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Abstract

Background: ATLAS evaluated the efficacy and safety of the PARP inhibitor rucaparib in patients with previously
treated locally advanced/unresectable or metastatic urothelial carcinoma (UC).

Methods: Patients with UC were enrolled independent of tumor homologous recombination deficiency (HRD)
status and received rucaparib 600 mg BID. The primary endpoint was investigator-assessed objective response rate
(RECIST v1.1) in the intent-to-treat and HRD-positive (loss of genome-wide heterozygosity ≥10%) populations. Key
secondary endpoints were progression-free survival (PFS) and safety. Disease control rate (DCR) was defined post-hoc
as the proportion of patients with a confirmed complete or partial response (PR), or stable disease lasting ≥16 weeks.

Results: Of 97 enrolled patients, 20 (20.6%) were HRD-positive, 30 (30.9%) HRD-negative, and 47 (48.5%) HRD-
indeterminate. Among 95 evaluable patients, there were no confirmed responses. However, reductions in the sum of
target lesions were observed, including 6 (6.3%) patients with unconfirmed PR. DCR was 11.6%; median PFS was 1.8
months (95% CI, 1.6–1.9). No relationship was observed between HRD status and efficacy endpoints. Median treatment
duration was 1.8 months (range, 0.1–10.1). Most frequent any-grade treatment-emergent adverse events were asthenia/
fatigue (57.7%), nausea (42.3%), and anemia (36.1%). Of 64 patients with data from tumor tissue samples, 10 (15.6%)
had a deleterious alteration in a DNA damage repair pathway gene, including four with a deleterious BRCA1 or BRCA2
alteration.

Conclusions: Rucaparib did not show significant activity in unselected patients with advanced UC regardless of HRD
status. The safety profile was consistent with that observed in patients with ovarian or prostate cancer.
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Background
Bladder cancer is one of the most common cancer types
[1], with urothelial carcinoma (UC) accounting for > 90%
of the cases [2]. In 2018, there were approximately
549,000 estimated new bladder cancer cases and 200,000
deaths worldwide [3]. The prognosis for advanced disease
is poor, with a 5-year overall survival (OS) rate of only 5%
in those diagnosed with distant metastases [4].
Platinum-based chemotherapy (PBC) has been the

standard upfront treatment for patients with locally
advanced/unresectable or metastatic UC [5]. Single
chemotherapy agents, such as taxanes, gemcitabine,
pemetrexed, or vinflunine (European Union only), are
used in patients whose disease progressed on or after a
PBC [6, 7]. However, these second-line treatments are
associated with modest objective response rates (ORRs,
14–32%), with a median OS of 7–8months [6, 8]. In the
post-platinum setting, single-agent immune checkpoint
inhibitors (ICI) have provided clinical benefit in patients
with platinum-refractory UC (ORRs, 13–21%) [9, 10].
Notably, in the Keynote-045 trial, pembrolizumab
demonstrated an OS advantage and a more favorable
toxicity profile versus second-line chemotherapy [10].
However, many patients continue to have early progression
and/or toxicity with current therapies, emphasizing the
need for additional therapeutic options and research into
validated biomarkers that can identify patients who are
more likely to derive enduring therapeutic benefit [11, 12].
Rucaparib is a potent, oral, small-molecule inhibitor of

poly(ADP-ribose) polymerase (PARP) enzymes [13],
which play a role in DNA damage repair (DDR). Rucaparib
recently received accelerated approval from the US Food
and Drug Administration (FDA) as single-agent therapy
for patients with metastatic castration-resistant prostate
cancer and is approved in the United States and the
European Union for treatment or maintenance treatment
of patients with recurrent ovarian cancer [14, 15].
Although data on PARP inhibitors in UC have been
limited [16, 17], the following evidence suggests that a
subset of urothelial tumors may be susceptible to PARP
inhibition. Alterations in DDR genes (e.g. BRCA1 or
BRCA2 [BRCA]) have been observed in 11% of patients
with UC [18], and approximately 60% of patients with
UC exhibit homologous recombination deficiency (HRD;
e.g. high genome-wide loss of heterozygosity [LOH] or
deleterious DDR gene alteration). Moreover, patients
with UC are usually sensitive to PBC [19, 20], and

platinum sensitivity in other indications has been
associated with response to PARP inhibitors [21]. In
clinical trials, the benefit of rucaparib was observed in
both HRD-positive and HRD-negative ovarian tumors
[22–25]. Based on these data, we hypothesized that
rucaparib monotherapy could potentially be safe and
effective in patients with locally advanced/unresectable
or metastatic UC independent of tumor HRD status.
Unselected enrollment of patients would also facilitate
feasible accrual of patients with DDR gene alterations
that are uncommon in UC, while allowing the study to
be a priori powered to assess the efficacy of rucaparib in
patients with HRD-positive tumors.
Here we report the final efficacy and safety results

from the ATLAS study, which evaluated rucaparib in
patients with locally advanced/unresectable or metastatic
UC. In addition, we report the tumor genomic features
of patients enrolled in this study.

Methods
Study design
ATLAS (NCT03397394; EudraCT 2017–004166-10) was
an international, open-label, phase 2 study that evaluated
the efficacy and safety of single-agent rucaparib for
patients with locally advanced/unresectable or metastatic
UC previously treated with one or two anticancer sys-
temic regimens. The study was approved by national or
local institutional review boards and was performed in
accordance with the Declaration of Helsinki and Good
Clinical Practice Guidelines of the International Council
for Harmonisation. Patients provided written informed
consent before participation.

Patients
Eligible patients were aged ≥18 years, had locally
advanced/unresectable or metastatic UC with measurable
disease per Response Evaluation Criteria In Solid Tumors
version 1.1 (RECIST v1.1), and had confirmed radio-
graphic progression following one or two prior treatment
regimens (e.g. cisplatin- or carboplatin-containing chemo-
therapy, ICI, and/or investigative agent). No more than
one prior PBC was permitted for advanced disease.
Patients who had never received platinum must have been
ineligible for or refused cisplatin at the time of study entry.
Patients had an Eastern Cooperative Oncology Group
(ECOG) performance status of 0 or 1, and adequate organ
function. Patients were enrolled independent of tumor
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HRD status as defined by genome-wide LOH [26].
However, tumor tissue collected prior to treatment
was required for molecular profiling. Patients with
prior PARP inhibitor treatment were excluded. Patients
provided written informed consent before participating in
the study. Additional inclusion criteria are described in
the Supplementary Methods.

Procedures
Tumor tissue samples obtained within 28 days prior to
initiating rucaparib, or within 6 months if no intervening
therapy, were mandatory at baseline. If available, archival
tumor samples from earlier time points were also col-
lected. Tumor HRD status and DDR gene alterations were
identified using the DX1 next-generation sequencing
(NGS) assay from Foundation Medicine, Inc. (Cambridge,
MA, USA) [25]. In the ARIEL2 study of rucaparib in ovar-
ian cancer, sensitivity to platinum-containing chemother-
apy and high genomic LOH (thought to be a biomarker of
HRD) were associated with rucaparib benefit in ovarian
cancer [25, 27]. To prospectively define HRD-positive sta-
tus in the ATLAS trial, we analyzed a subset of patients
from The Cancer Genome Atlas Urothelial Bladder
Carcinoma (TCGA-BLCA) dataset [26] who were treated
with platinum-based chemotherapy. Survival benefit was
analyzed in platinum-treated patients at all possible
genomic LOH cut-offs. In patients with genomic LOH
≥10%, platinum-based chemotherapy showed a statistically
significant survival benefit compared to patients with
genomic LOH < 10%. This cut point resulted in a favorable
hazard ratio, p-value, sensitivity, and specificity. Therefore,
we defined HRD-positive status as genomic LOH ≥10% for
the ATLAS study.
Details of the TCGA-BLCA dataset analyses are de-

scribed in the Supplementary Methods. Blood samples
were also collected at baseline and various time points
for circulating tumor DNA (ctDNA) analysis.
Patients received oral rucaparib 600 mg twice daily

until confirmed radiographic disease progression by in-
vestigator assessment, unacceptable toxicity, or other
reason for discontinuation. Dose reduction criteria are
described in the Supplementary Methods.
Disease assessments were conducted by the investigator

based on clinical examination and appropriate imaging
technique using RECIST v1.1 [28]. The first postbaseline
radiographic scan was to be performed at 8 weeks
(±7 days). If a patient had signs of progression prior to
the initial radiographic tumor assessment, the treating
investigator could choose to perform imaging at an
earlier time point. Assessments were conducted every
8 weeks for up to 18 months, then every 12 weeks
thereafter, including for patients who discontinued
treatment for reasons other than disease progression.
Radiographic tumor assessments were continued until

confirmed radiographic disease progression, loss to
follow-up, withdrawal from the study, study closure,
or initiation of subsequent treatment.
Patients were monitored for adverse events (AEs),

serious AEs, and AEs of special interest during study
participation and until 28 days after the last dose of
rucaparib. AEs and laboratory abnormalities were graded
according to the National Cancer Institute’s Common
Terminology Criteria for Adverse Events grading system
version 4.03 or later.
Plasma samples were collected for trough level phar-

macokinetic (PK) analysis of rucaparib 1 h before the
morning dose on days 29, 57, and 85.

Outcomes
The primary endpoint was ORR per investigator
assessment using RECIST v1.1 in the intent-to-treat
(ITT) population (all patients who received ≥1 dose
of rucaparib) and in patients with HRD-positive
tumors. Key secondary endpoints included duration of
response, progression-free survival (PFS), safety and
tolerability, and the steady-state PK of rucaparib. Dis-
ease control rate (DCR), defined post-hoc as the pro-
portion of patients with a confirmed complete or
partial response, or stable disease lasting ≥16 weeks,
was also assessed. Exploratory endpoints included
assessing tumor tissue- and blood-based biomarkers
that correlate with response to rucaparib and molecu-
lar changes over time in tumor samples. Safety was
assessed by monitoring AEs and vital signs, physical
examination, and laboratory testing.

Statistical analysis
ATLAS was designed to enroll approximately 200 patients.
Details of sample size calculation are described in the
Supplementary Methods. An adaptive study design was
used, in which interim efficacy and safety analyses were
performed to determine whether to continue enrollment.
Two interim efficacy analyses were planned after efficacy
data (defined as a documented objective response per
RECIST v1.1, disease progression, or at least 4 months
of disease assessments) were available for 60 and 120
patients. Enrollment was halted following the data
monitoring committee’s review for the first interim
analysis. We present the final results from the database
lock date of February 20, 2020.
Efficacy analyses were performed using the ITT

population and subgroups based on tumor HRD status
(HRD-positive [genomic LOH ≥10%], HRD-negative
[genomic LOH < 10%], and HRD-indeterminate). ORR
and safety endpoints are summarized using descriptive
statistics and PFS using Kaplan-Meier methodology. PK
parameters are summarized using descriptive statistics.
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Results
Patients
Ninety-seven patients were enrolled between June 1,
2018, and April 9, 2019, across 70 sites in six countries
(France, Germany, Italy, Spain, the United Kingdom, and
the United States; Fig. 1). Baseline demographics and dis-
ease characteristics of patients are provided in Table 1.
Overall, 44/97 (45.4%) patients had received two prior
therapies for advanced disease; 93/97 (95.9%) patients had
received prior PBC, 71/97 (73.2%) patients prior ICI, and
67/97 (69.1%) patients both a PBC and an ICI (separately
or combined). Of 97 patients, 77 (79.4%) provided tumor-
containing tissue samples that underwent genomic testing.
The majority (68/77 [88.3%]) of the samples in the analyzed
dataset were obtained within 6 months of initiating
rucaparib with no intervening therapy. LOH was
determined for 50/97 patients (51.5%). Of 97 patients,
20 (20.6%) had HRD-positive tumors (LOH ≥10%),
30 (30.9%) HRD-negative tumors (LOH < 10%), and
47 (48.5%) indeterminate HRD status (i.e. the tumor
sample was not provided or the sample quantity/quality
was insufficient). The median genome-wide LOH was
8.6% (interquartile range, 5.9–12.3), consistent with data
from the TCGA-BLCA dataset (10.0% [interquartile range,
5.6–14.3]; Fig. 2).
By February 20, 2020, all patients had discontinued

treatment, primarily due to radiographic or clinical disease
progression (72/97 [74.2%]). The remaining patients
discontinued due to withdrawal of consent (10/97 [10.3%]),
AEs (9/97 [9.3%]), physician decision (5/97 [5.2%]), or other
reason (discontinued based on new information about the
effectiveness of rucaparib; 1/97 [1.0%]; Fig. 1).

After discontinuation of rucaparib, subsequent anti-
cancer therapy was administered to 12/97 (12.4%)
patients. The most frequently administered subsequent
therapies were docetaxel, paclitaxel, pembrolizumab,
and vinflunine, each of which was administered to
2/12 (16.7%) patients.

Efficacy outcomes
Of 97 patients enrolled, 95 had measurable disease at
baseline. There were no confirmed investigator-assessed
objective responses (0%; 95% CI, 0–3.8%) in the overall
population or the HRD-positive subgroup. However,
reductions in tumor size were observed in a number of
patients, including 6/95 (6.3%) patients who had a PR
that was not confirmed on subsequent tumor assessment
(Fig. 3a). Tumor size reductions were observed in target
lesions in lung, kidney, liver, lymph nodes (multiple
anatomic sites), and peritoneal metastases, in addition to
primary bladder tumors. Among these six patients, two
were HRD-positive and four were HRD-indeterminate.
Four of the six patients had received ICI as part of their
last treatment regimen prior to rucaparib. In addition,
22/95 (23.2%) patients had a best overall response of SD,
including a patient in the HRD-indeterminate subgroup
with a heterozygous ATM alteration who had SD lasting
32 weeks. A similar proportion of patients across the
HRD subgroups had a best overall response of SD or
better (HRD-positive, 4/19 [21.1%]; HRD-negative, 7/29
[24.1%]; HRD-indeterminate, 17/47 [36.2%]).
The DCR in the overall population was 11.6% (11/95):

15.8% (3/19) in the HRD-positive subgroup, 6.9% (2/29)

Screened (n = 147) Did not meet eligibility criteria (n = 50)
   Inadequate organ function (n = 6)
   ECOG PS >1 (n = 3)
   Ineligible type of tumor (n = 2)
   Other reason (n = 20)
   Missing/not recorded (n = 19)

Tumor sample received
(n = 77)

Tumor sample with NGS results
(n = 64)

Tumor sample with LOH results
(n = 50)

Enrolled (N = 97)

Failed NGS assay
(n = 13)

No LOH results
(n = 14)

Received rucaparib
(N = 97)

ITT population (N = 97)
   HRD positive (n = 20)
   HRD negative (n = 30)
   HRD indeterminate (n = 47)

Discontinued treatment (N = 97)
   Radiographic or clinical progression (n = 72)
   Patient withdrawal of consent (n = 10)
   Adverse events (n = 9)
   Physician’s decision (n = 5)
   Other reason (n = 1)

Fig. 1 Trial profile. ECOG PS Eastern Cooperative Oncology Group performance status; HRD homologous recombination deficiency; ITT intent-to-
treat; LOH loss of heterozygosity; NGS next-generation sequencing
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Table 1 Baseline demographics, disease characteristics, and prior therapies
Characteristic HRD subgroupa Overall (N = 97)

Positive (n = 20) Negative (n = 30) Indeterminateb (n = 47)

Age, median (range), y 71 (39–87) 66 (47–85) 66 (50–85) 66 (39–87)

Sex, n (%)

Male 11 (55.0) 27 (90.0) 38 (80.9) 76 (78.4)

Female 9 (45.0) 3 (10.0) 9 (19.1) 21 (21.6)

Race, n (%)

White 18 (90.0) 24 (80.0) 32 (68.1) 74 (76.3)

Black or African American 0 2 (6.7) 1 (2.1) 3 (3.1)

Other 0 1 (3.3) 2 (4.3) 3 (3.1)

Unknown 2 (10.0) 3 (10.0) 12 (25.5) 17 (17.5)

ECOG PS, n (%)

0 6 (30.0) 9 (30.0) 14 (29.8) 29 (29.9)

1 14 (70.0) 20 (66.7) 32 (68.1) 66 (68.0)

2c 0 1 (3.3) 1 (2.1) 2 (2.1)

Histology, n (%)

Urothelial 14 (70.0) 25 (83.3) 30 (63.8) 69 (71.1)

Urothelial with variant 5 (25.0) 2 (6.7) 7 (14.9) 14 (14.4)

Unknown 1 (5.0) 3 (10.0) 10 (21.3) 14 (14.4)

Tumor location in bladder, n (%)

Lower tract 17 (85.0) 22 (73.3) 37 (78.7) 76 (78.4)

Upper tract 3 (15.0) 8 (26.7) 10 (21.3) 21 (21.6)

No. of prior therapies, n (%)

1 11 (55.0) 16 (53.3) 26 (55.3) 53 (54.6)

2 9 (45.0) 14 (46.7) 21 (44.7) 44 (45.4)

Prior therapies, n (%)d

Cisplatin-based chemotherapy 13 (65.0) 20 (66.7) 26 (55.3) 59 (60.8)

Carboplatin-based chemotherapy 5 (25.0) 8 (26.7) 21 (44.7) 34 (35.1)

Immune checkpoint inhibitor 14 (70.0) 23 (76.7) 34 (72.3) 71 (73.2)

Platinum-based chemotherapy and immune checkpoint inhibitor 12 (60.0) 21 (70.0) 34 (72.3) 67 (69.1)

Cystectomy/nephroureterectomy 8 (40.0) 17 (56.7) 22 (46.8) 47 (48.5)

Time from prior systemic therapy, n (%)

<3 months 15 (75.0) 18 (60.0) 27 (57.4) 60 (61.9)

≥3 months 5 (25.0) 12 (40.0) 20 (42.6) 37 (38.1)

De novo metastases, n (%) 12 (60.0) 6 (20.0) 12 (25.5) 30 (30.9)

Site of metastases, n (%)d

Nodal metastases 3 (15.0) 7 (23.3) 14 (29.8) 24 (24.7)

Visceral metastases 9 (45.0) 20 (66.7) 23 (48.9) 52 (53.6)

Liver metastases 9 (45.0) 12 (40.0) 14 (29.8) 35 (36.1)

No. of Bellmunt risk factors, n (%)e

0 3 (15.0) 6 (20.0) 8 (17.0) 17 (17.5)

1 9 (45.0) 10 (33.3) 23 (48.9) 42 (43.3)

2 7 (35.0) 11 (36.7) 14 (29.8) 32 (33.0)

3 1 (5.0) 3 (10.0) 2 (4.3) 6 (6.2)

ECOG PS Eastern Cooperative Oncology Group performance status; HRD homologous recombination deficiency; LOH loss of heterozygosity.
Data cutoff: February 20, 2020.
a Based on ≥10% genomic LOH cutoff.
b Tumor sample was either not received or not evaluable for percentage of genomic LOH because of insufficient tissue volume, low tumor content, inadequate DNA
extraction, or the sample did not meet quality control metrics resulting in reduced sequencing specificity.
c Patients had an ECOG PS score of 1 at screening but were classified with an ECOG PS score of 2 at baseline.
d Categories are not mutually exclusive.
e Bellmunt risk factors were an ECOG PS score >0, a hemoglobin level <10 g/dL, and presence of liver metastases [29].
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in the HRD-negative subgroup, and 12.8% (6/47) in the
HRD-indeterminate subgroup.
Median PFS was 1.8 months (95% CI, 1.6–1.9) in the

ITT population, and was similar across HRD subgroups
(Fig. 3b).

Safety
The safety population included 97 patients who received
≥1 dose of rucaparib. The overall median (range) treat-
ment duration was 1.8 months (0.1–10.1), and median
(range) follow-up duration was 2.7 months (0.5–11.1).
A treatment-emergent AE (TEAE) of any grade was

reported in 95/97 (97.9%) patients, the most frequent of
which (≥25% of patients) were asthenia/fatigue, nausea,
anemia, and decreased appetite (Table 2). Furthermore,
71/97 (73.2%) patients had a grade ≥3 TEAE; anemia
and thrombocytopenia were the most frequent (Table 2).
A total of 76/97 (78.4%) patients reported having at least
one treatment-related AE (Supplementary Table S1).
While myelodysplastic syndrome and acute myeloid
leukemia are considered AEs of special interest for ruca-
parib and other PARP inhibitors, no incidences of these
AEs were reported.
Treatment was interrupted due to a TEAE for 50/97

(51.5%) patients, most frequently due to anemia
(14/97 [14.4%]) and asthenia/fatigue (13/97 [13.4%]). Dose
reduction due to a TEAE occurred in 23/97 (23.7%)
patients, most commonly due to asthenia/fatigue
(9/97 [9.3%]) and anemia (6/97 [6.2%]). Treatment
discontinuation due to a TEAE (other than disease
progression) occurred in 9/97 (9.3%) patients, with no
specific TEAE reported in more than one patient. TEAEs
other than disease progression resulted in death in three

patients (3/97 [3.1%]): one each due to cardiac arrest,
myocardial infarction, and respiratory failure. All three
TEAEs were considered unrelated to rucaparib. Twenty
additional deaths due to disease progression were reported.

Pharmacokinetics
Mean (coefficient of variation) trough plasma concentra-
tion of rucaparib was 2130 ng/mL (86%; n = 47) at
day 29, 1647 ng/mL (65%, n= 18) at day 57, and 2033 ng/mL
(33%; n = 11) at day 85 (Supplementary Fig. S1).

Genomic characteristics
To better understand the genomic features of this
patient population with advanced UC, genomic profiling
data was generated from 64 patients with adequate
tumor tissue samples (see Supplementary Methods for
detailed methodology for genomic analyses). Of those
collected samples, 18.8% were from the sites of primary
disease (bladder, renal pelvis, or ureter) and 81.2% were
from the sites of local or distant metastases, the majority
of which came from lymph node, liver, and lung. The
median tumor mutational burden (TMB) was 6.3 muta-
tions/megabase (n = 60) across the entire dataset, and all
samples with known status were microsatellite stable
(n = 59).
Deleterious alterations in genes associated with cell

cycle, fibroblast growth factor (FGF)/FGF receptor
(FGFR), phosphatidylinositol-3-kinase (PI3K)/AKT,
Ras/receptor tyrosine kinase (RTK), metabolic pathways,
and chromatin remodeling pathways were frequently
observed (Fig. 4). The most common genes with
deleterious alterations within this patient population
included the TERT promoter (75%), CDKN2A (52%),

0.0
TCGA-BLCA (n = 399)

10.0%
5.6–14.3
0.2–54.9

Median
IQR
Range

ATLAS (n = 50)
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Fig. 2 Genome-wide LOH in TCGA-BLCA dataset and tumor tissue samples. Each circle represents a tissue sample, and the bars represent the
median and interquartile range. Black circles in the ATLAS dataset highlight samples with deleterious alterations in DDR pathway genes BRCA1,
BRCA2, PALB2, or RAD51C. DDR DNA damage response; IQR interquartile range; LOH loss of heterozygosity; TCGA-BLCA The Cancer Genome Atlas
Urothelial Bladder Carcinoma
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TP53 (52%), CDKN2B (50%), MTAP (38%), KDM6A
(31%), CCND1 (19%), FGF19 (19%), FGFR3 (19%),
MLL2 (19%), and RB1 (19%) (Fig. 4).
In an exploratory analysis, we assessed the frequency

of alterations in 15 DDR genes (ATM, BARD1, BRCA1,
BRCA2, BRIP1, CDK12, CHEK2, FANCA, NBN, PALB2,
RAD51, RAD51B, RAD51C, RAD51D, RAD54L). In total,
10/64 (15.6%) patients had a deleterious alteration in
one of these 15 genes (three BRCA1, two ATM, two

CHEK2, one each for BRCA2, PALB2, RAD51C; Supple-
mentary Table S2). Deleterious alterations in genes that
are thought to be most strongly associated with PARP
inhibitor sensitivity (BRCA1, BRCA2, RAD51C,
RAD51D, PALB2) were observed in 6/64 (9.4%) patients
(Supplementary Table S2). Alterations in these DDR
genes were not associated with the antitumor activity of
rucaparib for these patients. Additional genomic data,
including zygosity and germline characteristics, and
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Fig. 3 Efficacy outcomes. Investigator-assessed best response in target lesions per RECIST v1.1 in the ITT population (a) and Kaplan-Meier
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co-occurring alterations, are described in the Supple-
mentary Results.
Interestingly, five patients provided genomic data from

both recent and previously obtained archival tumor tis-
sue samples that were acquired approximately 3 months
to 2 years apart (Supplementary Table S3). In the paired
samples, most of the deleterious genomic alterations
were present in both samples. A substantial number of
novel genomic alterations were observed in the recent
specimen compared to the archival sample in only one
of the five patients; the interval between the two sample
collections was longest for this patient (763 days).

Discussion
In the final analysis of ATLAS, although a number of
patients with advanced UC had reductions in the sum
of target lesions while receiving rucaparib, there were
no confirmed radiographic responses. Notably, 45.4% of
the patients had received two prior therapies for
advanced UC. The safety and PK profile of rucaparib in
patients with advanced UC were consistent with that
observed in patients with ovarian, prostate, and other
solid tumors [23, 30]. This suggests that the lack of

observed efficacy was not likely due to changes in drug
metabolism. Taken together, the results suggest that
monotherapy treatment with rucaparib does not
provide a meaningful benefit to unselected patients
with previously-treated, advanced UC.
Among 50 ATLAS patients whose tumor tissue samples

could be assessed for genomic LOH, 40% had HRD-
positive tumors. Median percent genome-wide LOH of tu-
mors from ATLAS patients was consistent with the data
from TCGA-BLCA samples, suggesting that patients in
this study were representative of a broader patient popula-
tion with advanced UC in terms of their genomic charac-
teristics despite the differences in the tumor sample tissue
of origin (largely metastatic versus mostly primary), tumor
sample heterogeneity, treatment history (one or two prior
therapies versus chemotherapy-naive), and sequencing
methodology (hybrid capture-based targeted gene panel
versus whole-exome sequencing/single nucleotide poly-
morphism arrays). Many of the most frequently altered
genes across the ATLAS samples also demonstrated
substantial alteration frequency in the TCGA-BLCA
dataset [26, 31], suggesting that many genomic alterations
observed in the ATLAS patients may have occurred early
in the evolution of UC. Similarly, the median TMB and
microsatellite instability status of the ATLAS tumors were
similar to those reported in other studies despite their
inclusion of more heterogeneous samples [32, 33].
Deleterious alterations in DDR genes associated with
increased sensitivity to PARP inhibitors in other
tumor types (e.g. BRCA1, BRCA2, PALB2, RAD51C
and RAD51D) were infrequent (9.4%) in ATLAS. This
alteration frequency was similar to the frequencies in
the TCGA-BLCA (7.9%) and in other reports in patients
with UC (5.2–6.7%) [34, 35].
In clinical studies, rucaparib has shown antitumor ac-

tivity in ovarian and prostate carcinomas with a deleteri-
ous germline or somatic BRCA mutation [24]. Rucaparib
has also demonstrated benefit as switch maintenance
treatment in patients with HRD-negative recurrent ovar-
ian cancer [22]. However, no difference in response was
observed among the HRD subgroups in our study, sug-
gesting that tumor HRD status, as defined by genome-
wide LOH, may not be a predictive biomarker of re-
sponse for patients with metastatic UC. Given the small
number of deleterious DDR gene alterations observed,
there were insufficient data to determine a relationship
between rucaparib activity and DDR gene alterations in
metastatic UC. Prior research has suggested that sensi-
tivity to PARP inhibition in patients with BRCA alter-
ations may depend on the zygosity status of the
alteration and/or tumor type [36]. Unfortunately, the sig-
nificance of inactivating homozygous DDR gene alter-
ations in metastatic UC for sensitivity to PARP inhibitor
remains unclear because the majority of DDR gene

Table 2 Most frequent (≥10% of patients) treatment-emergent
adverse events of any grade in the safety population

TEAE Overall (N = 97)

Any grade, n (%) Grade ≥3, n (%)

Asthenia/fatigue 56 (57.7) 8 (8.2)

Nausea 41 (42.3) 1 (1.0)

Anemiaa 35 (36.1) 20 (20.6)

Decreased appetite 28 (28.9) 2 (2.1)

Thrombocytopeniab 22 (22.7) 11 (11.3)

Vomiting 22 (22.7) 1 (1.0)

Blood creatinine increased 21 (21.6) 1 (1.0)

Constipation 21 (21.6) 3 (3.1)

ALT/AST increased 17 (17.5) 5 (5.2)

Dysgeusia 16 (16.5) 0

Dyspnea 13 (13.4) 3 (3.1)

Weight decreased 13 (13.4) 0

Diarrhea 12 (12.4) 1 (1.0)

Urinary tract infection 12 (12.4) 4 (4.1)

Abdominal pain 11 (11.3) 1 (1.0)

Hypophosphatemia 10 (10.3) 5 (5.2)

Dehydration 10 (10.3) 2 (2.1)

Insomnia 10 (10.3) 0

Pyrexia 10 (10.3) 1 (1.0)

ALT alanine aminotransferase; AST aspartate aminotransferase; TEAE treatment-
emergent adverse event.
Visit cutoff date: February 20, 2020.
a Combined term for anemia or decreased hemoglobin.
b Combined term for thrombocytopenia or decreased platelets.
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alterations characterized in this study were heterozygous
or the zygosity was unknown/not reported. The effect of
rucaparib in multiple tumor types (including UC) with
selected DDR gene alterations shown to be sensitive to
PARP inhibition is being further evaluated in the LODE-
STAR trial (NCT04171700). Additionally, the effect of
the PARP inhibitor olaparib for patients with metastatic
UC with DNA-repair gene defects is being investigated
in a phase 2 trial (NCT03375307).
Alterations in genes mapping to the cell cycle, RTK,

TP53, PI3K, metabolic, and chromatin remodeling path-
ways were commonly seen in ATLAS patient samples, at
frequencies similar to that in prior reports [31–33, 37].
Our data are in line with retrospective studies [38, 39]
that assessed the landscape of genomic alterations in pa-
tients with UC who had similar characteristics to those

in ATLAS. Alterations in cell cycle regulatory genes
were also detected in the tumor DNA of patients
enrolled in the phase Ib BISCAY trial, in which 15% of
patients with UC carried an amplification in RICTOR or
a deleterious alteration in TSC1/TSC2 [37]. In a phase 2
study, genomic sequencing of archival tumor tissues
from patients who developed advanced UC detected
frequent alterations within TP53 (52%), CDKN2A/B (34%),
ARID1A (31%), and other cell cycle regulatory genes
[40]. Actionable genetic alterations (e.g. PIK3CA, ERBB2,
FGFR3) identified across many of these studies could
possibly be targeted by various agents and may provide
information about the specific outcomes of the treatment
[26, 35, 39, 41]. Understanding more about the genomic
landscape of advanced UC and the genomic characteristics
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of individual cases will aid in the development of putative
biomarkers and therapeutic targets.
Since the initiation of the ATLAS study, several novel

agents have been approved for use in the United States
in patients with previously treated metastatic UC,
including targeted agents, such as erdafitinib and
antibody-drug conjugates, such as enfortumab vedotin
[42, 43]; the targeted agent larotrectinib has also been
approved for tissue-agnostic use in the United States
and European Union [44, 45]. However, more treatment
options are still needed for patients with metastatic UC,
including those ineligible for any platinum therapy.
Olaparib had previously reported cases of activity in a
small set of patients with advanced UC and a DDR
gene alteration [16, 17], while ATLAS enrolled a large
unselected patient population. Recent studies have
evaluated ICI in combination with PARP inhibitors
with the aim of improving efficacy versus ICI or
PARP inhibitor monotherapy. Responses have been
observed in studies evaluating olaparib with durvalumab
in patients with advanced UC: a response rate of
35.7% was observed among patients with DDR gene
alterations in the BISCAY trial, and a pathologic
complete response rate of 44.5% was seen in a single-
arm phase 2 neoadjuvant trial [37, 46]. These data
suggest that PARP inhibitors in combination with ICI
may have antitumor activity in patients with UC.
Evaluation of PARP inhibitor monotherapy and
combination treatment for patients with UC is ongoing in
other trials (NCT03459846, NCT03534492, NCT02546661,
and EudraCT 2015–003249-25). The recent FDA approval
of avelumab (with level I evidence) as switch maintenance
treatment in patients with advanced UC with response or
stable disease after PBC [47, 48] may also generate new
opportunities for the evaluation of PARP inhibitors as
combination therapy in this disease.
ATLAS is the largest study of PARP inhibitor treat-

ment in patients with UC to-date. However, the study
had several limitations. ATLAS was a single-arm, non-
randomized study with potential bias in patient selection
and confounding factors associated with patient eligibil-
ity. For example, enrolled patients had advanced disease
and most had received prior PBC, which could have
reduced sensitivity to subsequent PARP inhibitor
treatment. It should also be noted that patients were
not selected based on genomic characteristics that
may have differential sensitivities to treatment with a
PARP inhibitor, such as tumor HRD status, alterations in
DDR pathway genes, zygosity status of specific alterations,
or germline alterations. Regarding the safety profile of
rucaparib, while it was overall similar to that seen with
rucaparib in other tumor types, median follow-up was
limited to 2.7months. Finally, although the study had a
robust biomarker program to assess putative biomarkers

of sensitivity to rucaparib, tumor tissue samples were not
available from all enrolled patients. In addition, not
all samples were sequenced successfully because of
inadequate tumor content or volume, highlighting
the challenges of genomic characterization. Future
NGS-based genomic profiling of ctDNA samples
collected from the patients in this study just prior to the
start of treatment may be a complementary approach to
identify contemporaneous genomic alterations that could
impact outcomes of patients with this disease [49–51].

Conclusions
Although rucaparib did not show confirmed responses
in unselected patients with previously treated advanced
UC, reductions in the sum of target lesions were
observed in a number of patients. The safety profile of
rucaparib in patients with advanced UC was consistent
with that observed in patients with other solid tumors.
Genomic profiling of tumor tissue samples has provided
further insight into the molecular characterization of
metastatic UC and showed that the median genome-
wide LOH and deleterious genomic alterations in the
ATLAS dataset were similar to the TCGA-BLCA
dataset. Future studies should evaluate potential synergy
of PARP inhibitors in combination with other therapies
such as ICI, particularly in patients with metastatic UC
associated with a DDR alteration.
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