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ABSTRACT

Primary or idiopathic focal segmental glomerulosclerosis (FSGS) is a kidney entity that involves the podocytes, leading to
heavy proteinuria and in many cases progresses to end-stage renal disease. Idiopathic FSGS has a bad prognosis, as it
involves young individuals who, in a considerably high proportion (�15%), are resistant to corticosteroids and other
immunosuppressive treatments as well. Moreover, the disease recurs in 30–50% of patients after kidney transplantation,
leading to graft function impairment. It is suspected that this relapsing disease is caused by a circulating factor(s) that
would permeabilize the glomerular filtration barrier. However, the exact pathologic mechanism is an unsettled issue.
Besides its poor outcome, a major concern of primary FSGS is the complexity to confirm the diagnosis, as it can be confused
with other variants or secondary forms of FSGS and also with other glomerular diseases, such as minimal change disease.
New efforts to optimize the diagnostic approach are arising to improve knowledge in well-defined primary FSGS cohorts of
patients. Follow-up of properly classified primary FSGS patients will allow risk stratification for predicting the response to
different treatments. In this review we will focus on the diagnostic algorithm used in idiopathic FSGS both in native kidneys
and in disease recurrence after kidney transplantation. We will emphasize those potential confusing factors as well as their
detection and prevention. In addition, we will also provide an overview of ongoing studies that recruit large cohorts of
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glomerulopathy patients (Nephrotic Syndrome Study Network and Cure Glomerulonephropathy, among others) and the
experimental studies performed to find novel reliable biomarkers to detect primary FSGS.

Keywords: biomarkers, diagnosis algorithm, focal segmental glomerulosclerosis, idiopathic nephrotic syndrome, primary
FSGS

INTRODUCTION

Focal and segmental glomerulosclerosis (FSGS) is a histological
pattern used in clinical practice to define a podocytopathy that
develops with nephrotic-range proteinuria and segmental oblit-
eration or collapse of glomerular capillary loops with increased
extracellular matrix in some glomeruli. FSGS is the leading glo-
merulopathy responsible for end-stage renal disease (ESRD) in
the USA [1]. It is the cause of �40% of the nephrotic syndrome in
adults and 20% in children [2]. As in other kidney diseases, the
incidence of FSGS is generally 1.2- to 1.5-fold higher in men
than in women [3]. FSGS can be classified into two main forms:
secondary, which includes genetic, adaptive, infection/inflam-
mation and medication-associated FSGS, and primary or idio-
pathic FSGS [2, 4]. Primary FSGS is thought to be caused by an
unknown circulating factor(s) that damages the podocytes and
consequently permeabilizes the glomerular filtration barrier [2].
The major concerns of idiopathic FSGS are the poor renal prog-
nosis with an absence of response to immunosuppressive ther-
apies or relapses and its recurrence after kidney transplantation
in ~30–50% of patients, which often leads to renal graft failure
[5].

Primary FSGS should be suspected in patients with abrupt
nephrotic proteinuria, severe hypoalbuminaemia, oedema and
uniform podocyte foot process effacement (FPE) by electron mi-
croscopy (EM) of a renal biopsy [6]. A careful and detailed medi-
cal history and clinical examination are needed, as often it is
not easy to distinguish between primary and secondary FSGS.
From a practical point of view, it is worth mentioning that pri-
mary FSGS is often confused with other glomerulopathies such
as minimal change disease (MCD). In fact, many authors believe
that MCD and primary FSGS are the same disease, the second
being a more advanced stage of the first, where glomerular
lesions can be seen by light microscopy (LM) [7]. Diagnosis of
primary FSGS is not a straightforward process and therefore
several studies have focused on finding factors and markers
that may be helpful for diagnosis of the disease and the detec-
tion of FSGS recurrence after kidney transplantation [8–10].

In this review we discuss the diagnosis algorithm of FSGS in
the native kidney and its relapse after kidney transplantation.
In addition, we will review studies focused on new biomarkers
for early diagnosis and/or detection of FSGS relapse after kidney
transplant. We will also cover new strategies aimed at identify-
ing accurate biomarkers of disease activity and progression.

The primary FSGS diagnosis in the native kidney

FSGS is a histological term rather than a specific clinical disease.
FSGS is a lesion resulting from a podocyte injury characterized
by segmental (in parts) and focal (of some) sclerosis of the glo-
meruli. Thus the histological finding lends its name to the asso-
ciated clinical disease. It can be classified into secondary FSGS
or primary (idiopathic) FSGS. Secondary FSGS lesions are ob-
served as an adaptive response to a reduction in nephron mass,
genetic mutations, drug consumption or viral infections, among
others (Table 1) [4]. In secondary FSGS cases (except for the

genetic forms), treatment of the underlying cause of the disease
can reverse or slow down the progression of the disease,
depending on the extent of established renal damage (i.e.
angiotensin-converting enzyme inhibitor or angiotensin recep-
tor blocker treatment for hypertension-caused FSGS or antiviral
treatment for virus-induced FSGS). In contrast, primary FSGS is
thought to be caused by undefined circulating factors that cause
abnormal glomerular permeability and is diagnosed after exclu-
sion of any other identifiable cause of secondary FSGS [4]. This
subtype of FSGS is associated with a poor renal prognosis when
compared with secondary forms [12] and another primary glo-
merulonephritis [13] and requires immunosuppressive treat-
ment. Therefore the distinction between primary and
secondary forms of FSGS has therapeutic and prognostic impli-
cations. As the presence of an FSGS lesion itself in a kidney bi-
opsy does not offer a precise diagnosis, it remains a clinical
diagnosis. Additionally, other diseases may present similar clin-
ical and histological findings, such as MCD or focal and global
glomerulosclerosis (FGGS). Identifying each form properly is
crucial to avoid unnecessary immunosuppressive-based thera-
peutic approaches and to establish the appropriate treatment
for the FSGS patient.

FSGS is clinically noticed when patients present with heavy
proteinuria. Depending on the degree of proteinuria, primary or
secondary FSGS can be suspected. Patients with primary FSGS
usually present with nephrotic-range proteinuria (>3.5 g/day)
with complete nephrotic syndrome (severe hypoalbuminae-
mia), often associated with renal insufficiency, hypertension
and microhaematuria [14]. In contrast, secondary FSGS patients
usually present a broad range of proteinuria (including
subnephrotic and nephrotic range) and in general do not de-
velop complete nephrotic syndrome despite the presence of ne-
phrotic-range proteinuria. Renal insufficiency is less common
in secondary FSGS and is usually associated with a slow in-
crease of proteinuria over time [15]. However, this is not appli-
cable for genetic FSGS, which may be very aggressive, with
early-age onset, even in utero, associated or not with extrarenal
characteristic clinical features, with overall progression to ESRD
[16].

Together with clinical and laboratory findings, kidney biopsy
is key for disease identification. However, histological injury is
difficult to evaluate in single kidney sections since the focal
sclerotic lesions, which are present in many glomeruli, affect
only 12.5% of the total glomerular volume [17]. Therefore it is es-
sential to obtain representative biopsy specimens that include
at least 10 glomeruli, both cortical and juxtamedullary, as scle-
rotic changes may occur earlier in the latter. Juxtamedullary
glomeruli can sometimes be missed on the kidney biopsy.
Furthermore, these samples should be processed in successive
sections that allow observation of the whole glomerular tuft
and evaluation in LM. The histology of FSGS is defined by a seg-
mental increase of the mesangial matrix with obliteration of
the capillaries, sclerosis, hyalinosis, segmental scarring and fi-
nally Bowman’s capsule adhesion to the glomerular tuft. Under
LM, FSGS histological lesions can be classified into five subtypes
according to the Columbia classification [18]: perihilar, tip,
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collapsing, cellular and not otherwise specified (NOS). NOS is
the most common form in diverse series [19]. Prognosis may
also be associated with the histological subtype. The tip variant
has shown the highest rates of remission, while the collapsing
variant is related to poor prognosis [20]. Of note, initial stages
are only detectable by electronic microscopy where a degree of
diffuse podocyte FPE should be observed. Generalized diffuse
FPE (>80% of the analysed podocitary surface) can be associated
with primary FSGS or MCD, while segmental and <80% FPE is
usually related to secondary FSGS [21, 22]. FPE assessment using
transmission electronic microscopy is to date the only estab-
lished way to analyse the podocyte morphology, but it is far
from being a standard method, as it is technically complex,
requires ability and time and, moreover, deals with a geometric
bias derived from physical sectioning [23]. Therefore, novel
high-resolution microscopy techniques are in development to
improve visualization of the glomerular filtration barrier com-
pounds [23, 24].

When the onset of proteinuria with nephrotic syndrome is
noted in paediatric patients, the diagnostic approach is very dif-
ferent. A kidney biopsy is discouraged as a first-line diagnostic
procedure. When a child presents with proteinuria associated
with nephrotic syndrome, treatment with steroids is started.
The majority of patients are steroid-sensitive (�85%) [25, 26]
and a kidney biopsy is normally not performed unless the pa-
tient develops steroid resistance. In case of steroid resistance, a
kidney biopsy and genetic testing are indicated. About 15% of
the paediatric patients with nephrotic syndrome are corticoste-
roid resistant and, of these, �60% do not respond to any other
therapeutic option. FSGS is detected in the kidney biopsy in
>50% of steroid-resistant paediatric patients [26]. Moreover,
most of the genetic forms of FSGS appear during childhood and
are mainly associated with corticosteroid resistance. Mutations
in the nephrin (NPHS-1), Wilms tumour 1 (WT-1) and podocin
(NPHS-2) genes can explain �70% of the studied cases of
corticosteroid-resistant nephrotic syndrome [26]. Furthermore,

routine whole-exome sequencing has allowed not only the de-
scription of >30 genes related to steroid resistance in nephrotic
syndrome [11, 27, 28], but also discarding of other kidney dis-
eases with proteinuria and FSGS, but from a totally different
aetiology (i.e. Alport syndrome [29, 30], kidney dysplasia [31] or
congenital abnormalities of the kidney and the urinary tract [32,
33]). A positive genetic test will focus the therapy on an antipro-
teinuric and symptomatic treatment, avoiding exposure to im-
munosuppression, but a negative result does not fully exclude
mutations not previously reported.

Relapse of FSGS after kidney transplantation

One of the major concerns of primary FSGS is that the disease
can recur after kidney transplantation and it seems to be related
to the permeabilization activity of the FSGS circulating factor(s).
Post-transplant FSGS recurrence happens in �30–50% of
patients and it can occur immediately or months to years after
transplantation [5, 34]. The known risk factors for FSGS recur-
rence include younger patients, those who progress to ESRD
within 3 years of diagnosis, a history of recurrence in a prior
allograft and patients with higher proteinuria levels pre-
transplantation [35]. Recurrent primary FSGS presents with ne-
phrotic-range proteinuria and frequently has a rapid onset in
the early post-transplant period. Patients usually have symp-
toms and signs of nephrotic syndrome, such as oedema, hypo-
albuminaemia and hyperlipidaemia, together with some degree
of graft dysfunction. Nevertheless, the presence of proteinuria
is enough to raise the suspicion of FSGS recurrence in patients
that do not develop the full clinical picture. The definitive diag-
nosis is performed by allograft biopsy, where the characteristic
features of FSGS are identical to FSGS in the native kidney, al-
though in the initial phases the histological findings are charac-
terized by a normal kidney under the optical microscope and
podocyte FPE using EM [36]. The treatment for FSGS recurrence,
as in native kidney idiopathic FSGS patients, is not standardized

Table 1. Main causes of secondary FSGS (adapted from KDIGO guidelines 2012 for glomerulonephritis [4])

Causes of secondary FSGS

Genetic Mutations in the genes coding for crucial podocyte proteins:
Mutations in ACTN4 (a-actinin 4), mutations in NPHS1 (nephrin), mutations in NPHS2 (podocin), mutations

in WT-1 (Wilms tumor 1), mutations in TRPC6 (transient receptor potential cation channel subfamily C
member 6), mutations in SCARB2 (lysosomal integral membrane protein 2), mutations in INF2 (formin),
mutations in CD2-associated protein, others: PAX-2 (paired box protein Pax-2), MYO1E (unconventional
myosin-Ie), among others [11]

Mitochondrial cytopathies
Apolipoprotein L1 risk variants: associated to APOL1(apolipoprotein L1) polymorphisms

Associated
with infectious diseases

Secondary to viral infections: human immunodeficiency virus, parvovirus B19, hepatitis virus B and C, cy-
tomegalovirus, Epstein–Barr virus, varicella zoster

Secondary to parasite or bacterial infections: malaria, syphilis, toxoplasmosis
Medication Medication or drug consumption induced: heroin, interferon-a, lithium, pamidronate/alendronate, ana-

bolic steroids
Adaptive structural–functional

responses likely due
to hypertrophy
or hyperfiltration

Reduced kidney mass: oligomeganephronia, unilateral kidney agenesis, kidney dysplasia,cortical necro-
sis, reflux nephropathy, surgical kidney ablation, chronic allograft nephropathy, any advanced kidney
disease with reduction in functioning nephrons

Initially normal kidney mass: diabetes mellitus, hypertension, obesity, cyanotic congenital heart disease,
sickle cell anaemia

Malignancy Associated mainly with lymphoma
Non-specific pattern of FSGS Produced secondary to the scarring due to the presence of other glomerulopathies: focal proliferative glo-

merulonephritis (immunoglobulin A nephropathy, lupus nephritis, pauci-immune focal necrotizing
and crescentic glomerulonephritis), hereditary nephritis (Alport syndrome), membranous glomerulop-
athy, thrombotic microangiopathy, associated with apolipoprotein L1 (ApoL1) polymorphisms

484 | C. Jacobs-Cachá et al.
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and the results are variable [37]. Kidney transplanted patients
are usually already under a tacrolimus-based immunosuppres-
sive treatment, therefore, to manage the FSGS recurrence, a
change to cyclosporine can be performed as a strategy to de-
crease proteinuria [38]. Currently, early plasmapheresis treat-
ment combined with intensified immunosuppression is the
most common treatment choice for primary FSGS recurrence
[39]. However, the results obtained with this treatment ap-
proach are variable and, in addition, these treatments are not
exempt from toxicity [34, 40, 41].

De novo FSGS may also occur in the transplanted kidney
among patients who did not have FSGS as a cause of ESRD in
the native kidney. This is often detected >12 months after
transplantation and is associated with variable amounts of pro-
teinuria (including the nephrotic range), hypertension and pro-
gressive deterioration of renal allograft function. Compensatory
glomerular hyperfiltration in residual nephrons caused
by nephron loss or low nephron number in the transplanted
kidney (size discrepancies between the graft and the recipient)
has been implicated in the pathogenesis of de novo FSGS.
Therefore hypertension, diabetes, allograft rejection,
immunosuppressive-induced allograft damage, BK polyomavi-
rus or parvovirus B19 infection and any other condition leading
to a loss of renal mass can be involved in the pathogenesis of de
novo FSGS [42]. De novo FSGS should be closely monitored in
patients with unknown aetiology of ESRD in the native kidney,
as primary FSGS recurrence cannot be totally excluded.

Despite features that allow us to discern primary FSGS and
its relapses from other variants of FSGS and other renal diseases
(Table 2), none of these findings is pathognomonic and identify-
ing primary FSGS continues to be challenging. It is important to
highlight again that FSGS is a histological pattern rather than a
specific disease and that not all causes leading to podocyte
damage have been elucidated. It is unknown whether primary
FSGS is the consequence of one circulating factor or the

conjunction of different factors that damage the glomerular fil-
tration barrier. Furthermore, it is not clear what determines the
response to immunosuppressive treatment and if there are dif-
ferent variants of primary FSGS. Finally, although genomic
analysis has allowed the description of many genetic mutations
related to FSGS, it is possible that still unidentified genetic alter-
ations are responsible for adult FSGS onset, a fact that would
lead to a mistaken diagnosis. For all these reasons, during the
last decades, different groups have tried to find different bio-
markers to help us recognize and understand the pathways in-
volved in primary FSGS.

Towards a better understanding of FSGS

FSGS is a complex pathology not only because of the difficulties
in diagnosis mentioned earlier, but also due to its low preva-
lence and the lack of clinical tools for its risk stratification, pre-
diction of remission, treatment selection and monitoring of
drug response. In addition, FSGS may show a slow progression,
thus requiring years of follow-up to prove the effectiveness of
an intervention. Therefore it has been necessary to join efforts
and collect data from patients from different hospitals to obtain
large cohorts to study the pathologic mechanism (among
others) of FSGS and the response to different treatment
approaches. Several registries have been created to this end,
such as the Nephrotic Syndrome Study Network (NEPTUNE) and
Cure Glomerulonephropathy (CureGN).

The NEPTUNE is a prospective observational study that be-
gan in 2010 and will recruit 450 paediatric and adult patients
not only with FSGS, but also with MCD and membranous glo-
merulonephritis (MGN) at the time of the first renal biopsy clini-
cally indicated for proteinuria. The enrolment includes 18
clinical centres in the USA and Canada and aims to find changes
in urinary protein excretion and renal function and to assess
the outcomes in life quality, development of new-onset

Table 2. Characteristics of various forms and diseases included in the differential diagnosis of FSGS

Characteristics Primary FSGS Secondary FSGS Genetic FSGS MCD

Clinical history Acute onset of nephrotic
syndrome without
risk factors or previ-
ous renal disease
history

Risk factors are present,
such as obesity, drug
consumption, vesi-
coureteral reflux, re-
nal agenesis or
reduced nephron
mass or viral
infection

Family history of FSGS
disease (although fre-
quently there are not
familiar records); pro-
teinuria or nephrotic
syndrome with onset
in early childhood or
adolescence

Acute onset of nephrotic
syndrome without
risk factors or previ-
ous renal disease
history

Laboratory findings Nephrotic syndrome:
peripheral oedema,
hypoalbuminaemia
and >3.5 g of protein-
uria in 24-h urine;
haematuria is
common

Non-nephrotic or ne-
phrotic-range pro-
teinuria, without
nephrotic syndrome;
normal serum albu-
min levels

Childhood-onset genetic
FSGS: usually ne-
phrotic syndrome is
present; adolescence
or adult-onset genetic
FSGS: proteinuria
without nephrotic
syndrome

More rapid onset of ne-
phrotic syndrome;
peripherial oedema,
hypoalbuminaemia
and >3.5 g of protein-
uria in 24-h urine

Pathological findings LM: segmental areas of sclerosis, partial capillary collapse and hyaline depositsa LM: normal glomeruli
IF: none or few immune deposits in sclerotic lesions

positive to IgM and occasionally to C3
IF: negative

EM: usually diffuse
(>80%) podocyte FPE

EM: usually segmental
(<80%) podocyte FPE

EM: either diffuse or
segmental podocyte
FPE

EM: diffuse (>80%)
podocyte FPE

aDepending on the location of the lesions, tip and perihiliar variants are distinguished. Cellular and collapsing variant show their own characteristics. If not a quality

biopsy, glomeruli may seem normal.

IF, immunofluorescence.

Challenges in primary FSGS diagnosis | 485

D
ow

nloaded from
 https://academ

ic.oup.com
/ckj/article/14/2/482/5890996 by H

ospital vall d'H
ebron user on 18 February 2022



diabetes, malignancies, infections, thromboembolic events,
hospitalization, acute kidney injury and death [43]. From the
NEPTUNE study cohort, a scoring strategy for renal biopsies has
been designed to standardize morphological analysis. This scor-
ing method provides a multilevel annotation of the glomeruli of
a whole-slide image for multidimensional reconstruction. This
method allows simultaneous review and scoring of the same
glomeruli on each digital slide [44, 45]. The purpose of the
authors is to redefine histopathological classification and link
these novel criteria to clinical and molecular phenotypes of glo-
merular diseases [46–48]. Renal tissue and compartment-
specific genetic profiles obtained by genome-wide meesenger
RNA (mRNA) expression data [49–51] will be performed using
the samples of the NEPTUNE cohort with the aim to obtain mo-
lecular scoring data that will facilitate multidisciplinary and
transdisciplinary research exploration along with the genotype–
phenotype continuum. Other relevant data that have also been
obtained thanks to study of the NEPTUNE cohort are the poor
correlation that exists between the spot urine urinary protein:-
creatinine ratio (which is usually used to estimate 24-h protein-
uria) with the real 24-h urine protein excretion in glomerular
diseases [52, 53], new statistical models to improve longitudinal
CKD outcome biomarkers analysis [54] and the relevant factors
that could predict nephrotic syndrome remission [55].

Another of the biggest studies ongoing is the CureGN, that
began recruitment in 2014 and plans to enrol 2400 children
and adults with MCD, FSGS, MGN or immunoglobulin A ne-
phropathy (IgAN) (including IgA vasculitis). Patients are in-
cluded if they have a first kidney biopsy–proven diagnosis
within the last 5 years and, once enrolled, a prospective
follow-up is performed under a common protocol. Patients
with ESRD and those with secondary causes of glomerular
disease are excluded. At least 30% of the cohort is expected
to be paediatric. This large cohort will target a racially, ethni-
cally and geographically diverse population with glomerular
disease, which contrasts with other studies that included
more homogeneous patients [56]. The hypothesis of the
authors of the CureGN is that different disease mechanisms
can result in similar pathologic and clinical phenotypes but
show very different disease development and that the histo-
pathology per se does not adequately define disease course
and response to therapy for all individuals within a given di-
agnosis. The identification and characterization of the under-
lying mechanisms will have a broad influence on diagnostic
classification, accurate prognostication, definition of patient
cohorts for clinical trials and the indication of individualized
therapies. Awaiting results in terms of diagnosis improve-
ment and disease management, data from this cohort regard-
ing health-related quality of life [57] and cardiovascular
disease risk in paediatric patients [58] are available. Most of
the patients in the NEPTUNE study meet the inclusion criteria
of the CureGN study; this will allow us follow patients for
years and to obtain long-term longitudinal information,
which is very important in low-prevalence pathologies. Both
NEPTUNE and CureGN data intend to complement relevant
work from previous large registry studies that have provided
important data on risk factors for disease progression [25, 59–
67]. It is worthy of mention that the PodoNet, a paediatric co-
hort study that recruited steroid-resistant nephrotic syn-
drome patients, has provided valuable information regarding
kidney histology, genetic defects, treatment response and
outcomes of this complex clinical entity [25].

Many authors agree that recent advances have led to the dis-
covery of biomarkers of glomerular disease, including discovery

of the M-type phospholipase A2 receptor [68] and thrombospon-
din type-1 domain-containing 7A [69] as the target antigens in
most patients with primary MGN, studies of galactose-deficient
IgA1 and antiglycan response in IgAN [70] and associating
mutations in apolipoprotein L1 to the development of kidney
disease in patients of African ancestry [71, 72]. But although the
number of genetic mutations identified in patients with FSGS
has also expanded in the last decade [73], the causal mecha-
nism of the primary FSGS form is still unknown. The registry
data such as that obtained with the NEPTUNE or the CureGN
cohorts will most probably provide a platform for genetic testing
and the identification and validation of new biomarkers. These
large studies may be helpful to better understand and manage
primary FSGS as well as other glomerulonephritis.

Novel biomarkers to diagnose primary FSGS

As mentioned before, sometimes it is difficult to distinguish be-
tween different forms of FSGS and even to differentiate it from
other glomerular diseases. The major challenge in FSGS diagno-
sis is early detection of the primary or idiopathic forms in order
to decide the best therapeutic option. Several approaches have
been used in order to improve our understanding of the disease
and help in diagnosis and management (Figure 1).

As the disease is mainly a glomerular dysfunction, efforts
have been made to establish which proteins are differentially
expressed in glomerular cells of primary FSGS patients that
could potentially be used as markers. In 2003, gene expression
analysis of common podocyte proteins (ACTN4, GLEPP-1, WT-1,
synaptopodin, dystroglycan, nephrin, podoplanin and podocin)
of microdissected glomeruli suggested that the podocin:synap-
topodin expression ratio may be useful to distinguish FSGS
from MCD and nephrotic syndrome, although not from MGN
[74]. CD44þ staining in the glomerular parietal cells has also
been related to FSGS. Although initially it seemed that it was
specifically associated to primary FSGS forms [75, 76], it has also
been detected in secondary forms [77], suggesting that CD44 ex-
pression in the parietal cells is related to a common FSGS devel-
opment mechanism. Furthermore, kidney tissue microRNA
(miRNA) expression has also been analysed in FSGS patients.
Although several miRNAs are upregulated in glomeruli of pri-
mary FSGS patients [78], it seems that miRNA-193a is relevant
for development of the disease, as it decreases the expression
of WT-1, which compromises the podocyte function [79].
miRNA-193a is also increased in urinary exosomes of FSGS
patients when compared with MCD patients [80], thus this
miRNA could be suitable to detect primary FSGS, although this
needs further validation.

Although study of the proteins specifically expressed in
FSGS in the kidney tissue has helped in understanding the dis-
ease, to date the clue to better diagnose idiopathic FSGS has not
been found. Therefore a specific non-invasive biomarker would
be very useful to discriminate different forms of FSGS.
Biomarkers have been searched both in blood and in urine sam-
ples. The search for plasma biomarkers has been basically fo-
cused on the permeabilizing factor. Research on the putative
plasma factor began about two decades ago [81, 82], and al-
though some candidates have been proposed [83, 84], it has not
been firmly demonstrated that any of them causes idiopathic
FSGS. Certainly, one of the most promising proposed circulating
factors was soluble urokinase receptor (suPAR), which was
found to be increased in the serum of FSGS patients [8]. In a pre-
vious work, Wei et al. [85] showed that the urokinase receptor
could be involved in the FPE of podocytes via activation of the
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ab3-integrin pathway in a urokinase plasminogen activator re-
ceptor (uPAR) knockout mouse model [85]. Therefore they hy-
pothesized that maybe the soluble uPAR (suPAR) could be the
FSGS causal circulating factor. suPAR levels were measured in
serum samples of 78 subjects with FSGS, 25 with MCD, 16 with
MN, 7 with pre-eclampsia and in 22 healthy individuals. Blood
suPAR levels were higher in the FSGS patient group than in the
rest of the studied groups and, moreover, suPAR levels were
also higher in the FSGS patients that relapsed after kidney
transplantation. In addition, the authors demonstrated that the
uPAR recombinant form injected into a knockout mouse model
induced proteinuria, reinforcing the idea of suPAR is the plasma
circulating factor related to FSGS [8]. Unfortunately, later studies
were unable to demonstrate the same results in independent
cohorts [86–88], nor could it be firmly demonstrated that it was
the cause of the disease [89, 90]. Moreover, plasma suPAR levels
have also been found to be elevated in several extrarenal pa-
thologies that can potentially be concomitant to FSGS, such as
cancer or inflammatory disorders, among others [91–95]. Recent
studies suggest that both urinary levels of suPAR [96, 97] and
uPAR detection in kidney biopsies [98] may be useful in the di-
agnosis of primary FSGS, but further investigation is needed.
Anti-CD40 blood levels have also been associated with FSGS,
with 78% accuracy to predict post-transplant FSGS recurrence
[99]; however, further studies are required to confirm these
results. Recently it has been shown that plasma of relapsing

FSGS patients induces the expression of several specific genes
upon cultured podocytes and the authors suggest that this
could be used to distinguish FSGS recurrence from other types
of renal disease. As an example, analysis of interleukin-1b gene
expression induced by serum of recurrent FSGS patients shows
>80% sensitivity and specificity to discriminate relapsing FSGS
patients from other nephropathies [100]. Although the study
was elegantly designed, it represents an indirect method on cul-
tured podocytes, cells that need several days to differentiate
(from 7 to 14 days) [101], hence it would not allow a fast diagno-
sis of FSGS relapse, making it difficult to use in current clinical
practice. Finally, plasma miRNAs have also been explored as po-
tential biomarkers to detect primary FSGS and several of these
have been associated to the disease [102–104].

Urine has also been exploited as a biomarker source. In 2007,
Varghese et al. [105] performed two-dimensional electrophoresis
(2DE) of urine samples from several groups of patients (FSGS,
IgAN, MGN and diabetic nephropathy) with the aim of finding
biomarkers to distinguish glomerulopathies. They quantified
the relative abundance of each spot (that represents a protein)
and, based on these data, they designed a prediction algorithm.
Although this study was not focused on FSGS, it revealed that
variations in the urinary proteome could be useful to discrimi-
nate kidney diseases with proteinuria. Similarly, in a rat model
of induced FSGS, a serial analysis of urine samples using 2DE
revealed that the proteomic profile changed along the course of

FIGURE 1: Milestones for primary FSGS biomarker identification. Timeline of research studies focused on finding putative biomarkers to detect primary FSGS in blood,

kidney tissue and urine.
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the disease and that some proteins appeared before the scle-
rotic lesions, suggesting that they could be useful as early bio-
markers [106]. To our knowledge, the first and only urinary
biomarker that has been specifically associated with post-
transplantation recurrent FSGS is apolipoprotein A-Ib (apoA-Ib),
a modified form of apoA-I, described by Lopez-Hellı́n et al. in
2013 [107]. Results from two cohorts [10, 107] have shown that
the presence of this form in urine allows the detection of recur-
rent FSGS patients with high specificity and sensitivity (>87%
and >90%, respectively). ApoA-Ib also has a potential prognostic
value, as it can be found in urine before the FSGS recurrence epi-
sodes [10]. Although the exact role of apoA-Ib in FSGS is un-
known, other authors have also found increased levels of apoA-
I [108] or the presence of high molecular weight forms of apoA-I
[109] in urine of FSGS patients, reinforcing the idea that either
apoA-I or the mechanisms that modify this lipoprotein are in-
volved in the pathogenic mechanism of this disease [110]. The
potential role of this biomarker to discriminate primary FSGS in
native kidney is currently being pursued, but preliminary
results obtained with idiopathic FSGS patients before kidney
transplantation pointed out that the detection of apoA-Ib in na-
tive kidney patients is associated with a worse prognosis [10].
Regarding urinary mRNAs, several of them can be found differ-
entially in urine of primary FSGS patients [111, 112], but their
potential as biomarkers remains to be studied.

CONCLUSIONS

As reviewed in this work, the diagnosis and management of pri-
mary FSGS is not a trivial issue, as knowledge of this pathology
holds ‘several types of truths’ [113], as every matter of study.
Management of this rare disease with an unknown aetiology is
based on empirical knowledge related to the response of pri-
mary FSGS to different treatments, which is per se extremely dif-
ficult. Experimental studies have provided fundamental data to
better understand the disease and it is expected that the new
biomarkers will allow an improved diagnostic algorithm for pri-
mary FSGS.
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110. Jacobs-Cachá C, López-Hellı́n J. Should high molecular
weight forms of apolipoprotein A-I be analyzed in urine of
relapsing FSGS patients? Pediatr Nephrol 2019; 34: 2423–2424

111. Zhang W, Zhang C, Chen H et al. Evaluation of microRNAs
miR-196a, miR-30a-5p, and miR-490 as biomarkers of dis-
ease activity among patients with FSGS. Clin J Am Soc
Nephrol 2014; 9: 1545–1552

112. Ramezani A, Devaney JM, Cohen S et al. Circulating and uri-
nary microRNA profile in focal segmental glomerulosclero-
sis: a pilot study. Eur J Clin Invest 2015; 45: 394–404

113. Baggini J. A Short History of Truth: Consolations for a Post-Truth
World. London: Quercus, 2017

Challenges in primary FSGS diagnosis | 491

D
ow

nloaded from
 https://academ

ic.oup.com
/ckj/article/14/2/482/5890996 by H

ospital vall d'H
ebron user on 18 February 2022


	tblfn1

