Table S5. Cardiac toxicity and clinical efficacy associated to liposomal doxorubicin in breast cancer trials

$\begin{gathered} \hline \text { STUDY } \\ \text { Author }(\text { Ref }) \\ \text { Design } \\ \hline \end{gathered}$	N	Setting	Antracycline	Schedule	$\begin{gathered} \hline \text { HE } \\ \text { R2 } \end{gathered}$	Median age	Cardiac assessment	Cardiotoxicity	Efficacy
O'Brien (12) Phase III	509	$1^{\text {st }} \text { line }$ MBC	PLD vs DOX	Monotherapy	No	58.5	LEVF at baseline, one during treatment after 300 and $400 \mathrm{mg} / \mathrm{m} 2$ LVEF	$\begin{aligned} & \text { DOX > PLD (HR = 3.16; 95\%CI 1.58- } \\ & 6.31 ; P<0.001) \end{aligned}$	$\begin{aligned} & \text { PFS } 6.9 \text { vs } 7.8 \mathrm{~m} \text { HR } 1 \\ & \text { (95\%CI } 0.82-1.22 \text {) } \\ & \text { OS } 21 \text { vs } 22 \mathrm{~m} \text { HR } 0.94 \text {; } \\ & \text { (} 95 \% \mathrm{CI} 0.74-1.19 \text {) } \\ & \hline \end{aligned}$
Rafiyath (13) Metanalysis	$\begin{gathered} 222 \\ 0 \end{gathered}$	$1^{\text {st }}$ line MBC	Liposomal vs conventional antracyclines	Monotherapy	No	Patients with median ages between 37 and 59	Congestive cardiac failure and mean percentage change in LVEF from baseline	Conventional > Liposomal OR 0.34 (95\%CI 0.24-0.47)	Not evaluated
Overmoyer (22) Phase II	51	$1^{\text {st }}$ line MBC	$\begin{aligned} & \text { PLD } \\ & 30 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w} \end{aligned}$	Plus CPM $600 \mathrm{mg} / \mathrm{m} 2$	No	54	LEVF at baseline, accumulative dose of $300 \mathrm{mg} / \mathrm{m} 2$, each 100 $\mathrm{mg} / \mathrm{m} 2$ thereafter and at the end.	LVEF decrease (G1) in 15\% All asymptomatic	ORR 50\%, CR 8\%, PR: 43%, CB: 86%.
Trudeau (23) Phase II	70	$1^{\text {st }}$ line MBC	PLD 35 $\mathrm{mg} / \mathrm{m} 2$	Plus CPM $600 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w}$	No	55	LEVF at baseline every 2 cycles	$\mathbf{1 . 4 \%}$ pts had > $\mathbf{1 5 \%}$ in LVEF drop 7.14% pts had $>10 \%$ LVEF drop at the end of treatment. All asymptomatic	$\begin{aligned} & \text { ORR 38\%. BC: } 71 \% \text { PD: } \\ & 29 \% \text { TTP: } 12.2 \mathrm{~m} \mathrm{OS}: \\ & 16.5 \mathrm{~m} . \end{aligned}$
Rau (24) Phase II	45	$2^{\text {nd }}$ line MBC	$\begin{aligned} & \text { PLD } \\ & 40 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w} \end{aligned}$	$\begin{aligned} & \text { Plus CPM } \\ & 500 \mathrm{mg} / \mathrm{m} 25 \mathrm{FU} \\ & 500 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w} \\ & \hline \end{aligned}$	No	52.5	LVEF at baseline at the end of treatment	No decrease in LVEF	ORR: 80\%; PD 15.6\% PFS 8.2m OS 36.6 m
Vorobiof (25) Phase II	34	$1^{\text {st }}$ line MBC	$\begin{aligned} & \text { PLD } \\ & 30 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w} \end{aligned}$	Plus paclitaxel $175 \mathrm{mg} / \mathrm{m} 2$	No	55	LEVF at baseline and at the end.	LVEF decrease > 20% (G2) in 3\% LVEF decrease >10\% (G1) in 20%. All asymptomatic	$\begin{aligned} & \text { ORR 73\%, CR } 21 \% \text { PR } \\ & 53 \% \text { PD } 3 \% \text {. } \end{aligned}$
$\begin{aligned} & \text { Rigatos (26) } \\ & \text { Phase II } \end{aligned}$	23	$1^{\text {st }}$ line MBC	$\begin{aligned} & \text { PLD } \\ & 30 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w} \end{aligned}$	Plus paclitaxel $175 \mathrm{mg} / \mathrm{m} 2$	No	59	LEVF at baseline, and at the end of treatment	Significant drop in LVEF in one pts and one arrhythmia (8.7\%). All asymptomatic	ORR: 69.57\%. CR 8.70\% PR 60.87\%. TTP: 7 m , OS: 10 m .
Dong (30) Phase II matched 1:2	$\begin{gathered} 43 / 8 \\ 6 \end{gathered}$	NAC	$\begin{aligned} & \text { PLD } \\ & 35 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w} \\ & \text { vs epirrubicin } \\ & 100 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w} \end{aligned}$	Plus taxanes	No	51	LEVF was measured at baseline, and during treatment	Non-significant differences in LVEF drop rate $>10 \%(\mathrm{p}=0.463)$	ORR PLD 76.6\% epirrubicin 75.7\% PD both 2.3% pCR: $\mathbf{1 6 . 3 \%}$ vs 11.6%

Gogas (28) Phase II	35	NAC	$\begin{aligned} & \text { PLD 35 } \\ & \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w} \end{aligned}$	Plus paclitaxel $175 \mathrm{mg} / \mathrm{m} 2$	No	54	LEVF was measured at baseline and during treatment	No significant changes during treatment.	ORR 71\% CR 17\%, PR: 54\% PD 6\% pCR:8.5\%
Schmid (27) Phase II	44	NAC	Non peylated liposomal DOX 60mg/m2/3w	Plus docetaxel $75 \mathrm{mg} / \mathrm{m} 2$ and gemcitabine $350 \mathrm{mg} / \mathrm{m} 2 / 3 \mathrm{w}$	No	45	LEVF at baseline and every 2 cycles. Serial ECG	No cases of cardiac failure	ORR: 73\%. CR: 23% PR 50% PD: 2.5% pCR: 16%
García Mata (31) Phase II	74	NAC	Non- pegylated liposomal DOX 60m/m2/3w	Docetaxel $75 \mathrm{mg} / \mathrm{m} 2$ and CPM $600 \mathrm{mg} / \mathrm{m} 2$	No	46	LEVF at baseline, and during treatment	No significant changes in LVEF	$\begin{aligned} & \text { ORR: } 75 \%, \text { PD: } 2 \% \text { pCR } \\ & \mathbf{2 4 \%} \end{aligned}$
Gil-Gil (14)	50	NAC	$\begin{aligned} & \text { PLD } 35 \\ & \mathrm{mg} / \mathrm{m} 2 / 4 \mathrm{w} \end{aligned}$	Plus CPM $600 \mathrm{mg} / \mathrm{m} 2 / 4 \mathrm{w}$ followed paclitaxel $80 /$ w	No	73	LEVF at baseline, 9, 6 and 18 w and during 5 years	No significant changes in LVEF	ORR 26\%; pCR 32\%, 5y RFS 54.4\%, 5y OS 56\% and 5y BCSS 67,7\%

Abbreviations: CB, Clinical Benefit; CI, Confidence Interval; CPM, Cyclophosphamide; CR, Complete Response; DOX, Doxorubicin; m, months; ECG,
Electrocardiogram; G, Grade; HR, Hazard Ratio; LVEF, Left ventricular ejection fraction; N, number; NAC; Neoadjuvan chemotherapy, MBC, Metastatic Breast Cancer, ORR, Overall Response Rate; OS, Overall Survival; pCR, Pathological Complete Response; PD, Progression; PFS, Progression Free Survival; PLD, Pegylated liposomal doxorubicin; Pts, Patients; PR, Partial Response; Ref, Reference,TTP, Median time to progression; w, weeks; y, year

