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SUPPLEMENTARY METHODS 

Molecular and biological characterization of ITP pathophysiology and of 

eltrombopag effects 

Through a thorough revision of bibliographical sources, we defined a set of 

restrictions for characterising ITP, which were used to centre the protein 

network and the mathematical model on ITP. We conducted a search for 

reviews published in the previous ten years in the PubMed database (from 2006 

to the date of the search April 5th 2017) that included the following search 

strings: (("Immune thrombocytopenic purpura"[Title]) OR (ITP[Title]) OR ("Primary 

Immune Thrombocytopenia"[Title])) AND (pathophysiology OR "molecular 

pathology" OR "molecular pathogenesis"). This search resulted in 36 relevant 

articles that were fully reviewed. The search was expanded using article 

reference lists. We identified the main pathophysiological processes described 

to be involved in ITP: abnormal B cell-dependent humoral immune response, 

abnormal cellular immunity, immune induced platelet destruction, suppression 

of megakaryocyte proliferation and maturation/decreased megakaryocyte 

apoptosis, and dysfunctional mesenchymal stem cells (Table S2, Supplementary 

file 1). Subsequently each pathophysiological process was further functionally 

characterized at protein level, considering only proteins with a demonstrated 

functional role in disease development or manifestation; if the evidence for a 

protein candidate was considered weak (e.g. change in expression without clear 

functional involvement), specific searches were performed to include or discard 

the candidate. We identified 56 non-duplicated key proteins to focus the 

analysis on ITP in the human biological network (Table S3, Supplementary file 

1), including bibliographic references linking the proteins to ITP 

pathophysiology). 

For the drug molecular definition, we performed a revision of dedicated 

databases [1–3] and of scientific literature and we identified one target (MPL) 

(Table S7, Supplementary file 1). 

Creation of human biological networks 

The protein-protein interaction (PPI) human network created incorporated the 

available relationships (edges or links) between proteins (nodes) from a 

regularly updated in-house database drawn from public sources: KEGG [4,5], 

REACTOME [6], INTACT [7], BIOGRID [8], HPRD [9], and TRRUST [10]. We 

incorporated into the biological network all the information of key proteins 

defined during the molecular and biological characterization and stored in 

relevant databases (drug targets, other disease key proteins, biomarkers…). 

Generation of mathematical models – Sampling-based methods 

We transformed biological maps into a mathematical model capable of 

reproducing existing knowledge and predicting new data. As already described 

elsewhere[11],therapeutic performance mapping system (TPMS) technology 
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uses a set of artificial intelligence algorithms to simulate the human physiology 

over the human biological network [12–15]. 

To train the models, we collated into a table (training set) a selected collection of 

known input-output physiological signals considered the “truths” (Table S6, 

Supplementary file 1)[16]. We built the training set by using a compendium of 

databases that provides biological and pharmacological input-output 

relationships (such as drug-indication pairs) [17,18]. The biological or 

pathological conditions included in the training set were molecularly 

characterized through specific scientific literature search and hand-curated 

assignment of proteins to the conditions, constructing a clinical-molecular 

database that could be used as a dictionary between clinical terms and 

molecular processes (i.e. the biological effectors database [BED]) [19,20]. The 

models had to be able to reproduce every rule contained in the training set. This 

approach allowed the creation of models that integrated all the available 

biological, pharmacological, and medical knowledge and were able to suggest 

mechanistic hypotheses that were consistent with actual biological processes. 

We used sampling–based methods to build the models to elucidate the 

immunomodulatory molecular mechanism of action (MoA) of eltrombopag. 

TPMS sampling–based methods generate models similar to a Multilayer 

Perceptron of an Artificial Neural Network over the human protein network 

(where neurons are the proteins and the edges of the network are used to 

transfer the information). This methodology can be used for describing with 

high capability all plausible relationships between an input (or stimulus) and an 

output (or response). Sampling–based methods use optimization algorithms 

[13] to solve each parameter of the equation, i.e. the weights associated to the 

links between the nodes in the human protein network. In this approach, the 

network is limited by considering only interactions that connect drug targets 

with protein effectors or disease key proteins in a maximum of three steps. The 

values of activation (+1) and inactivation (-1) of the targets of the drugs in the 

training set were considered as input signals. The output results are the values 

of activation and inactivation of the proteins defining the phenotype (as 

retrieved from the BED). Each node of the protein network receives as input the 

output of the connected nodes in the flow direction, from targets to effectors, 

weighted by each link weight. The sum of inputs is transformed by a hyperbolic 

tangent function to generate the score of the node (neuron), which becomes the 

“output signal” of the current node towards the nodes. The weight parameters 

are obtained by the Stochastic Optimization Method based on Simulated 

Annealing [13], which uses probabilistic measures derived from the biological 

evidences to adjust network interaction types and strengths. Since the number 

of entries in the training set is always smaller than the number of parameters 

(link weights) required by the algorithm, any process modelled by TPMS 

considers a population of different solutions. In our case, we obtained models 
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complying with the information in the training set with a mean accuracy of 

94.92%. In order to elucidate the immunomodulatory mechanisms of 

eltrombopag in ITP, drug vs. disease-specific models were created by repeating 

the optimization process adding the new inputs (drug characterization) and 

output (disease characterization). Herein, our MoA represented the mean of the 

solutions obtained. Firstly, we checked that each link was accurate, i.e. was 

already described in the literature. Secondly, we evaluated whether the MoA 

was logical as a whole, featuring pathways coherent with the living system and 

the known pathophysiology of ITP. 

Selection of biologically relevant sites within structures of eltrombopag- 

target candidates 

RCSB PDB (www.rcsb.org) [21] structures for each candidate were studied to 

identify drug-binding sites: 

- BCL2: binding of external molecules to the BH4 domain has been 

reported to induce a conformational change turning BCL2 from an anti- 

apoptotic to a death protein [22]. 

- BCL2L1: we did not find references of drugs interfering in its function. 

However, taking into account that it belongs to the same family as the 

abovementioned protein, BCL2, we considered the BH4 domain as a 

potential functional site. 

- BAX: binding of antibodies to specific regions of its pro-apoptotic BH3 

domain has been reported to induce BAX activation [22]. Similarly, the 

first alpha helix of the protein has been found necessary for activation by 

the BH3-only proteins Bid and PUMA [23]. 

Moreover, we also considered histidine residues within the whole protein 

sequence of target candidates as potential binding pockets of eltrombopag, 

because of the high importance of MPL’s His499 (located in its transmembrane 

domain) in the binding of eltrombopag [24,25]. 
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