = 0.004$	i cycle response	_				,
Final response CR 26 31 16 $p = NS$	Final response			_		,
Death cases 73 94 55 $p = NS$	•					,

Table S3. Logistic regression analysis. Response defined as CR after 3^{rd} cycle in the global series in function of characteristics of patients with AML on the treatment arm. Responder patients were defined as patients who achieved CR or CRi after 3^{rd} cycle. AZA = azacitidine. FLUGA = fludarabine plus low-dose cytarabine (LDAC). OR = odds ratio. CI = confidence interval. Cytogenetic Risk Group (Low-Intermediate/High-Risk. classification ELN 2017). The multivariate analyses showed that no variable was associated with achieving a CR after bonferroni adjustment.

Dayan atau	# Value	OP	95% CI	for OR
Parameter	p Value	OR	Lower	Upper
AZA vs FLUGA-arm	0.438	1.398	0.599	3.265
Median age. years	0.037	0.916	0.843	0.995
Cytogenetic (Low-Intermediate / High	0.626	1.320	0.433	4.029
Risk)	0.020	1.320	0.433	4.029
Mutated ASXL1 (Yes/No)	0.779	0.837	0.242	2.897
Mutated BCOR (Yes/ No)	0.525	0.484	0.051	4.553
Mutated BCORL1 (Yes/ No)	0.758	1.369	0.186	10.10
Mutated CALR (Yes/No)	0.999	0	0	
Mutated CBL (Yes/No)	0.996	1.008	0.048	21.208
Mutated CEBPA by NGS (Yes/ No)	0.615	0.606	0.086	4.263
Mutated DNMT3A (Yes/ No)	0.422	0.614	0.186	2.023
Mutated EPAS1 (Yes/No)	0.268	0.201	0.012	3.431
Mutated EPOR (Yes/No)	0.294	6.317	0.202	197.69
Mutated ETV6 (Yes/No)	0.175	0.211	0.022	1.999
Mutated EZH2 (Yes/No)	0.130	4.425	0.646	30.30
Mutated FLT3 (Yes/ No)	0.815	1.143	0.375	3.482
Mutated IDH1 (Yes/ No)	0.914	1.079	0.273	4.255
Mutated IDH2 (Yes/No)	0.488	0.631	0.172	2.317
Mutated JAK2 (Yes/No)	0.573	0.647	0.143	2.935
Mutated KDM6A (Yes/ No)	0.088	0.026	0	1.722
Mutated KIT (Yes/ No)	0.900	1.140	0.148	8.79
Mutated KMT2A (Yes/ No)	0.006	6.684	1.732	25.79
Mutated KRAS (Yes/No)	0.561	1.911	0.215	16.97
Mutated MPL (Yes/ No)	0.890	1.273	0.042	38.97
Mutated NF1 (Yes/No)	0.005	9.013	1.927	42.15
Mutated NPM1 by NGS (Yes/No)	0.130	2.933	0.729	11.80
Mutated NRAS (Yes/ No)	0.021	0.043	0.003	0.623
Mutated PHF6 (Yes/ No)	0.014	7.935	1.514	41.59
Mutated PRPF40B (Yes/No)	0.523	2.582	0.141	47.33
Mutated RAD21 (Yes/No)	0.851	1.330	0.067	26.33
Mutated RUNX1 (Yes/ No)	0.969	0.977	0.299	3.195
Mutated SETBP1 (Yes/ No)	0.652	0.631	0.085	4.681
Mutated SF3A1 (Yes/No)	0.670	2.090	0.07	62.14
Mutated SF3B1 (Yes/No)	0.236	2.380	0.567	10
Mutated SH2B3 (Yes/No)	0.794	1.416	0.104	19.29
Mutated SRSF2 (Yes/ No)	0.637	1.332	0.405	4.378
Mutated STAG2 (Yes/ No)	0.640	1.480	0.286	7.664
Mutated TET2 (Yes/ No)	0.944	1.036	0.383	2.807
Mutated TP53 (Yes/ No)	0.039	0.179	0.035	0.918
Mutated U2AF1 (Yes/ No)	0.040	7.085	1.092	45.97
Mutated VHL (Yes/ No)	0.134	10.09	0.492	206.8
Mutated WT1 (Yes/ No)	0.175	0.189	0.017	2.095
Mutated ZRSR2 (Yes/ No)	0.942	1.058	0.228	4.904
Score response predictor (no/ yes)	0.341	0.664	0.286	1.543
Score High Risk (no/yes)	0.814	1.200	0.263	5.468

Table S4. Logistic regression analysis. Response defined as overall response after 3^{rd} cycle in the global series in function of characteristics of patients with AML on the treatment arm. Responder patients were defined as patients who achieved CR, CRi or PR (overall response) after 3^{rd} cycle. AZA = azacitidine. FLUGA = fludarabine plus low-dose cytarabine (LDAC). OR = odds ratio. CI = confidence interval. Cytogenetic Risk Group (Low-Intermediate / High-Risk. classification ELN 2017). The multivariate analyses showed that no variable was associated with achieving a CR after bonferroni adjustment.

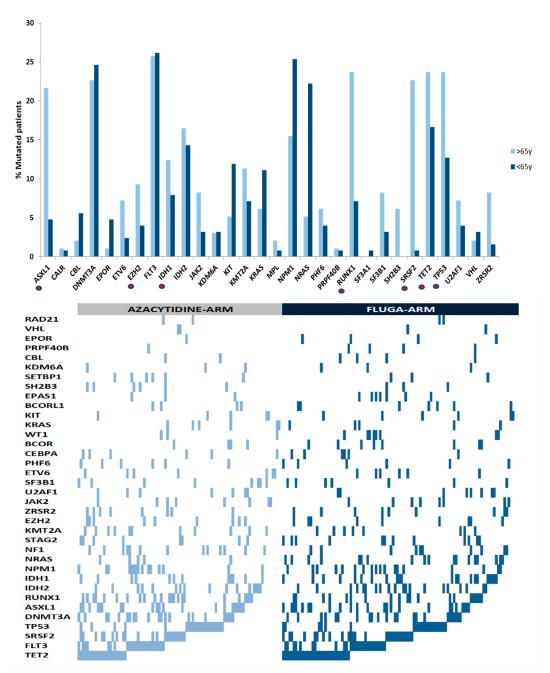
Parameter	p Value	OR	95% CI for OR		
	•		Lower	Upper	
Median age. years	0.078	0.938	0.873	1.007	
Cytogenetic (Low-	0.241	0.624	0.284	1.373	
Intermediate/High Risk)	0.211		0.201		
AZA vs FLUGA-arm	0.928	1.047	0.388	2.827	
Mutated ASXL1 (Yes/No)	0.639	0.765	0.25	2.339	
Mutated BCOR (Yes/ No)	0.252	0.322	0.046	2.237	
Mutated BCORL1 (Yes/No)	0.489	0.502	0.071	3.532	
Mutated CALR (Yes/ No)	0.999	0	0		
Mutated CBL (Yes/ No)	0.859	1.262	0.098	16.24	
Mutated CEBPA by NGS (Yes/ No)	0.206	0.33	0.059	1.843	
Mutated DNMT3A (Yes/ No)	0.379	0.62	0.214	1.799	
Mutated EPAS1 (Yes/No)	0.836	1.222	0.183	8.154	
Mutated EPOR (Yes/ No)	0.468	3.391	0.125	92.04	
Mutated ETV6 (Yes/ No)	0.306	0.38	0.059	2.429	
Mutated EZH2 (Yes/ No)	0.732	1.363	0.232	7.988	
Mutated FLT3 (Yes/No)	0.244	0.538	0.189	1.527	
Mutated IDH1 (Yes/No)	0.323	0.526	0.147	1.881	
Mutated IDH2 (Yes/No)	0.779	0.845	0.262	2.727	
Mutated JAK2 (Yes/No)	0.12	0.313	0.072	1.354	
Mutated KDM6A (Yes/No)	0.206	0.109	0.004	3.367	
Mutated KIT (Yes/ No)	0.182	3.633	0.547	24.14	
Mutated KMT2A (Yes/ No)	0.025	4.29	1.204	15.30	
Mutated KRAS (Yes/ No)	0.348	2.45	0.377	15.92	
Mutated MPL (Yes/ No)	0.827	0.692	0.026	18.69	
Mutated NF1 (Yes/ No)	0.033	4.538	1.13	18.21	
Mutated NPM1 by NGS (Yes/ No)	0.589	1.421	0.397	5.091	
Mutated NRAS (Yes/ No)	0.031	0.136	0.022	0.832	
Mutated PHF6 (Yes/No)	0.102	3.767	0.767	18.50	
Mutated PRPF40B (Yes/No)	0.778	1.506	0.088	25.84	
Mutated RAD21 (Yes/ No)	0.642	1.954	0.116	32.95	
Mutated RUNX1 (Yes/ No)	0.929	1.051	0.35	3.159	
Mutated SETBP1 (Yes/ No)	0.681	0.692	0.12	4.001	
Mutated SF3A1 (Yes/No)	0.399	4.261	0.147	123.6	
Mutated SF3B1 (Yes/ No)	0.275	2.106	0.553	8.019	
Mutated SH2B3 (Yes/No)	0.705	1.614	0.136	19.18	
Mutated SRSF2 (Yes/ No)	0.348	1.673	0.571	4.904	
Mutated STAG2 (Yes/No)	0.766	1.262	0.273	5.822	
Mutated TET2 (Yes/No)	0.070	2.347	0.934	5.9	
Mutated TP53 (Yes/ No)	0.018	0.190	0.048	0.756	
Mutated U2AF1 (Yes/No)	0.132	3.569	0.681	18.71	
Mutated VHL (Yes/ No)	0.141	8.857	0.484	161.9	
Mutated WT1 (Yes/ No)	0.414	0.420	0.052	3.370	
Mutated ZRSR2 (Yes/ No)	0.172	2.587	0.660	10.13	
Score response predictor (no/ yes)	0.471	0.704	0.271	1.828	
Score High Risk (no/yes)	0.983	0.975	0.094	10.12	

Table S5. Median OS in function mutant versus wild-type genes. Only genes mutated in $\geq 4\%$ of patients were included in this table.

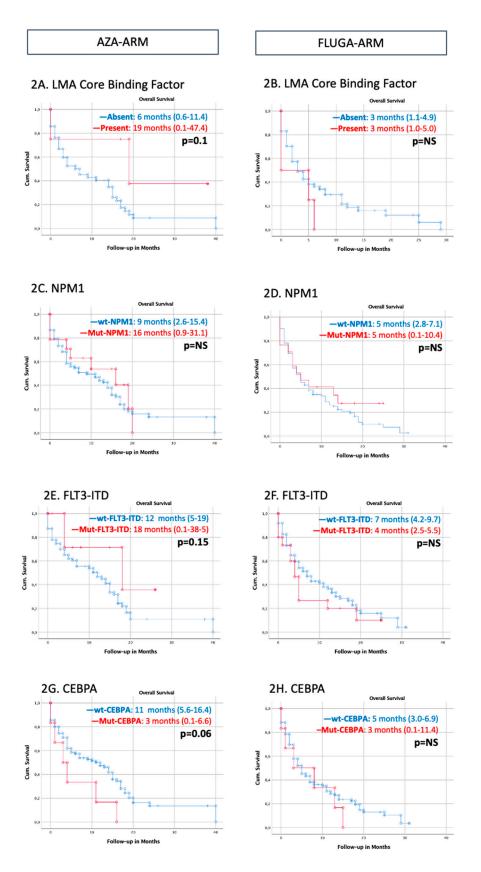
		AZA-Arm		FLUGA-Arm			
C	0/ 3.5 1	wt Median OS	Mut Median OS	0/ 34 1	wt Median	Mut Median	
Gene		Months	Months		OS Months	OS Months	
	Patients	(95% CI)	(95% CI)	Patients	(95% CI)	(95% CI)	
ASXL1	21.6	9 (2.3–15.7)	12 (0.4–23.6)	21.4	4(2.6–5.4)	7(0-14.8)	
BCOR	4.1	11 (4.3–17.7)	7 (0–17.8)	7.1	5 (3.0-6.9)	3 (0-11.3)	
BCORL1	4.1	11(5.0–16.9)	4 (NA)	6.3	5 (2.9–7.1)	4 (0-13.6)	
CEBPA	6.2	11 (5.6–16.4)	3 (0-0.7)	5.4	5 (3.0-6.9)	3 (0-11.4)	
DNMT3A	22.7	11 (4.4–17.5)	9 (2.5–15.5)	20.5	5 (2.4–7.6)	4 (2.0-5.9)	
ETV6	7.2	11 (4.5–17.5)	9 (3.9–14.1)	5.4	5 (2.8–7.1)	4 (1.8–6.1)	
EZH2	9.3	7 (0.7–13.3)	14 (6.5–21.5)	8.0	5 (2.7–7.3)	4 (0-8.6)	
FLT3	25.8	11 (4.3–17.7)	10 (0-29.9)	24.1	5 (2.9–7.0)	3 (1.3-4.66)	
IDH1	12.4	11 (4.8—17.2)	7 (0-20.4)	19.6	4 (2.5–5.5)	7 (2.4–11.6)	
IDH2	16.5	10 (2.7–17.3)	12 (2.3-21.7)	17.9	5 (3.4–6.5)	6(2.1-9.9)	
JAK2	8.2	11 (5.1–16.9)	1 (NA)	7.1	5 (2.9–7.1)	1 (0-6.5)	
KIT	5.2	11 (4.5–17.5)	7 (0.6–13.4)	5.4	5 (3.0-6.9)	3 (0-7.8)	
KMT2A	11.3	9 (3.4-4.6)	17 (0-35.4)	7.1	5 (3.0-6.9)	3 (0-12.7)	
KRAS	6.2	11 (5.1–16.9)	1 (0-5.8)	4.5	5 (3.0-6.9)	2 (0-4.1)	
NF1	13.4	12 (5.7–18.3)	4 (0-11.9)	8.9	5 (2.9–7.1)	4 (0-11.7)	
NPM1	15.5	9 (2.6–15.4)	16 (0.9-31.1)	16.1	5 (2.8–7.1)	5 (0-11.2)	
NRAS	5.2	10 (4.4–15.6)	15 (0-38.6)	16.1	6 (3.8–8.1)	2 (0.6–3.4)	
PHF6	6.2	10 (3.5–16.5)	12 (0-27.7)	5.4	5 (2.9–7.1)	4(0-13.6)	
<i>RUNX1</i>	23.7	7 (0–14.0)	15 (7.7–22.2)	17.9	5 (3.0-6.9)	3 (1.3-4.7)	
SETBP1	6.2	11 (5.1–16.8)	4 (NA)	2.7	5 (2.9–7.0)	Not reached	
SF3B1	8.2	9 (2.8–15.2)	19 (9.6-28.4)	6.3	5 (3.0-6.9)	11 (0-34.1)	
SH2B3	6.2	9 (1.5–16.5)	11 (8.8–13.1)	2.7	5 (2.8–7.1)	11 (1.4–20.6)	
SRSF2	22.7	11 (4.4–17.6)	7 (0-20.3)	24.1	4 (2.8–5.2)	11 (3.6–18.4)	
STAG2	8.2	10 (3.8–16.2)	11 (0-26.4)	10.7	5 (2.9–7.1)	3 (0.7–5.2)	
TET2	23.7	7 (0.1–13.9)	14 (9.8–18.2)	28.6	5 (2.6–7.4)	4 (1.2-6.7)	
TP53	22	14 (10.9–17.0)	2 (0.4–3.5)	19.6	7 (4.4–9.5)	2 (0.9-3.1)	
U2AF1	8	7 (1.3–12.7)	15 (8.3–21.7)	7.1	5 (3.4–6.6)	6 (1.8–10.1)	
WT1	8	11 (4.9–17.0)	4 (0–10.4)	7.1	5 (2.9–7.1)	3 (2.1–3.9)	
ZRSR2	9	7 (1.1–12.9)	15 (8.5–21.5)	8.0	5 (3.5–6.5)	7 (0–18.7	

OS = Overall Survival. Overall survival was calculated from diagnosis to the time of death from any cause. In the AZA-arm. the median OS was 10 months (range 4.4–15.6) for wt-NRAS versus 15 months (range 0–38.6) for mut-NRAS, whereas in the FLUGA-arm the median OS was 6 months (range 3.8–8.1) for wt-NRAS versus 2 months (range 0.6–3.4) for mut-NRAS (p = 0.013). In the AZA-arm. the median OS was 14 months (range 10.9–17) for wt-TP53 versus 2 months (range 0.4–3.7) for mut-TP53, whereas in the FLUGA-arm the median OS was 7 months (range 4.4–9.6) for wt-TP53 versus 2 months (range 0.9–3.1) for mut-TP53 (p < 0.001). In addition, patients with mutated SF3B1 showed a trend for better prognosis in both arms. In the AZA-arm. the median OS was 9 months (range 2.8–15.2) for wt-SF3B1 versus 19 months (range 9.6–28.4) for mut-SF3B1 (p = 0.081), whereas in the FLUGA-arm the median OS was 5 months (range 3–6.9) for wt-SF3B1 versus 11 months (range 0–34.1) for mut-SF3B1 (p = 0.083).

 $\textbf{Table S6.} \ \textbf{Mutated genes in FLUGAZA clinical trial (AZA versus FLUGA)}.$


Gene	AZA-Arm (Cases)	AZA-Arm (%)	FLUGA-Arm (cases)	FLUGA-Arm (%)
ASXL1	21	21.6	24	21.4
BCOR	4	4.1	8	7.1
BCORL1	4	4.1	7	6.3
CALR	1	1	1	0.9
CBL	2	2.1	4	3.6
CEBPA	6	6.2	6	5.4
CSF3R	0	0	0	0
DNMT3A	22	22.7	23	20.5
EGLN1	0	0	0	0
EPAS1	3	3.1	7	6.3
EPOR	1	1	4	3.6
ETV6	7	7.2	6	5.4
EZH2	9	9.3	9	8
FLT3	25	25.8	27	24.1
IDH1	12	12.4	22	19.6
IDH2	16	16.5	20	17.9
JAK2	8	8.2	8	7.1
KDM6A	3	3.1	3	2.7
KIT	5	5.2	6	5.4
KMT2A	11	11.3	8	7.1
KRAS	6	6.2	5	4.5
MPL	2	2.1	1	0.9
NF1	13	13.4	10	8.9
NPM1	15	15.5	18	16.1
NRAS	5	5.2	18	16.1
PHF6	6	6.2	6	5.4
PRPF40B	1	1	4	3.6
RAD21	2	2.1	2	1.8
RUNX1	23	23.7	20	17.9
SETBP1	6	6.2	3	2.7
SF3A1	0	0	2	1.8
SF3B1	8	8.2	7	6.3
SH2B3	6	6.2	3	2.7
SMC1A	1	1	2	1.8
SRSF2	22	22.7	27	24.1
STAG2	8	8.2	12	10.7
TET2	23	23.7	32	28.6
THPO	1	1	0	0
TP53	23	22	22	19.6
U2AF1	7	8	8	7.1
VHL	2	2	2	1.8
WT1	3	8	8	7.1
ZRSR2	8	9	9	8

Distribution of gene mutations in both arms of the clinical trial (AZA = azacitidine. FLUGA = fludarabine plus low-dose cytarabine (LDAC)). Number of cases and % with mutations in each arm.


Table S7. Univariate Cox regression analysis for OS and RFS.

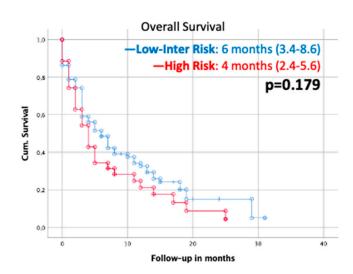
			death 95%				relapse	_	
Variables	HR	CI fo	or HR	<i>p-</i> value	HR	95% CI	for HR	<i>p</i> -value	
		Lower	Upper			Lower	Upper		
Age. years	1.03	0.997	1.064	0.070	0.99	0.954	1.03	0.663	
Cytogenetic									
(Low-	1.23	0.756	2.006	0.404	0.92	0.530	1.583	0.754	
Intermediate /	1.25	0.750	2.000	0.404	0.72	0.550	1.505	0.754	
High Risk)									
$AZA \ vs$	1.26	0.854	1.847	0.245	1.61	1.034	2.495	0.034	
FLUGA-arm	1.20	0.034	1.04/	0.243	1.01	1.034	2.493	0.034	
ASXL1	1.03	0.630	1.692	0.898	0.95	0.544	1.657	0.856	
BCOR	1.30	0.609	2.769	0.497	3.79	1.696	8.442	0.001	
BCORL1	1.06	0.462	2.405	0.898	0.96	0.362	2.527	0.928	
CALR	0.51	0.042	6.142	0.595	12.9	2.014	82.967	0.006	
CBL	2.75	0.743	10.2	0.129	0.23	0.022	2.453	0.226	
CEBPA	1.95	0.884	4.29	0.097	2.12	0.871	5.161	0.097	
DNMT3A	1.46	0.915	2.325	0.112	1.42	0.784	2.565	0.247	
EPAS1	0.90	0.322	2.473	0.828	1.35	0.436	4.185	0.601	
EPOR	2.37	0.690	8.16	0.170	0.23	0.035	1.477	0.121	
ETV6	2.05	0.930	4.521	0.074	1.40	0.583	3.371	0.449	
EZH2	0.69	0.338	1.37	0.281	0.75	0.356	1.579	0.448	
FLT3	1.16	0.713	1.871	0.557	1.07	0.589	1.949	0.818	
IDH1	1.21	0.675	2.151	0.526	1.57	0.783	3.148	0.203	
IDH2	1.53	0.881	2.641	0.131	1.32	0.695	2.508	0.394	
JAK2	2.32	1.037	5.17	0.040	1.90	0.770	4.708	0.163	
KDM6A	2.60	0.854	7.903	0.092	0.76	0.150	3.873	0.744	
KIT	0.73	0.283	1.904	0.525	1.62	0.632	4.147	0.314	
KMT2A	0.65	0.332	1.267	0.205	1.09	0.527	2.258	0.813	
KRAS	1.05	0.427	2.589	0.912	0.38	0.108	1.309	0.124	
MPL	0.64	0.129	3.18	0.586	2.14	0.407	11.23	0.369	
NF1	1.41	0.726	2.753	0.308	1.55	0.736	3.247	0.249	
NPM1	0.81	0.411	1.602	0.547	0.49	0.219	1.11	0.087	
NRAS	2.09	1.191	3.652	0.010	2.62	1.300	5.269	0.007	
PHF6	0.58	0.246	1.365	0.212	1.35	0.5345	3.401	0.526	
PRPF40B	1.45	0.360	5.858	0.598	0.45	0.047	4.391	0.496	
RAD21	0.89	0.228	3.461	0.866	2.97	0.673	13.119	0.150	
RUNX1	1.16	0.688	1.951	0.579	1.51	0.868	2.619	0.144	
SETBP1	0.63	0.208	1.887	0.406	0.99	0.347	2.87	0.998	
SF3A1	1.76	0.356	8.725	0.487	0.86	0.093	7.836	0.891	
SF3B1	0.64	0.339	1.214	0.172	0.77	0.364	1.619	0.488	
SH2B3	0.55	0.181	1.666	0.290	1.71	0.477	6.107	0.410	
SMC1A	1.24	0.315	4.895	0.756	0.91	0.156	5.282	0.915	
SRSF2	0.76	0.449	1.285	0.304	0.75	0.424	1.331	0.327	
STAG2	1.41	0.735	2.721	0.299	1.32	0.644	2.703	0.448	
TET2	1.29	0.838	1.98	0.246	1.68	1.020	2.757	0.440	
TP53	2.57	1.351	4.872	0.004	1.90	0.822	4.374	0.133	
U2AF1	0.47	0.206	1.059	0.068	0.48	0.190	1.217	0.133	
VHL	0.47	0.200	2.892	0.329	2.62	0.659	10.411	0.122	
WT1	1.13	0.042	2.688	0.329	2.72	0.839	7.844	0.171	
ZRSR2	0.82	0.472	2.669	0.787	1.17	0.555	2.472	0.678	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			1.007	0.361	1.1/	0.333		0.076	

AZA = azacitidine. FLUGA = fludarabine plus low-dose cytarabine (LDAC). HR = hazard ratio. CI = confidence interval. Cytogenetic Risk Group (Low-Intermediate / High-Risk. classification ELN 2017).

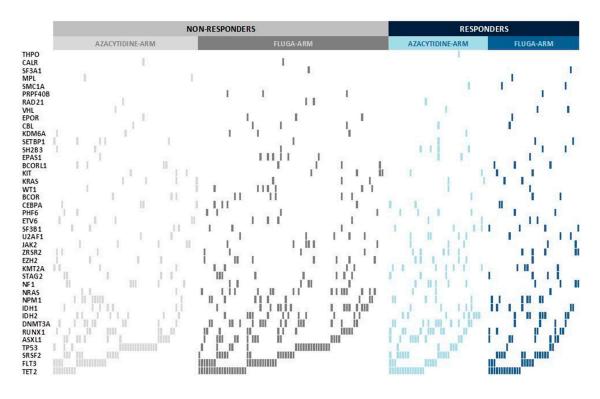
Figure S1. The landscape of mutated gene in elderly patients with AML is different to that of younger patients. (**A**). The mutational landscape described in the present study is different to that previously published for younger patients. We detected a higher number of patients with mutations in *ASXL1*, *EZH2*, *IDH1*, *RUNX1*, *SRSF2*, *TET2* and *TP53* in the elderly AML cohort versus our previously published younger AML cohort. (**B**). Distribution of mutations in both arms showing that *NRAS* mutations (p = 0.012) are more frequent in patients randomized to the FLUGA-arm. By contrast. *TP53* mutation frequency distribution is homogeneous: 23.7% in AZA-arm and 19.6% in FLUGA-arm (p = NS).

Figure 2. Kaplan-Meier analyses were performed to assess the association of conventional genomic aberrations with patient overall survival. No conventional molecular marker with prognostic impact on overall survival was detected. Recurrent genetic abnormalities group have no significant impact on overall survival (OS) in the AZA-arm (**A**) or the FLUGA-arm (**B**). *NPM1* or *FLT3*-ITD have no significant impact on OS in the AZA-arm (**C**,**E**. respectively) or the FLUGA-arm (**D**,**F**. respectively). *CEBPA* mutations showed a tendency for association with poor OS in the AZA-arm.

with a median OS of 11 months for *CEBPA* mutated (mut) versus 3 months for *CEBPA* wild type (wt); p = 0.06 (G,H. respectively). Absence of marker or wild-type status is indicated in blue. presence of marker or mutated status is represented in red. AZA. azacytidine; FLUGA fludarabine plus low-dose cytarabine (LDAC)


FLUGA-ARM

A. Cytogenetics


Overall Survival -Low-Inter Risk: 14 months (10.8-17.2) -High Risk: 3 months (1.2-4.8) p=0.003

Follow-up in months

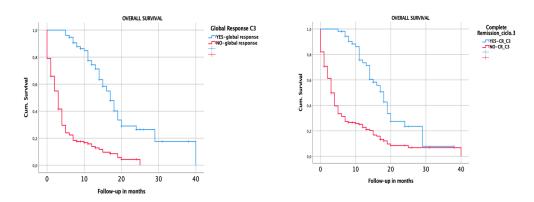

B. Cytogenetics

Figure S3. Kaplan-Meier analyses were performed to assess the association of conventional genomic aber-rations with patient overall survival. Cytogenetic risk predicts overall survival in elderly patients with AML in AZA-arm. Graphs represent survival of the low-intermediate-risk group (blue) versus high-risk group in AZA-arm (**A**) and in FLUGA-arm (**B**). Patients with low-intermediate-risk clearly gained benefit from AZA (median overall survival was 14 months in AZA-arm vs 6 months in FLUGA-arm; p = 0.003). AZA. azacytidine; FLUGA fludarabine plus low-dose cytarabine (LDAC).

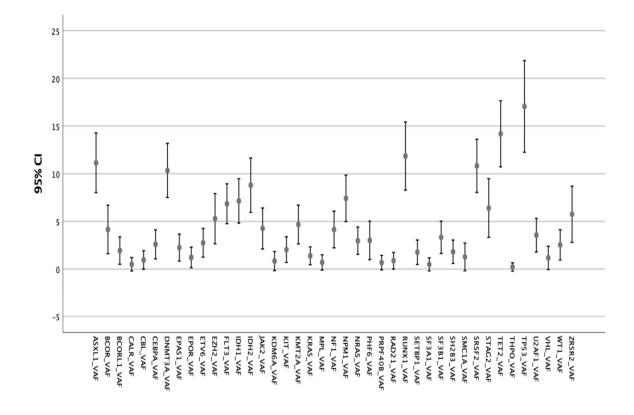
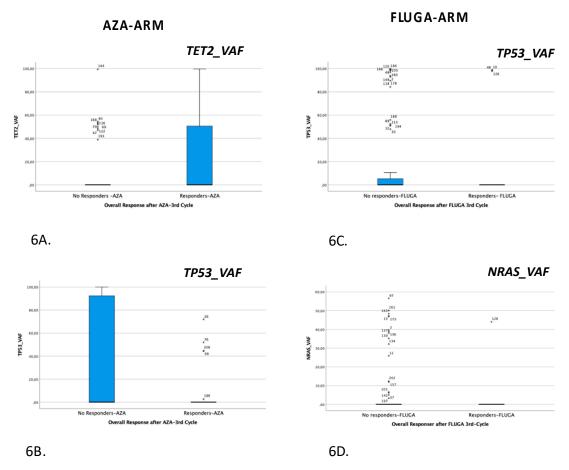


Figure S4. Mutational landscape in responders and non-responders in AZA-arm and FLUGA-arm after 3rd cycle. Each gene is represented by rows and the patients with mutations are shown in AZA-arm and FLUGA-arm and subdivided as responders and non-responders. Responders were defined as patients who achieve CR (complete remission) or CRi (complete remission with incomplete hematologic recovery). AZA = azacytidine; FLUGA = fludarabine plus low-dose cytarabine (LDAC).



	Sig.	HR	95,0% CI for HR		
			Lower	Upper	
Global Response Cycle 3	<0.001	5,005	2,707	9,254	
Complete Remission Cycle 3	0,66	1,16	0,598	2,25	

Figure S5. Achieving overall response after 3º cycle AZA or FLUGA is the main factor associated with increased Overall Survival.

Figure S6. Variant allele frequency distribution by genes represented as median and 95% confidence interval. VAF (variant allele frequency) was defined as the percentage of sequence reads observed matching a specific DNA variant. divided by the overall coverage at that locus.

Figure S7. Differential distribution of variant allele frequency -gene mutations between responders and non-responders. VAF (variant allele frequency) was defined as the percentage of sequence reads observed matching a specific DNA variant. divided by the overall coverage at that locus. (**A**). Distribution of VAF-TET2 in the AZA-arm is different between responders and non-responders: median 20.37 versus 8.7% (p = 0.022). (**B**). The distribution of VAF-TP53 in the AZA-arm is different between responders and non-responders: median 5.52 versus 27.3% (p = 0.015). (**C**) The distribution of VAF-NRAS in the FLUGA-arm is different between responders: median 1.22 versus 6.7% (p = 0.009). (**D**) The distribution of VAF-TP53 in the FLUGA-arm is different between responders and non-responders: median 8.2 versus 19.64% (p = 0.046).