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Omidubicel (nicotinamide-expanded cord blood) is a potential alternative source for allogeneic hematopoietic cell transplantation
(HCT) when an HLA-identical donor is lacking. A phase I/II trial with standalone omidubicel HCT showed rapid and robust neutrophil
and platelet engraftment. In this study, we evaluated the immune reconstitution (IR) of patients receiving omidubicel grafts during
the first 6 months post-transplant, as IR is critical for favorable outcomes of the procedure. Data was collected from the omidubicel
phase I-II international, multicenter trial. The primary endpoint was the probability of achieving adequate CD4+ T-cell IR (CD4IR: >
50 × 106/L within 100 days). Secondary endpoints were the recovery of T-cells, natural killer (NK)-cells, B-cells, dendritic cells (DC),
and monocytes as determined with multicolor flow cytometry. LOESS-regression curves and cumulative incidence plots were used
for data description. Thirty-six omidubicel recipients (median 44; 13–63 years) were included, and IR data was available from 28
recipients. Of these patients, 90% achieved adequate CD4IR. Overall, IR was complete and consisted of T-cell, monocyte, DC, and
notably fast NK- and B-cell reconstitution, compared to conventional grafts. Our data show that transplantation of adolescent and
adult patients with omidubicel results in full and broad IR, which is comparable with IR after HCT with conventional graft sources.

Bone Marrow Transplantation (2021) 56:2826–2833; https://doi.org/10.1038/s41409-021-01417-4

INTRODUCTION
Immune reconstitution (IR) is an important predictor for outcome
after allogeneic hematopoietic (stem) cell transplantation (HCT)
[1–8]. IR can be affected by a variety of factors, such as
conditioning regimen and cell source [9, 10]. Common first-
choice sources for allogeneic HCT in adults are peripheral blood
stem cells (PBSC) or bone marrow (BM) from related or unrelated
donors. Nevertheless, for many adult patients, no PBSC or BM
donor can be found, because of the requirement for high-grade
human leukocyte antigen (HLA)-matching. The use of umbilical
cord blood (CB) provides an alternative cell source in these
patients since lower-grade HLA-matching has proven to be
acceptable to ensure a low risk of graft failure or graft-versus-
host disease (GvHD) [11–13]. However, in order to ensure timely
engraftment, patients must receive an adequate dose of stem
cells/kg [14, 15]. This may introduce a problem when using CB as a
stem cell source in adults, since CB-grafts generally contain lower
amounts of nucleated (stem) cells compared to PBSC/BM,
resulting in delayed engraftment. One option to overcome the
limited amount of stem cells is transplantation using two CB-grafts
(double cord blood transplantation; dUCBT) [16, 17]. However,
dUCBT still does not overcome the delayed engraftment and may
be associated with an increased risk of GvHD [18–20]. Methods to

expand CB stem cells provide another option to enhance CB-graft
availability for adult patients. One option to expand CB stem cells
is a nicotinamide-based protocol: omidubicel (Gamida Cell,
Jerusalem, Israel).
Omidubicel is an ex vivo expanded cell product derived from

the CD133+ fraction of banked CB that uses an epigenetic
strategy to inhibit differentiation and enhances the functionality
of cultured hematopoietic stem and -progenitor cells. Nicotina-
mide is the active agent of this expansion strategy. When
nicotinamide is added to stimulatory hematopoietic cytokines,
CB-derived hematopoietic progenitor cell cultures demonstrate an
increased frequency of phenotypically primitive CD34+ CD38−
cells and a substantial increase in BM homing and engraftment
potential of ex vivo expanded CD34+ cells [21–26]. Omidubicel is
comprised of ex vivo expanded stem cell fraction (omidubicel
cultured fraction (CF)) and a non-cultured cell fraction of the same
CB unit (omidubicel non-cultured fraction (NF)) consisting of
mature myeloid and lymphoid cells. A phase I/II trial with
standalone omidubicel HCT showed rapid neutrophil (11.5 days)
and platelet engraftment (34 days) [23]. This early hematopoietic
recovery reflects the ability of nicotinamide to expand both
committed and long-term repopulating hematopoietic stem cells
and was shown to be associated with a lower risk of bacterial
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infections and shorter hospitalization in the first 100 days
compared with standard unmanipulated CB transplantation
(unCBT) [22, 23].
We and others have recently shown that adequate CD4+ T-cell

IR (CD4+ IR) is crucial for favorable survival outcomes [1, 2, 6–8].
Patients with adequate CD4+ IR (>50 × 106 CD4+ T-cells/L blood,
within 100 days after HCT) had a lower risk of viral reactivation [1],
virus-related morbidity and mortality [1], aGvHD-related mortality
[27], and relapse-related mortality [6, 8]. In addition, IR of other
immune cell subsets, such as natural killer (NK)-cells [28–30], CD8
+ T-cells [31–33], and B-cells [34–39], were also related to HCT
outcome. As a result of the manufacturing process manipulations
and freeze-thaw cycles, the CD3+ dose of the omidubicel NF is
lower than in a standard CBT. For example, Purtill et al. reported a
median infused viable dose 4.27 × 106 CD3+ cells/kg [40]. This is
also consistent with the previously published omidubicel experi-
ence, indicating that the median CD3+ cell dose from the
omidubicel unit was 1.3 × 106 cells/kg, which was significantly
lower than the median cell dose from the unmanipulated unit of
3.4 × 106 cells/kg [41]. The omidubicel CF yields hematopoietic
stem and myeloid progenitor cells, but lymphoid cells cannot be
detected based on cell surface marker analysis. However, the
development of lymphoid cell subsets occurs de-novo from the
expanded CD34+ stem and progenitor cells post-transplant
[21, 23, 24]. The NF contains mature lymphocytes. The lower
CD3+ dose in omidubicel may theoretically be postulated to
contribute to a risk of impaired immune recovery following
transplantation. Nevertheless, detailed information on IR after
transplantation with omidubicel has not yet been reported
to date.
We performed in-depth immune monitoring and evaluated

plasma protein profiles in patients transplanted with omidubicel
grafts in a phase I/II international multicenter study. For this, we
developed multicolor flow cytometry panels for harmonized
measurements to evaluate the recovery of T-, B-, natural killer
(NK)-cell, monocyte, and dendritic cell (DC) subsets.

PATIENTS AND METHODS
Patients and treatment
In this phase, I/II multicenter trial, patients with hematologic malignancies
received an omidubicel-HCT after myeloablative (MA) conditioning without
antithymocyte globulin (ATG), at 11 clinical sites throughout the United
States, Europe, and Singapore. Conditioning regimens were applied
according to local standard protocols, and are described in a previous
publication of this trial [23]. The study was approved by the institutional
review boards of all participating institutions and the national regulatory
authorities. All patients provided written informed consent. Patients were
enrolled, and data were collected and registered prospectively only after
written informed consent. The study was performed in accordance with
the International Conference on Harmonization Guidelines and Good
Clinical Practice (ClinicalTrials.gov identifier: NCT01816230).

Immune monitoring and blood cell samples
Immune monitoring was performed on peripheral blood samples drawn at
7, 14, 21, 42, 70, and 180 days after infusion of the graft. Absolute
leukocyte, lymphocyte, neutrophil, and monocyte cell numbers were
measured in fresh EDTA-whole blood. Mononuclear cells were isolated
using Fico-II-Paque (BD Biosciences, Sweden) and cryopreserved for later
measurements with the use of standardized and validated multicolor flow
cytometry panels. The subsets identified were; for T-cells: naïve (CCR7+
CD27+ CD45RO− CD45RA+), central memory (CCR7+ CD27+ CD45RO+
CD45RA−), effector memory (CCR7− CD27− CD45RO+ CD45RA−), Temra
(CCR7− CD27− CD45RO− CD45RA+), and Treg (CD4+ CD25+ CD127low-

FoxP3+) [42, 43]. The T helper cell phenotypes were based on chemokine
receptor expression shown to be associated with Th helper subsets and in
this manuscript are referred to as “Th1” (CD4+ CXCR3+ CCR4− CCR6−),
“Th2” (CD4+ CCR6− CXCR3− CCR4+), “Th17” (CD4+ CCR6+ CXCR3+
CCR4− CCR10−), “Th22” (CD4+ CCR6+ CXCR3− CCR4+ CCR10+) [42, 43].
B-cells were characterized into immature (CD19+ CD24++ CD38++ IgM+

IgD−), transitional (CD19+ CD24++ CD38++ IgM+ IgD+), follicular
(CD19+CD24+CD38+IgM+IgD+), memory (CD19+ CD24− CD38+), and
plasmablast (CD19+ CD24− CD28++) [44, 45]. For other subsets, markers
were as follows: for NK-cells: naïve (CD3− CD56++ CD16−) and effector
(CD3− CD56+ CD16+; for NK T-cells: NKT (CD3+ CD56+)), invariant NKT
(iNKT; CD3+ CD56+ TCRVbeta11+ TCRValpha24+) [46, 47]; for monocytes:
classical (lin-HLA.DR+ CD14+ CD16−), intermediate (lin-HLA.DR+ CD14+
CD16+), non-classical (lin-HLA.DR+ CD14− CD16+) [48]; and for DCs:
conventional (cDC; lin-HLA.DR+ CD14-CD16-CD11c+ CD123-; available
numbers of cells were too low to report DC1 versus DC2) and plasmacytoid
(pDC; lin-HLA.DR+ CD14− CD16− CD11c− CD123+) [49, 50]. An overview
of the monoclonals used is provided in Supplemental Table 1. Subsets
were calculated as the percentage of total evaluable immune cells.
Absolute lymphocyte, leukocyte, and monocyte counts were available
from standard immune monitoring on fresh material. Absolute numbers of
immune cell subsets from in-depth immune monitoring were calculated
from total absolute lymphocyte number (for T-, B-, NK-cells) or leukocyte
number (for DC).

Luminex and plasma samples
Plasma was collected by centrifuging EDTA-whole blood samples, from the
same samples as for immune monitoring on blood cells, at 0, 1, 7, 14, 21,
42, and 70 days after transplantation. A total of 60 plasma proteins were
measured per sample using multiplex immunoassays (Luminex Technol-
ogy); IL1RA, IL2, IL3, IL4, IL5, IL6, IL7, IL10, IL15, IL17, IL18, IL22, TNFα, IFNα,
IFNγ, APRIL, OSM, LAG3, Follistatin, I309, MIP1a, MIP1b, IL8, MIG, IP10, BLC,
OPG, OPN, G-CSF, M-CSF, GM-CSF, SCF, HGF, EGF, AR, VEGF, CD40L, sPD1,
FASL, IL1R1, IL1R2, ST2, TNFR1, TNFR2, sIL2Rα, sCD27, IL7Rα, sSCFR,
Elastase, S100A8, Gal9, Ang1, Ang2, LAP, TPO, sICAM, sVCAM, MMP3, Gal3,
C5a. The multiplex immunoassay was performed according to the protocol
from the MultiPlex Core Facility of the UMCU [51].

Data analysis
The primary endpoint was the probability of achieving CD4+ IR; > 50 × 106

CD3+ CD4+ cells/L blood on two consecutive measurements within 100 days.
Secondary endpoints were IR over time of CD3+, CD8+, and CD4+ T-cell
subsets, monocytes, NK- and B-cell subsets during 0–180 days after HCT.
LOESS-regression curves and cumulative incidence plots were used for data
description. The relation between plasma protein- and IR data was analyzed
using Spearman regression. R software (version 4.0.1) and ggplot2 package
(version 3.3.3) were used for data analysis and production of graphs [52].

RESULTS
In this phase I/II multicenter trial, 36 omidubicel recipients (median
age 44; range 13–63 years) were included. Patient characteristics are
described elsewhere [23]. Omidubicel cell dose consisted of a median
6.3 × 106 CD34+/kg, and 2.4 × 106 CD3+ T-cells/kg of the co-infused
negative fraction (following CD133+ selection). Informed consents for
in-depth immune monitoring were available from 28 omidubicel
recipients. There was no selection bias for these 28 consented
patients, based on median age (39 years [13–63]) and median cell
dosages of 6.1 × 106 CD34+/kg and 2.4 × 106 CD3+T-cells/kg.

IR after omidubicel transplantation
Since early adequate CD4+ IR has been related to lower infection-
related morbidity and lower overall mortality [1–3, 7, 53], we
evaluated CD4+ IR probability in omidubicel recipients. CD4+ IR
was evaluable in 20 patients; not all 28 patients had data on
absolute CD4+ T cell count on two consecutive time points within
the first 100 days after HCT. This was either due to death prior to
achieving two data points or limited lymphocyte data available to
calculate absolute CD4+ T cell count. Eighteen (90%) achieved
successful CD4+ IR (Fig. 1-left). Including all 28 consented
patients, adaptive immune cell reconstitution of overall CD4+
(Fig. 1-right), CD8+ (Fig. 2-left), and CD3+ (Fig. 2-right) T-cells, and
B-cells (Fig. 3), was observed within the first 6 months after
omidubicel transplantation, with a slightly earlier recovery of
innate immune cells, including NK-cells (Fig. 4), monocytes (Fig. 5),
and DCs (Fig. 6). Especially, the reconstitution of B- and NK-cells
was fast compared to other cell subsets, with early high cell counts
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of ∼500 and ∼1500 × 106 cells/L blood, respectively, within the
first month after transplantation.

In-depth immune monitoring after omidubicel
transplantation
The recovery of T-cell subsets during the first 6 months after
omidubicel transplantation is broad and full in terms of the
presence of effector and central memory CD4+ and CD8+ T-cells,
gamma-delta T-cells, Tregs, Th2, Th1, and Th17 cells (Figs. 1 and 2,
Supplemental Fig. 1). Within total CD3+ T-cells, relative amounts

of gamma-delta T- (1–4%), CD8+ (24–36%), and CD4+ (61–74%)
T-cells are normalized within the first month after transplantation.
Both CD8+ and CD4+ T-cell recovery are predominately effector
memory T-cells (∼50%), although relatively high naïve T-cell
counts within the first month after omidubicel transplantation are
observed compared to later time points (∼20% versus ∼7%).
Furthermore, the second most predominant subsets are Temra
(29–55%) in CD8+ T-cell recovery, and central memory T-cells
(19–24%) in CD4+ reconstitution. In addition, although absolute
counts of Tregs, as well as Th2, Th1, and Th17, remain low, the
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Fig. 1 CD4+T-cell reconstitution after omidubicel transplantation. (Left) Cumulative incidence curve of CD4+IR probability after
transplantation with omidubicel transplantation. CD4+ IR was evaluable in 20 patients and was defined as having >50*106 CD4+ T-cells/L in
two consecutive measurements within 100 days after transplantation. (Right) Smoothened LOESS-curve with 95% confidence interval (gray
area), with dots showing the data points, for absolute CD4+ T-cell counts following omidubicel transplantation. Each dot represents a single
data point for a single patient. (Lower, right) Pie-charts of CD4+ T-cell subsets as percentages; naïve, effector memory (EM), central memory
(CM), and EMRA T-cells, at 7–14, 21, 42, 70, and 180 days after transplantation.
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Fig. 2 CD8+and total T-cell reconstitution after omidubicel transplantation. (Upper) Smoothened LOESS-curve with 95% confidence
interval (gray area), with dots showing the data points, for absolute CD8+ (left) and total (right) T-cell counts following omidubicel
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relative amount of Tregs in some patients (∼5% [range; 1927%] of
total CD4+ T-cells) might be slightly higher than in healthy adults
(2–3% of CD4+ T-cells) [54]. B-cell reconstitution starts with
relatively high amounts of memory B-cells during the first weeks
after transplantation, followed by increased percentages of
follicular B-cells (Fig. 3). NK-cell recovery starts with relatively
high naïve NK-cell counts within the first weeks, after which
generally more effector NK-cells are observed (Fig. 4), with only
low amounts of NKT and iNKT cells. Furthermore, monocyte
recovery starts with relatively high amounts of intermediate
monocytes in the first month after omidubicel transplantation,
after which most monocytes are classical monocytes, with lower
amounts of intermediate and non-classical monocytes (Fig. 5). DC
reconstitution during the first year after omidubicel transplanta-
tion consists of primary cDCs and few pDCs (Fig. 6).

Plasma protein profiles in relation to immune subset
reconstitution
We evaluated correlations between plasma proteins at days 0, 1,
and 7 with immune subset reconstitution at days 21, 42, 70, 100,
and 180 in all 28 patients. The correlations between plasma
proteins measured at day 1 and IR at day 21–70 were most robust,
with the least missing data, and best represented the overall
observations (Fig. 7). An overview of all plasma protein profiles
over time after transplantation is provided in Supplemental
Fig. 2.1–2.4. Interestingly, plasma IL15 concentration followed a
similar recovery trend compared to the NK-cell counts, with a peak
observed after one week for IL15 and around 6 weeks for NK-cells
(Fig. 4 and Supplemental Fig. 2.1). In accordance with this
observation, we found an, albeit weak, correlation between IL15 at
day 1 and NK-cell counts at days 21, 42, and 70 (Fig. 7).
Furthermore, increased IL2 concentrations correlated with counts
of almost all T-cell subsets only, while increased sPD1 was
correlated to increased CD8+ T-cell and to decreased CD4+ T-cell

subset counts. IL22 is positively correlated with B-cell subset
recovery. We further observed that ST2 was positively correlated
with adaptive immune cell counts (T- and B-cell subsets), but
negative correlations were found with innate immune cell
recovery (DC-, monocyte, and NK-cell subsets). In turn, LAG3,
CD40L, APRIL, VEGF, Elastase, S100A8, and M-CSF were positively
correlated to innate immune cell recovery, and negatively with
adaptive immune cell counts.

DISCUSSION
This unique international, multicenter, in-depth immune monitor-
ing study reveals rapid and robust IR after transplantation with
omidubicel. The probability of early CD4+ IR was high, overall CD4
+ and CD8+ T-cell, monocyte, and DC reconstitution were
observed, and recoveries of B-cells and NK-cells were strikingly
fast after omidubicel transplantation. Together with the recently
reported clinical outcome of this phase I/II study, our findings
indicate that transplantation with omidubicel is not only feasible
in terms of potent engraftment [23] but also results in a full and
broad IR.
The fast NK- and B-cell reconstitution after omidubicel

transplantation in comparison to other graft sources, might be
related to an intrinsic characteristic of cord as previously described
in unmanipulated-CBT recipients [10, 55, 56]. The higher number
of progenitor cells obtained with omidubicel expansion may also
contribute to the enhanced NK- and B-cell reconstitution,
although as previously discussed, the cultured cells do not
contain mature lymphocytes or NK cells, and the non-cultured
cells contain a reduced number of cells compared to a standard
CB unit [25, 57]. It would, therefore, be interesting to evaluate if
fast NK-cell recovery after omidubicel transplantation would
translate to a lower relapse risk or viral reactivation incidence as
observed after unmanipulated-CBT [58, 59]. These analyses must,
however, be performed in a comparative setting. In addition,
improved NK-cell and NKT-cell recovery have been associated
with improved overall survival and risk of infection [3, 60], as well
as reduced aGvHD risk specifically for the CD56bright NK-subset
[28]. Also, early reconstitution of Tregs seems to protect against
aGvHD development [61–63], and a Th17/Treg ratio <1 correlated
favorably with aGvHD development and severity [63]. Therefore, it
is of high clinical interest to further study in-depth IR, in terms of
immune cell subsets, to correlate IR after omidubicel transplanta-
tion to the outcome and subsequently find possible biomarkers
that can predict outcome in future omidubicel recipients. The
current international multicenter phase III trial allows for further IR
studies with an increased number of patients, and inclusion of a
randomized control cohort of single and double CBT, and may
allow correction for covariates that can affect IR (such as age,
chemotherapy dosage, GvHD, and steroid-treatment) [9, 64–66] in
multivariate analyses for more robust statistical testing.
Our in-depth immune monitoring after omidubicel transplanta-

tion also shows robust reconstitution of a broad range of immune
cell subsets of CD4+ and CD8+ T-cells, Tregs, gamma-delta T-
cells, as well as monocytes, conventional and plasmacytoid DCs.
The potent recovery of in particular CD4+ T-cells (>50 × 106 CD4+
T-cells/L blood within 100 days), might be of interest for outcome
after omidubicel transplantation since recent evidence suggests
that adequate CD4+ IR is related to lower morbidity and mortality
after HCT [1–3, 7, 53]. Firm conclusions on CD4+ IR potency, and
its’ effect on the outcome, as well as on the broadness of IR in
omidubicel recipients are limited by the small number of the
evaluated cohort. Nevertheless, these findings indicate that
nicotinamide exposure seems to preserve the high IR-potential
of CB-grafts, and the ability of the stem and progenitor cells to
reconstitute the full range of immune cell subsets in the periphery.
Plasma proteins are currently in the picture as potential

biomarkers for outcome after HCT. For instance, early protein
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(Upper) Smoothened LOESS-curve with 95% confidence interval
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single data point for a single patient. (Lower) Pie-charts of B-cell
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after transplantation.
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profiles of ST2, REG3α, TNFR1, and IL-2Rα were recently reported
as predictors for aGvHD severity [67, 68]. In our report, we are the
first to show that plasma protein profiles in the first week after
omidubicel transplantation correlates with IR data in the weeks
thereafter. In particular, we found indications that increased early
IL15 plasma concentrations can be related to the fast NK-cell

recovery after omidubicel transplantation. IL15 is known to
activate NK-cells and improve their function [69, 70]. In addition,
we found that IL22 correlates to B-cell reconstitution, while IL22
(produced by immune cells and mucosal epithelial cells) has been
linked to B-cell function [71, 72]. Interestingly, we observed that
some plasma proteins, such as ST2, are positively related to
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Fig. 4 NK- and NKT-cell reconstitution after omidubicel transplantation. (Upper) Smoothened LOESS-curve with 95% confidence interval
(gray area), with dots showing the data points, for absolute NK-cell counts following omidubicel transplantation. Each dot represents a single
data point for a single patient. (Middle) Pie-charts of NK-cell subsets as percentages of NK-cells; effector and naïve NK-cells, at 7–14, 21, 42, 70,
and 180 days after transplantation. (Lower) Smoothened LOESS-curves of NKT- and iNKT-cell recovery after omidubicel transplantation.
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adaptive immune cell recovery, but negatively to innate immune
cell subsets. The role of the ST2 pathway in both adaptive and
innate immune cell function is reviewed elsewhere [73]. In turn,
higher concentrations of proteins as CD40L, APRIL, and M-CSF, are
related to increased innate cell counts and decreased adaptive
immune cell counts. These proteins have all been linked to innate

as well as adaptive immunity [74–77]. Nevertheless, due to the
sparseness of the datasets for these multilayer analyses, we
cannot draw strong conclusions from these observations. For this,
these relations between plasma proteins and immune subset
recovery should be evaluated in larger prospective cohorts,
including more patients and more HCT-graft types. In addition,
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Fig. 5 Monocyte reconstitution after omidubicel transplantation.
(Upper) Smoothened LOESS-curve with 95% confidence interval
(gray area), with dots showing the data points, for absolute
monocyte counts following omidubicel transplantation. Each dot
represents a single data point for a single patient. (Lower) Pie-charts
of monocyte subsets as percentages of total monocytes; classical,
intermediate, and non-classical monocytes, at 7–14, 21, 42, 70, and
180 days after transplantation.
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Fig. 6 Dendritic cell reconstitution after omidubicel transplanta-
tion. (Upper) Smoothened LOESS-curve with 95% confidence
interval (gray area), with dots showing the data points, for absolute
DC counts following omidubicel transplantation. Each dot repre-
sents a single data point for a single patient. (Lower) Pie-charts of
DC subsets as percentages of total DCs; conventional (cDC) and
plasmacytoid DCs (pDC), at 7–14, 21, 42, 70, and 180 days after
transplantation.

Neutrophils
Leukocytes

Lymphocytes
NK

Effector.NK.cells
NKT.cells

B.cells
Immature.B.cells

Transitional.B.cells
Follicular.B.cells
Memory.B.cells

CD3.
CD4.

Effmem.CD4
CM.CD4

Naive.CD8
Effmem.CD8

CM.CD8
TCRgd

Treg
Activated.Treg

Naive.Treg
CD8..CD25.

Th1
Th2

Th17
Conventional.Th17

Classical.monocytes
Intermediate.monocytes

Non.classical.monocytes
cDC

cDC.fully.diff
cDC.CD141.

cDC.CD1c.
pDC

BDCA2..pDC
pDC.CD303.

BDCA1..mDC
CD1cdim.BDCA1.

Neutrophils
Leukocytes

Lymphocytes
NK

Effector.NK.cells
Naive.NK.cells

NKT.cells
iNKT

B.cells
Immature.B.cells

Transitional.B.cells
Follicular.B.cells
Memory.B.cells

CD3.
Plasmabasts

CD4.

Effmem.CD4
CM.CD4

CD8.
Naive.CD8

Naive.CD4

Thymic.naive.CD4

Effmem.CD8
CM.CD8

TCRgd
Treg

Activated.Treg
Naive.Treg

CD8..CD25.
CD8..FoxP3.

Th1
Th2

Th17

CXCR5..Th
Inflammatory.Th17

Conventional.Th17
Th22

Classical.monocytes
Intermediate.monocytes

Non.classical.monocytes
cDC

cDC.fully.diff
cDC.CD141.

cDC.CD1c.
pDC

BDCA2..pDC
pDC.CD303.

BDCA1..mDC
BDCA3..mDC

CD1cdim.BDCA1.

IL
1R

A
IL

5
IL

6
IL

10
IL

15
IL

18
IL

22
IF

N
a

A
P

R
IL

O
S

M
LA

G
3

I3
09

M
IP

1b
M

IG
IP

10
B

LC
O

P
G

O
P

N
G

C
S

F
M

C
S

F
H

G
F

E
G

F
A

R
V

E
G

F
C

D
40

L
FA

S
L

IL
1R

1
IL

1R
2

S
T

2
T

N
F

R
1

sI
L2

R
a

sC
D

27
IL

7R
a

sS
C

F
R

E
la

st
as

e
S

10
0A

8
G

al
9

A
ng

1
A

ng
2

LA
P

sV
C

A
M

M
M

P
3

G
al

3
C

5a

Protein

IL
1R

A

IL
5

IL
4

IL
3

IL
2

IL
8

IL
6

IL
7

IL
10

IL
15

IL
17

IL
18

IL
22

IF
N

a
T

N
F

a

IF
N

g
A

P
R

IL
O

S
M

LA
G

3

I3
09

F
ol

lis
ta

tin

M
IP

1b
M

IP
1a

M
IG

IP
10

B
LC

O
P

G
O

P
N

G
C

S
F

M
C

S
F

G
M

C
S

F

H
G

F
S

C
F

E
G

F
A

R
V

E
G

F
C

D
40

L

FA
S

L
sP

D
1

IL
1R

1
IL

1R
2

S
T

2
T

N
F

R
1

T
N

F
R

2
sI

L2
R

a
sC

D
27

IL
7R

a
sS

C
F

R
E

la
st

as
e

S
10

0A
8

G
al

9
A

ng
1

A
ng

2
LA

P
T

P
O

sV
C

A
M

sI
C

A
M

M
M

P
3

G
al

3
C

5a

Protein

C
el

lc
ou

nt

C
el

lc
ou

nt

–0.5
0.0
0.5

R

–log10(P)
1.5
2.0
2.5
3.0

3.5

Fig. 7 Correlation between plasma protein profiles and immune subset recovery. Overall (left) and statistically significant (p < 0.05; right)
Spearman correlations between plasma concentrations on day 1 after transplantation and absolute immune cell subsets counts on day 21, 42,
and 70 after transplantation. In the case of multiple data points for absolute immune cell counts, the mean of these data points was taken as a
datapoint for immune cell count. Red colors indicate positive correlations, blue colors indicate negative correlations.

C.de Koning et al.

2831

Bone Marrow Transplantation (2021) 56:2826 – 2833



while we focused on the relationship between plasma protein
profiles and IR, it is of high interest to further relate this to
outcome in a future study with more patients and data.
This study shows that omidubicel transplantation in adolescent

and adult patients results in fast and diverse IR that is comparable
to reference cohorts of conventional unCBT and BMT at the least.
Future studies are needed to further evaluate how IR relates to the
outcome, and especially if the enhanced NK-cell and B-cell IR after
omidubicel transplantation result in favorable outcomes for
patients with hematopoietic malignancies. The results of the
present study show that omidubicel transplantation is a potent
alternative cell source for HCT in adolescent and adult patients.
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