Supplementary Table 1: Numbers of patients according to neuromuscular referral centers where the patients were followed, age of first clinical manifestation and the referring clinicians.

| Country (number of patients ${ }^{+}$) | City | Number of patients with first clinical manifestation <5 years old (190 patients) | Number of patients with first clinical manifestation <2 years old (151 patients) | Contributors |
| :---: | :---: | :---: | :---: | :---: |
| France$(\mathrm{n}=35)$ | Garches | 17 | 15 | Quijano-Roy S; Dabaj I |
|  | Paris (AT*) | 7 | 5 | Mayer M. |
|  | Paris (PS*) | 1 | 1 | Voit T |
|  | Lille | 2 | 1 | Cuisset JM |
|  | Paris (Necker) | 2 | 2 | Desguerre I |
|  | Nantes | 2 | 0 | Mercier S |
|  | Strasbourg | 2 | 1 | Laugel V |
|  | Tours | 1 | 1 | Lagrue E |
|  | Reims | 1 | 1 | Sabouraud P |
| UK | London | 17 | 15 | Muntoni F; Sarkozy A |
| ( $\mathrm{n}=29$ ) | Newcastle | 12 | 9 | Bertoli M; Bushby K; Marini-Bettolo C |
| China ( $\mathrm{n}=23$ ) | Beijing | 23 | 22 | Xiong H. |
| $\begin{gathered} \text { Italy } \\ (\mathrm{n}=20) \end{gathered}$ | Roma (IRCCS) | 5 | 5 | Mercuri E |
|  | Turin | 4 | 3 | Vercelli L |
|  | Milano | 3 | 2 | Maggi L |
|  | Naples | 3 | 3 | Politano L |
|  | Messina | 2 | 2 | Messina S |
|  | Roma (GCH) | 2 | 1 | D'Amico A |
|  | Pisa | 1 | 1 | Siciliano G |
| $\begin{aligned} & \text { USA, } \\ & (\mathrm{n}=19) \end{aligned}$ | Torrance | 9 | 6 | Rutkowski A; R Alvarez (Cure CMD) |
|  | Bethesda | 9 | 8 | Bönnemann CG; Donkervoort S; Foley AR |
|  | Los Angeles | 1 | 1 | Pierson TM |
| Spain (n=17) | Barcelona | 17 | 7 | Nascimento A |
| Argentina ( $\mathrm{n}=16$ ) | Buenos Aires | 16 | 11 | Monges S |
| Brazil | Sao Paulo | 5 | 5 | Zanoteli E |
| ( $\mathrm{n}=8$ ) | Belo Horizonte | 3 | 3 | Gurgel Giannetti J |
| Japan ( $\mathrm{n}=8$ ) | Tokyo | 8 | 7 | Komali H; Ishiyama A |
| $\begin{aligned} & \text { Chile } \\ & (\mathrm{n}=5) \end{aligned}$ | Sant. de Chile (CLC/RR*) | 2 | 2 | Kleinsteuber K |
|  | Santiago de Chile (LCM*) | 1 | 1 | Castiglioni C |
|  | Santiago de Chile (CLC*) | 2 | 2 | Erazo Torricelli R |
| Canada ( $\mathrm{n}=3$ ) | Toronto | 3 | 1 | Yoon G |
| Germany ( $\mathrm{n}=3$ ) | Essen | 3 | 3 | Schara U |
| Australia (n=2) | Victoria | 2 | 2 | Ryan M |
| Belgium ( $\mathrm{n}=2$ ) | Brussels | 2 | 2 | Deconnick N |

+ Number of patients included at the initiation of the study, i.e. with first clinical manifestation <5 years old
* AT: Armand-Trousseau; PS: Pité-salpétrière; GCH: Gesù Children's Hospital; CLC: Clínica

Las Condes; RR: Hospital Roberto del Río; LCM: Hospital Luis Calvo Mackenna;

Supplementary Table 2: Variables that were captured for each patient to populate the clinical data sheet:

| Demographic information: | Gender, date of birth, country of origin, <br> referring center and clinician, country where <br> attending neuromuscular clinic, date of last <br> visit, date of death if applicable |
| :--- | :--- |
| LMNA mutation characteristics | DNA, amino acids modifications, Exon |
| Circumtunces of onset | Age and symptom(s) of onset |
| CK level | Maximal CK levels reached |
| Muscle biopsy main characteristics | Age at the biopsy, biopsied muscle, presence or <br> absence of dystrophy, inflammation or other <br> particular findings |
| Motor achievements | Ages of acquiring and losing of major motor <br> milestones (Sitting, crawling, walking <br> supported, walking unsupported and running) |
| Orthopedic features if applicable | Affected joints and age of onset of joint <br> contractures and scoliosis, |
| Orthopedic interventions* if applicable | Age of joint contractures and scoliosis non- <br> surgical and surgery treatments |
| Respiratory interventions* if applicable | Age of Intermittent positive pressure breathing, <br> non-invasive ventilation, tracheostomy) |
| Cardiac abnormalities* if applicable | Age at onset of cardiac abnormalities (P-wave <br> flattening, Arrhythmias, conduction defect, <br> echocardiographic abnormalities) |
| Corticosteroids usage if applicable interventions* if applicable | Age of first heart specific drugs, pacemaker <br> and implantable cardioverter defibrillator (ICD) |
| applicable. | Age at starting and arrest, type of steroid |

*For the definition of cardiac abnormalities and cardiac, gastroenteric, orthopedic and respiratory interventions, see material and methods section.

Supplementary Table 3: $L M N A$ variants identified in patients included in the study cohort. (according to LMNA \# NM_170707.4 reference sequence).

| Nucleotide change | Aminoacid change | Exon | Mutation type | Numbe $r$ of cases |
| :---: | :---: | :---: | :---: | :---: |
| c.91_93delGAG | p.Glu31del | exon 1 | small deletion (in frame) | 3 |
| c. $91 \mathrm{G}>\mathrm{A}$ | p.Glu31Lys | exon 1 | missense | 4 |
| c.94_96delAAG | p.Lys32del | exon 1 | small deletion (in frame) | 9 |
| c. $94 \mathrm{~A}>\mathrm{G}$ | p.Lys32Glu | exon 1 | missense | 1 |
| c.96G>C | p.Lys32Asn | exon 1 | missense | 1 |
| c.103_105delCTG | p.Leu35del | exon 1 | small deletion (in frame) | 1 |
| c. $104 \mathrm{~T}>$ A | p.Leu35Gln | exon 1 | missense | 1 |
| c.104T>C | p.Leu35Pro | exon 1 | missense | 3 |
| c.109_111dup | p.Glu37dup | exon 1 | small insertion (in frame) | 1 |
| c. $115 \mathrm{~A}>\mathrm{G}$ | p.Asn39Asp | exon 1 | missense | 1 |
| c. $115 \mathrm{~A}>\mathrm{T}$ | p.Asn39Tyr | exon 1 | missense | 1 |
| c. $116 \mathrm{~A}>\mathrm{G}$ | p.Asn39Ser | exon 1 | missense | 13 |
| c. $117 \mathrm{~T}>\mathrm{A}$ | p.Asn39Lys | exon 1 | missense | 1 |
| c. $117 \mathrm{~T}>\mathrm{G}$ | p.Asn39Lys | exon 1 | missense | 1 |
| c. $121 \mathrm{C}>\mathrm{A}$ | p.Arg41Ser | exon 1 | missense | 2 |
| c.122G>C | p.Arg41Pro | exon 1 | missense | 1 |
| c. $125 \mathrm{~T}>\mathrm{C}$ | p.Leu42Ser | exon 1 | missense | 1 |
| c. $128 \mathrm{C}>\mathrm{A}$ | p.Ala43Glu | exon 1 | missense | 1 |
| c.143G>C | p.Arg48Pro | exon 1 | missense | 1 |
| c. $149 \mathrm{G}>\mathrm{C}$ | p.Arg50Pro | exon 1 | missense | 2 |
| c.305T>C | p.Leu102Pro | exon 1 | missense | 1 |
| c. $392 \mathrm{~A}>\mathrm{G}$ | p.Gln131Pro | exon 2 | missense | 1 |
| c. $422 \mathrm{~T}>\mathrm{C}$ | p.Leu141Pro | exon 2 | missense | 1 |
| c. $513+2 \mathrm{~T}>\mathrm{C}$ | ? | intron 2 | intronic (splice site) | 1 |
| c.522_536del | p.175_179del | exon 3 | small deletion (in frame) | 1 |
| c. $695 \mathrm{G}>\mathrm{A}$ | p.Gly232Glu | exon 4 | missense | 1 |
| c. $745 \mathrm{C}>\mathrm{T}$ | p.Arg249Trp | exon 4 | missense | 30 |
| c. $746 \mathrm{G}>\mathrm{A}$ | p.Arg249Gln | exon 4 | missense | 3 |
| c. $775 \mathrm{~T}>\mathrm{A}$ | p.Tyr259Asn | exon 4 | missense | 1 |
| c.781_783delAAG | p.261delLys | exon 4 | small deletion (in frame) | 1 |
| c. $810+1 \mathrm{G}>\mathrm{C}$ | ? | intron 4 | intronic (splice site) | 1 |
| c. $832 \mathrm{G}>\mathrm{C}$ | p.Ala278Pro | exon 5 | missense | 1 |
| c. $854 \mathrm{~T}>\mathrm{A}$ | p.Val285Glu | exon 5 | missense | 1 |
| c.880_882delCAG | p.Gln294del | exon 5 | small deletion (in frame) | 1 |


| c.905T>C | p.Leu302Pro | exon 5 | missense | 1 |
| :---: | :---: | :---: | :---: | :---: |
| c. $954 \mathrm{G}>\mathrm{A}$ | p.Ala318Ala | exon 6 | missense | 1 |
| c. $976 \mathrm{~T}>\mathrm{A}$ | p.Ser326Thr | exon 6 | missense | 1 |
| c. $1072 \mathrm{G}>\mathrm{A}$ | p.Glu358Lys | exon 6 | missense | 10 |
| c. $1117 \mathrm{~A}>\mathrm{G}$ | p.Ile373Val | exon 6 | missense | 1 |
| c. $1118 \mathrm{~T}>\mathrm{A}$ | p.Ile373Asn | exon 6 | missense | 1 |
| c. $1124 \mathrm{C}>\mathrm{G}$ | p.Ala375Gly | exon 6 | missense | 1 |
| c. $1139 \mathrm{~T}>\mathrm{C}$ | p.Leu380Ser | exon 6 | missense | 1 |
| c. $1147 \mathrm{G}>\mathrm{A}$ | p.Glu383Lys | exon 6 | missense | 2 |
| c. $1151 \mathrm{~A}>\mathrm{G}$ | p.Glu384Gly | exon 6 | missense | 1 |
| c.1163G>C | p.Arg388Pro | exon 7 | missense | 1 |
| c. $1201 \mathrm{C}>\mathrm{T}$ | p.Arg401Cys | exon 7 | missense | 1 |
| c. $1325 \mathrm{~T}>\mathrm{G}$ | p.Val442Gly | exon 7 | missense | 1 |
| c. $1337 \mathrm{~A}>\mathrm{G}$ | p.Asp446Gly | exon 7 | missense | 1 |
| c.1346G>T | p.Gly441Val | exon 7 | missense | 1 |
| c.1357C> T | p.Arg453Trp | exon 7 | missense | 7 |
| c.1358G>C | p.Arg453Pro | exon 7 | missense | 1 |
| c. $1364 \mathrm{G}>\mathrm{C}$ | p.Arg455Pro | exon 7 | missense | 1 |
| c. $1366 \mathrm{~A}>\mathrm{G}$ | p.Asn456Asp | exon 7 | missense | 2 |
| c. $1368 \mathrm{C}>\mathrm{A}$ | p.Asn456Lys | exon 7 | missense | 1 |
| c. $1368 \mathrm{C}>\mathrm{G}$ | p.Asn456Lys | exon 7 | missense | 1 |
| c.1381-2A>G | ? | intron 7 | intronic (splice site) | 2 |
| c. $1391 \mathrm{~T}>\mathrm{G}$ | p.Met464Arg | exon 8 | missense | 1 |
| c. $1399 \mathrm{~T}>\mathrm{A}$ | p.Trp467Arg | exon 8 | missense | 1 |
| c. $1478 \mathrm{~A}>\mathrm{C}$ | p.Gln493Pro | exon 8 | missense | 1 |
| c.1488_1488+9del | ? | exon 8 / intron8 | small intronic/exonic deletion | 1 |
| c. $1488+1 \mathrm{G}>\mathrm{A}$ | ? | intron 8 | intronic (splice site) | 1 |
| c.1489-14_1489-7del | ? | intron 8 | small intronic deletion | 1 |
| c. $1540 \mathrm{~T}>\mathrm{A}$ | p.Trp514Arg | exon 9 | missense | 1 |
| c. $1558 \mathrm{~T}>\mathrm{C}$ | p.Trp520Arg | exon 9 | missense | 1 |
| c.1580G>C | p.Arg527Pro | exon 9 | missense | 4 |
| c. $1583 \mathrm{C}>\mathrm{G}$ | p.Thr528Arg | exon 9 | missense | 2 |
| c. $1583 \mathrm{C}>\mathrm{A}$ | p.Thr528Lys | exon 9 | missense | 2 |

Supplementary Table 4. Outlier Analysis

| Patient ID | $\mathbf{2 6}$ | $\mathbf{6 0}$ | $\mathbf{7 9}$ | $\mathbf{1 8 3}$ | $\mathbf{1 8 6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Country | France | England | Brazil | Italy | Italy |
| Age of Onset (years) | 2 | 0.5 | 2 | 2 | 2 |
| Max Motor Function | Run | Walk alone | Run | Walk alone | Walk alone |
| Age at Independent <br> Ambulation (years) | 1.1 | 1.0 | 1.2 | 1.1 | 1.0 |
| Age at Walking Loss <br> (years) | - | 30 | 38 | - | 36 |
| Age at 1 ${ }^{\text {st }}$ Respiratory <br> Intervention (years) | - | 29 | - | 10 | 35 |
| Age at 1 <br> At Cardiac <br> Abnormality (years) | 29.8 | - | 34 | 33 | 34 |
| Age at 1 ${ }^{\text {st }}$ Cardiac <br> Intervention (years) | 32.6 | 30 | - | 30 | 35 |

Supplementary Figure 1: Geographic distribution of the studied cohorts. Color indicated the number of case reported in the country.


