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Supplementary Table 1. List of biological processes associated with COVID-19 severity and associated studies 

 

Biological category Biological process Implication in COVID-19 References 

Viral entry into cell endosomal transport Mechanism of viral entry into cell 
1
,
2
,
3
,
4
,
5
,
6
 

Virus sensing toll−like receptor signaling 

pathway 

Prevents cell infection. Evaded by 

coronaviruses 

1
,
3
,
7
,
8
 

Virus sensing cytoplasmic pattern recognition 

receptor signaling pathway in 

response to virus 

Prevents cell infection. Evaded by 

coronaviruses 

1
,
9
,
10

,
11

 

Virus sensing type I interferon signaling 

pathway 

Unclear. Impaired in severe COVID-19 
12

,
13

,
14

,
15

,
16

,
11

 

Natural killer mediated immunity natural killer cell chemotaxis Over-activation in COVID-19 
17

,
18

,
19
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Natural killer mediated immunity natural killer cell mediated 

cytotoxicity 

Down-regulated in COVID-19 
20

,
21

,
19

 

Blood coagulation regulation of blood coagulation Up-regulated in severe COVID19 
22

,
23

,
15

 

T cells T cell mediated immunity Blood lymphopenia, altered function, 

activated and exhausted in severe. 

Increased in lung. 

24
,
25

,
25

,
20

,
26

,
8
,
27

,
28

,
29

,
30

,
17

,
31

 

T cells T cell cytokine production Up-regulated in severe COVID19 
24

,
25

,
30

,
17

,
31

 

T cell interaction with myeloid 

cells 

antigen processing and 

presentation 

Up-regulated in severe COVID19 
32

,
33

,
34

 

T cell interaction with myeloid 

cells 

response to interferon−gamma Up-regulated in severe COVID19 
35

,
24

,
36

,
15

 

T cell interaction with myeloid 

cells 

cellular response to tumor 

necrosis factor 

Up-regulated in severe COVID19 
24

,
15

,
37

 

Myeloid cell activation myeloid leukocyte differentiation Up-regulated in severe COVID19 
24

,
25

,
33

,
8
,
38

,
17

 

Myeloid cell activation macrophage activation Up-regulated in severe COVID19 
24

,
25

,
33

,
8
,
17

,
23

 

Cytokine production interleukin−1 production Up-regulated in severe COVID19 
35

,
8
,
31

,
15

 

Cytokine production interleukin−6 production Up-regulated in severe COVID19 
39

,
24

,
26

,
14

,
33

,
38

,
27

,
23

,
36
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Cytokine production tumor necrosis factor production Up-regulated in severe COVID19 
35

,
39

,
24

,
26

,
14

,
33

,
40

,
23

 

Cytokine production interleukin−8 production Up-regulated in severe COVID19 
35

,
39

,
26

,
23

 

Cytokine production response to interleukin−7 Up-regulated in severe COVID19 
35

,
24

,
41

 

Cytokine production interleukin−10 production Up-regulated in severe COVID19 
35

,
39

,
26

,
27

,
36

 

Complement pathway complement activation Up-regulated in severe COVID19 
42

,
43

,
44

,
45

 

Ig production by B cells B cell mediated immunity Up-regulated in severe COVID19 
14,6

,
4,7

,
30
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Supplementary Figure 1. A 
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Supplementary Figure 1. B 

 

 

 

 

Supplementary Figure 1. Gene-level differential expression induced by abatacept for 

the 22 processes characteristic of COVID-19 pathology. A. Processes associated to the 

response to viral infection (first stage of COVID-19). B. Immune processes associated with 

COVID-19 hyperinflammation (second stage of COVID-19). Volcano-plots showing the 

differential expression results for all genes after 12 weeks of treatment with abatacept. The 

statistical significance of each gene (-log10(P value), y-axis) is plotted against the effect 

size (log fold change, x-axis). The genes composing the particular biological process are 

highlighted in color, with red indicated the genes downregulated by abatacept and blue 

indicating the genes upregulated by the drug. 
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A 

 

 

 

B 

 

 

 

Supplementary Figure 2. Hazard ratio forest plots. A. Hazard ratios estimated according 

to the number of days free of mechanical ventilation. The hazard ratio for a primary 

outcome event in the ABS-Low group was 8.74 (95% confidence interval [CI], 1.03 to 

74.33; P=0.047, log-rank test). B. Forest-plot of the differences according to the Cox 

proportional hazards model in the analysis of days of hospitalization. In this analysis, ABS-

Low patients are found to spend more days at the hospital, and this difference is 

statistically significant (P = 0.031 log-rank test). Note that, according to the outcome, the 

hazard is here annotated as “benefit” and, therefore, it does not have the literal meaning. 
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Supplementary Figure 3. A 
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Supplementary Figure 3. B 

 

 
 
Supplementary Figure 3.  Tissue-level gene expression distribution of CD80 and CD86. Sorted distribution of gene expression levels for the two 

genes across 53 human tissues from nearly 1,000 individuals are shown (GTex database, version 8). A. Tissue expression of CD80 shows that the 

lungs (light green) are the tissue expressing the higher mRNA levels of this gene. B. Tissue expression of CD86 shows that the lungs (light green) are 

the second tissue with a higher expression of this gene.
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Supplementary Figure 4. Blood RNA-seq read mapping percentage, Abatacept 

cohort. Density plot showing the distribution of mapped reads among the 76 longitudinal 

blood RNA samples from RA patients sequenced in this study. The vertical dashed red line 

indicates the mean (95.2%). 
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Supplementary Figure 5.  Evidence of granulocyte imbalance between the cases and 

controls in the early COVID-19 dataset. Cell type deconvolution into the major blood cell 

subsets, showed one sample with a larger contribution of neutrophil RNA. In order to 

correct for this potential confounder, we used the granulocyte (neutrophil) percentage as a 

covariate in the differential expression analysis. N1-3: control samples; P1-P3: patient 

samples.   

 



 11 

 
 
Supplementary Figure 6. Gene content overlap between the 22 biological processes 

associated with COVID-19 pathology. Pairwise comparison of the degree of overlap 

between the biological processes using 1-Jaccard index measure. Using this measure, 

pathways having an identical gene composition would have a score of 1, while pathways 

not sharing a single gene would have a score of 0. Each pie chart indicates the overlap 

score both by the gradient color and the size of the pie section. Despite describing 

processes of the immune-response domain, the overlap is low between these pathways. 

Only one pair of annotations show a score > 0.5, involving B cell mediated immunity and 

complement activation. 
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A 

B  

 
C 

 
 
 
Supplementary Figure 7. Abatacept score distribution. A. Histogram of the ABS score 

in the n=100 COVID-positive and n=26 COVID-negative patients from the late COVID-19 

cohort. The dashed vertical lines indicate the cut-offs used to select the patients with more 

extreme signature values for the downstream analyses. ABS-High and ABS-Low categories 

were based on the quantile distribution of the score, using the 20
th
 and 70

th
 percentiles 

(dashed lines) as cutoffs, respectively. B. Histogram of the ABS score in the COVID19-

positive patients only. C. Histogram of the ABS score in the COVID19-negative patients 

only. 
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Supplementary Figure 8. Scree plot of the COVID-19 BALF scRNA-seq dataset. 

Standard deviations of the first n=80 principal components of the case-control scRNA-seq 

dataset bronchoalveolar cell dataset analyzed in this study.  
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Supplementary Table 10. Main epidemiological and clinical features of the 
abatacept-treated RA cohort. 
 
 
Clinical variable Summary 

Age (years), mean  SD 59.4 ± 12.9 

Female, n (%) 28 (73.6%) 

Disease duration (years), median (IQR) 8.5 (9.5) 

DAS28 week 0, median (IQR) 5.59 (1.67) 

DAS28 week12, median (IQR) 4.42 (2.26) 

Anti-CCP Positive, n (%) 33 (86.8%) 

Prior biologic treatments (number), mean ± SD 1.0 ± 1.22 

 
 
 
SD: standard deviation;  IQR: interquartile range; DAS28: disease activity score for 28  
joints 

48
;  anti-CCP: anti-cyclic  citrullinated peptide antibodies.
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Supplementary Methods: Statistical test for antagonism 
 

To test the significance of the observed proportion of antagonism between the pathways 

associated in the COVID19 datasets vs the abatacept-response dataset the binomial model 

was used. To do this, we defined the Expected probability (p0) as: 

𝑝0 = (𝑛𝐶𝑂𝑉𝐼𝐷. 𝑢𝑝/𝑛𝑡𝑟𝑖𝑎𝑙𝑠) × (𝑛𝐴𝐵𝐴. 𝑑𝑜𝑤𝑛/𝑛𝑡𝑟𝑖𝑎𝑙𝑠) + (𝑛𝐶𝑂𝑉𝐼𝐷. 𝑑𝑜𝑤𝑛/𝑛𝑡𝑟𝑖𝑎𝑙𝑠)  

×  (𝑛𝐴𝐵𝐴. 𝑢𝑝/𝑛𝑡𝑟𝑖𝑎𝑙𝑠) 

where ntrials corresponds to the total number of analyzed BPs (after excluding reduntant 

BPs), nCOVID.up the number of BPs significantly up-regulated in the COVID-19 datasets 

(adjusted P < 0.05, NES > 0), nCOVID.down the number of BPs significantly down-

regulated in the COVID-19 datasets (adjusted P < 0.05, NES < 0), nABA.up the number of 

BPs significantly up-regulated in the abatacept cohort (adjusted P < 0.05, NES > 0), and 

nABA.down the number of BPs significantly down-regulated in the abatacept cohort 

(adjusted P < 0.05, NES < 0).  

We define the number of successes (nSuccesses) as the number of BPs that are 

significantly regulated in opposite direction in the COVID-19 and abatacept cohorts. Using 

a binomial test, the empirical proportion of antagonistic cases, 𝑝 = (𝑛𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠/𝑛𝑡𝑟𝑖𝑎𝑙𝑠)  is 

compared to the expected probability p0 (using the binom.test function from the R stats 

package) to determine if such proportion of successes is higher than expected by chance. 

 
 
Supplementary Methods: Abatacept response similarity score 
 

In order to determine the level of similarity of the transcriptional profile of patients from the 

late COVID-19 cohort
49

 to that of the signature of response to abatacept we build a score 

(ABS). To build the score we used the set of genes showing differential expression (FDR 

<0.05) between baseline and week 12 and with detectable gene expression counts in the 

large COVID-19 datasets (n=15 genes). These genes include: CDC20, TOX2, IGHA1, 

IGHG2, KIFC1, IGLC2, TYMS, RRM2, IGLC3, BIRC5, IGHG4, IGHA2, GTSE1, HJURP, 

IGHG1. 

The expression values of the signature genes were then standardized, using mean 

centering and scaling to unit standard deviation. Then, for each COVID patient, a linear 

combination of the standardized expression values of the signature genes was performed 

using the coefficients of the differential expression analysis. Formally, the ABS for patient i 

was computed as follows: 

 

𝐴𝐵𝑆𝑖 =   𝑆𝐸𝑖(𝐺1) × 𝑙𝑜𝑔𝐹𝐶(𝐺1) + 𝑆𝐸𝑖(𝐺2) × 𝑙𝑜𝑔𝐹𝐶(𝐺2) + ⋯ + 𝑆𝐸𝑖(𝐺𝑛) × 𝑙𝑜𝑔𝐹𝐶(𝐺𝑛) 
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Where G1, G2, …, Gn are the signature genes, SEi(Gj) is the standardized expression value 

of the j-th gene in the i-th patient and logFC(Gj) is the coefficient of the j-th gene in the 

differential expression analysis performed in the abatacept cohort.  This way, high-scoring 

patients (ABS-High) will have a transcriptomic profile in blood that resembles that of an 

abatacept-treated patient, while low-scoring patients (ABS-Low) will be more similar to 

abatacept-untreated individuals. 
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