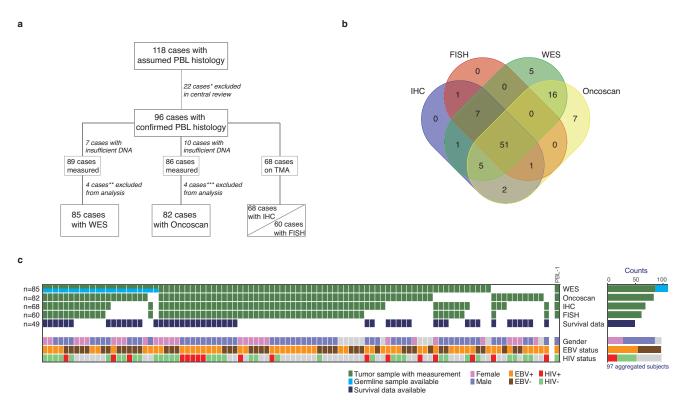
Supplementary Information for

Molecular and functional profiling identifies therapeutically targetable vulnerabilities in plasmablastic lymphoma

Fabian Frontzek¹, Annette M. Staiger^{2,3}, Myroslav Zapukhlyak¹, Wendan Xu¹, Irina Bonzheim⁴, Vanessa Borgmann⁴, Philip Sander⁴, Maria Joao Baptista⁵, Jan-Niklas Heming¹, Philipp Berning¹, Ramona Wullenkord¹, Tabea Erdmann¹, Mathias Lutz¹, Pia Veratti⁶, Sophia Ehrenfeld⁷, Kirsty Wienand⁸, Heike Horn^{2,3}, John R. Goodlad⁹, Matthew R. Wilson¹⁰, Ioannis Anagnostopoulos^{11,12}, Mario Lamping¹², Eva Gonzalez-Barca¹³, Fina Climent¹⁴, Antonio Salar¹⁵, Josep Castellvi¹⁶, Pau Abrisqueta¹⁷, Javier Menarguez¹⁸, Teresa Aldamiz¹⁹, Julia Richter²⁰, Wolfram Klapper²⁰, Alexandar Tzankov²¹, Stefan Dirnhofer²¹, Andreas Rosenwald¹¹, José Luis Mate²², Gustavo Tapia²², Peter Lenz²³, Cornelius Miething^{7,24,25}, Wolfgang Hartmann²⁶, Björn Chapuy⁸, Falko Fend⁴, German Ott³, José-Tomas Navarro⁵, Michael Grau#¹, Georg Lenz#^{*1}

Georg Lenz and Michael Grau contributed equally.

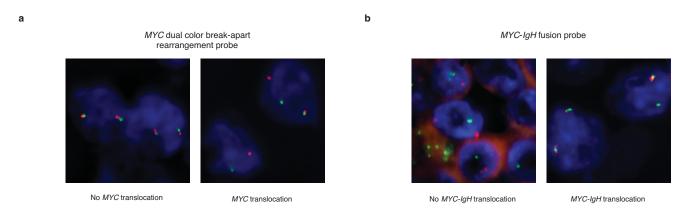
- ² Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Germany
- ³ Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany
- ⁴ Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen-Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- ⁵ Department of Hematology, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC), Universitat Autònoma de Barcelona, Badalona, Spain
- ⁶ Department of Psychiatry and Psychotherapy, University Hospital Freiburg, Freiburg, Germany
- ⁷ Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- ⁸ Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
- ⁹ Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
- ¹⁰ Department of Haematology, Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
- ¹¹ Institute of Pathology, University of Würzburg, Würzburg, Germany
- ¹² Charité Comprehensive Cancer Center, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- ¹³ Department of Hematology. ICO-Hospital Duran i Reynals, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
- ¹⁴ Department of Pathology. Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
- ¹⁵ Department of Hematology. Hospital del Mar, Barcelona, Spain
- ¹⁶ Department of Pathology. Hospital Universitari Vall d'Hebron, Barcelona, Spain
- ¹⁷ Department of Hematology. Hospital Universitari Vall d'Hebron, Barcelona, Spain
- ¹⁸ Department of Pathology. Hospital Gregorio Marañón, Madrid, Spain
- ¹⁹ Department of Infectious Diseases, Hospital Gregorio Marañón, Madrid, Spain
- ²⁰ Division of Hematophathology, Christian-Albrechts-University, Kiel, Germany
- ²¹ Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- ²² Department of Pathology, Hospital Germans Trias i Pujol, Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Spain
- ²³ Department of Physics, University of Marburg, Marburg, Germany
- ²⁴ German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.
- ²⁵ German Cancer Research Center (DKFZ), Heidelberg, Germany.
- ²⁶ Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
- * Corresponding author


Georg Lenz, M.D. Department of Medicine A of Hematology, Oncology, and Pneumology 48149 Münster, Germany Phone: +49 251 83 47587 Fax: +49 251 83 47588 Email: Georg.Lenz@ukmuenster.de

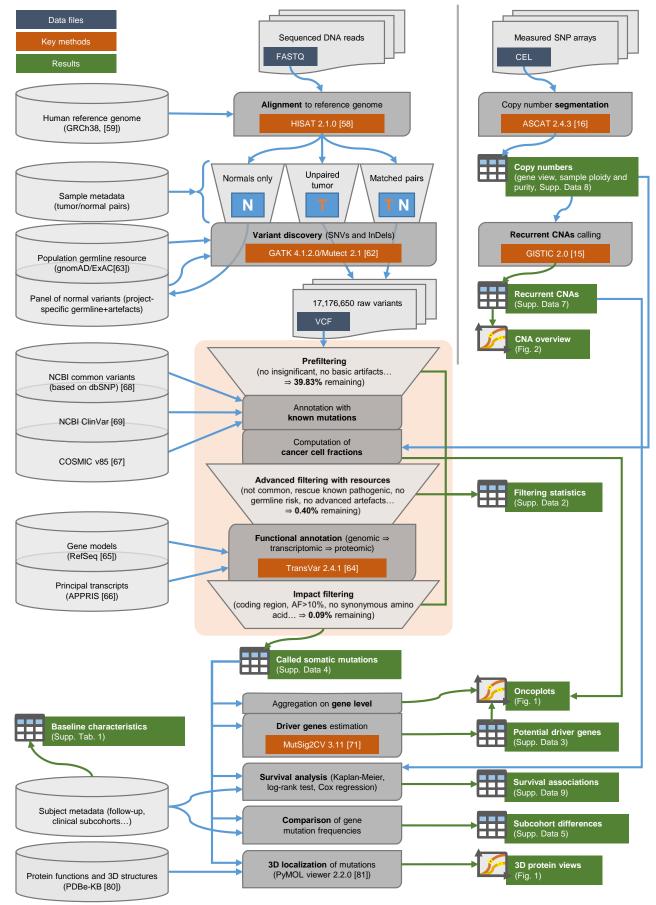
¹ Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany

Table of Contents

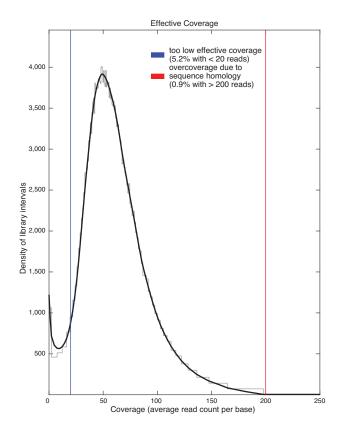
Supplementary Figures	1
Supplementary Fig. 1: Summary of performed analyses of primary PBL samples	
Supplementary Fig. 2: MYC FISH in primary PBL samples	2
Supplementary Fig. 3: Schematic overview of the analysis pipeline	3
Supplementary Fig. 4: Effective Coverage of WES data	4
Supplementary Fig. 5: PBLs have a high tumor mutational burden (TMB)	5
Supplementary Fig. 6: Landscape of somatic mutations in PBL determined by WES	6
Supplementary Fig. 7: Mutation diagrams of selected cancer candidate genes (CCGs)	7
Supplementary Fig. 8: Detected somatic mutations in PBL cases with a matched normal control	8
Supplementary Fig. 9: Detected somatic mutations in PBL cases without a matched normal control	9
Supplementary Fig. 10: Identification of targets for the treatment of PBL	10
Supplementary Fig. 11: Impact of DNA quality and tumor cell content on total mutational burden (TMB)	11
Supplementary Tables	12
Supplementary Table 1: Baseline characteristics of PBL patients included in survival analysis	
Supplementary Table 2: Used antibodies for immunohistochemistry	13
Supplementary Table 3: Availabilities for utilized methods, tools, databases and software	14
Supplementary Table 4: List of used primers	16


Supplementary Figures

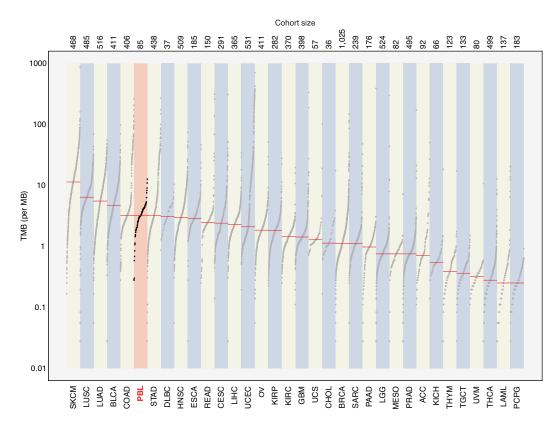
Supplementary Fig. 1: Summary of performed analyses of primary PBL samples


(a) Flow diagram showing selection and subsequent analysis of PBL samples. (*)22 cases were initially excluded in the central pathology review due to diagnosis of plasma cell neoplasm (n=12), diffuse large B-cell lymphoma (DLBCL; n=1), necrotic/ apoptotic lymphoma (n=2), ALK+ DLBCL (n=4), pleural effusion lymphoma (n=3). (**)Three samples were excluded from WES analysis due to low effective coverage and one further sample due to hypermutation. (***)Four samples were excluded from Oncoscan analysis due to quality control of ASCAT. 68 samples were suitable for TMA construction and further analyzed by FISH and immunohistochemistry (IHC). (b) Venn diagram illustrating intersections of how many PBL samples have been analyzed by IHC, FISH, WES, and Oncoscan. (c) WES, Oncoscan analysis, FISH, and IHC were performed in the indicated numbers of PBL samples. Additionally, presence of survival data, annotated gender, HIV status, and measured EBV status are indicated for each PBL sample per column and for the cell line PBL-1. The bar graph on the right side indicates the total amount of measured samples.

Supplementary Fig. 2: MYC FISH in primary PBL samples

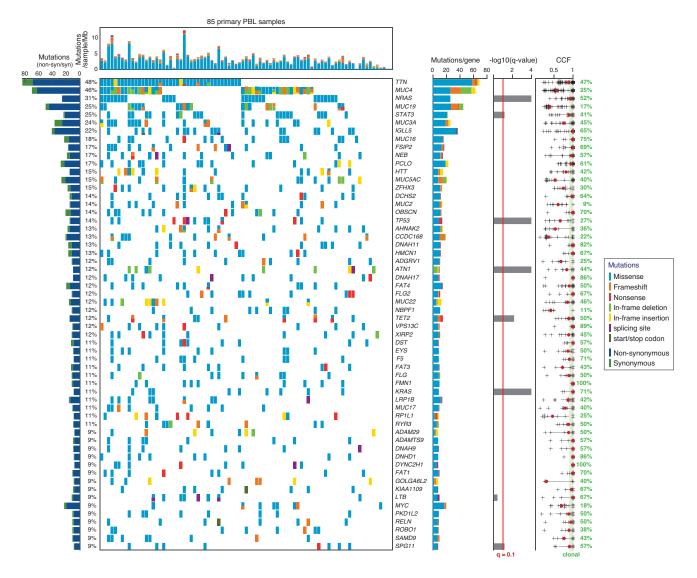

Representative fluorescence microscopy images showing a *MYC* translocated PBL case (a) using a *MYC* dual-color break apart probe (100x zoom). In case of a *MYC* translocation, the normally colocalized red and green fluorescence signals (left) are separated in at least 15% of analyzed cells (right). (b) Red and green fluorescence signals of a *MYC-IgH* fusion probe mark the gene loci of *MYC* and *IgH*, respectively (left). In case of a *MYC-IgH* translocation, signals are fused in at least 9% of analyzed cells as shown (right). At least 100 intact nuclei per case were evaluated.

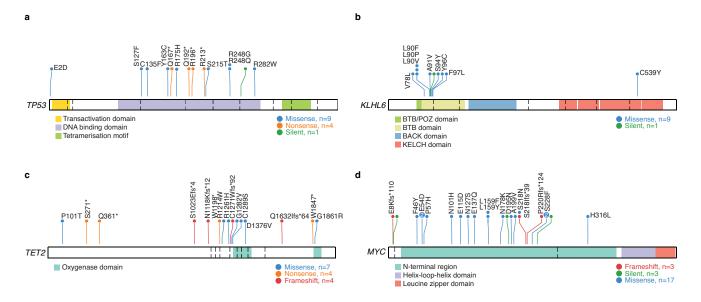
Supplementary Fig. 3: Schematic overview of the analysis pipeline


Utilized resource databases and metadata are depicted as grey discs, primary source data are shown in dark blue, applied key methods in orange, and resulting figures and tables in green color.

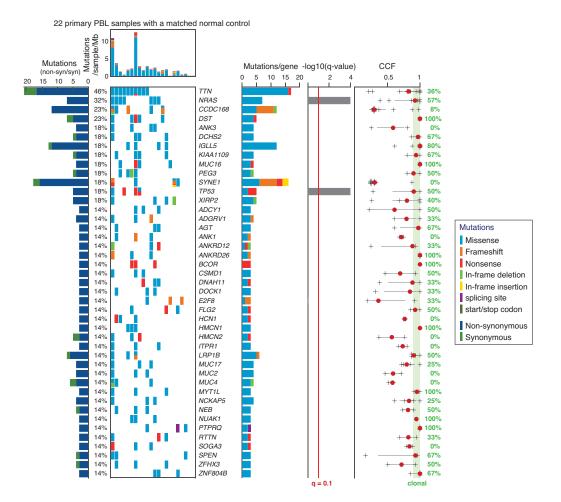
Supplementary Fig. 4: Effective Coverage of WES data

The effective coverage (average reads per base) for measured genomic intervals after applying all read filters. Limits for too low (blue) or too high coverage (red) due to sequence homologies are indicated.

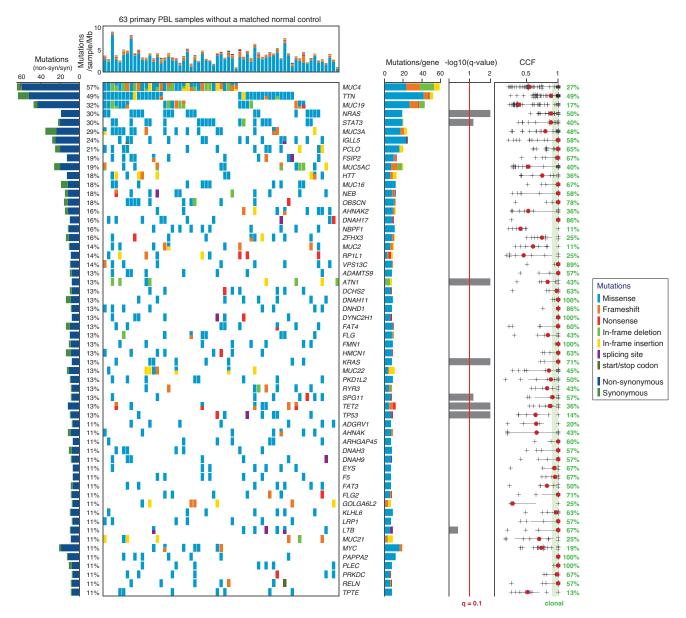

Supplementary Fig. 5: PBLs have a high tumor mutational burden (TMB)


TMB per megabase (MB) for different cancer entities. PBLs have a high median TMB of 3.20/MB compared to other tumors. Data with corresponding TMB were provided by the TCGA database for different cancers and the plot was created using maftool v2.7.41⁷⁸.

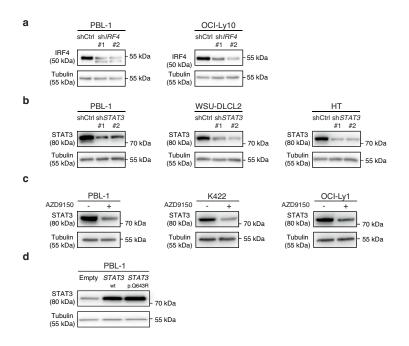
TCGA study abbreviations: ACC: adrenocortical carcinoma, BLCA: bladder urothelial carcinoma, BRCA: breast invasive carcinoma, CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL: cholangiocarcinoma, COAD: colon adenocarcinoma, DLBCL: diffuse large B-cell lymphoma, ESCA: esophageal carcinoma, GBM: glioblastoma multiforme, HNSC: head and neck squamous cell carcinoma, KICH: kidney chromophobe, KIRC: kidney renal clear cell carcinoma, KIRP: kidney renal papillary cell carcinoma, LAML: acute myeloid leukemia, LGG: brain low grade glioma, LIHC: liver hepatocellular carcinoma, LUAD: lung adenocarcinoma, PLSC: lung squamous cell carcinoma, MESO: mesothelioma, OV: ovarian serous cystadenocarcinoma, PAAD: pancreatic adenocarcinoma, PCPG: pheochromocytoma and paraganglioma, PRAD: prostate adenocarcinoma, READ: rectum adenocarcinoma, SARC: sarcoma, SKCM: skin cutaneous melanoma, STAD: stomach adenocarcinoma, TGCT: testicular germ cell tumors, THCA: thyroid carcinoma, UVM: uveal melanoma.


All called non-synonymous mutations (in genes with cohort frequency≥9%) are color-coded and shown for each sample per column and ranked by cohort frequency. Samples are ordered by waterfall sorting based on binary gene mutation status. The bar graph on the left shows the ratio of non-synonymous (blue) and synonymous (green) mutations per gene. At the top, the TMB per sample is depicted (mutations/sample/Mb). At the right, different types of mutation and q-values (M2CV) are shown per gene. For each gene, CCF was estimated for samples with corresponding copy number measurement (median in red). The percentage of samples with clonal mutations is indicated per gene.

Supplementary Fig. 7: Mutation diagrams of selected cancer candidate genes (CCGs)


The distribution of mutations on protein level for the selected CCGs (a) *TP53* (NM_001126112), (b) *KLHL6* (NM_130446), (c) *TET2* (NM_001127208), and (d) *MYC* (NM_002467). Exon boundaries are indicated using dashed lines.

Supplementary Fig. 8: Detected somatic mutations in PBL cases with a matched normal control


For the subcohort of PBL cases having a matched normal control (n=22), all called somatic mutations (cohort frequency≥10%) are shown as in Supplementary Fig. 6.

For the subcohort of PBL cases without matched normal control (n=63), all called somatic mutations (cohort frequency≥10%) are shown as in Supplementary Fig. 6.

Supplementary Fig. 10: Identification of targets for the treatment of PBL

(a) IRF4 protein expression determined by Western blotting in PBL-1 and OCI-Ly10 cells following shRNA *IRF4*#1 and #2 induced knockdown for four days compared to control shRNA. Representative results are shown of three independent experiments. (b) STAT3 protein expression determined by Western blotting in PBL-1, HT, and WSU-DLCL2 cells following shRNA *STAT3*#1 and #2 induced knockdown for four days compared to control shRNA. Representative results are shown of two independent experiments. (c) STAT3 protein expression determined by Western blotting in PBL-1, OCI-Ly1, and K422 cells following antisense control (-) or AZD9150 (+) [25 μ M] treatment for 24h. Representative results are shown of three independent experiments. (d) Levels of STAT3 determined by Western blotting in PBL-1 cells following transduction of control (empty), wildtype (wt) *STAT3*, and p.Q643R *STAT3* cDNA. Representative results are shown of three independent experiments. Source data are provided as a Source Data file.

Supplementary Fig. 11: Impact of DNA quality and tumor cell content on total mutational burden (TMB)

Scatter plots depicting correlation between (a) measured Δ Ct values of DNA and age of corresponding FFPE specimen (year) (r=0.53, p=1.5*10⁻⁷), (b) number of called somatic mutations per sample and corresponding Δ Ct value (r=-0.02, p=0.84), and (c) number of called somatic mutations per sample and corresponding microscopically determined tumor cell content (%) (r=0.04, p=0.75). Source data are provided as a Source Data file.

Supplementary Tables

Supplementary Table 1: Baseline characteristics of PBL patients included in survival analysis

Characteristic	Overall	
Number of patient	49	
Age at diagnosis (min-max range)	62 (23 - 89)	
Sex	Female	15 (31%)
Jex	Male	34 (69%)
	Low	13 (32%)
IPI	Intermediate	19 (46%)
IFI	High	9 (22%)
	Unknown	8
	Negative	31 (69%)
HIV	Positive	14 (31%)
	Unknown	4
	Negative	21 (43%)
EBV	Positive	28 (57%)
	Unknown	0
	Yes	37 (82%)
Extranodal involvement	No	8 (18%)
	Unknown	4
	Yes	10 (23%)
Bulk	No	33 (77%)
	Unknown	6
	CHOP-like	37 (82%)
Chemotherapy	None or other	8 (18%)
	Unknown	4
Padiothoropy	Yes	16 (37%)
Radiotherapy in first-line	No	27 (63%)
therapy	Unknown	6
Follow-up in mon (min-max range in	21.5 (6 - 6,014)	

Abbreviations: min: minimum; max: maximum; IPI: International Prognostic Index; HIV: human immunodeficiency virus; EBV: Epstein-Barr virus; CHOP: cyclophosphamide, hydroxydaunorubicin, vincristine, prednisone. For each category, 100% correspond to cases with available data.

Supplementary Table 2: Used antibodies for immunohistochemistry

Antibody	Clone	Source	Detection System	Dilution	Cutoff for positivity
CD56	MRQ-42	Cell Marque	HRP Polymer System	1 to 400	30%
CD138	B-A38	Cell Marque	HRP Polymer System	1 to 300	30%
CD30	Ber-H2	Bio SB	HRP Polymer System	1 to 25	30%
PDL1	ZR3	ZETA Corp	HRP Polymer System	1 to 300	30%
CD3	2GV6	Roche	Ventana Benchmark	prediluted	30%
CD20	L26	Roche	Ventana Benchmark	prediluted	30%
CD38	SP149	Roche	Ventana Benchmark	prediluted	30%
IRF4/MUM1	MRQ-43	Roche	Ventana Benchmark	prediluted	30%
ALK1	ALK01	Roche	Ventana Benchmark	prediluted	30%
Blimp1	PRDM1	Abcam	Ventana Benchmark Ultra	1 to 100	Recorded in increments of 10%
Ki67	30-9	Roche	Ventana Benchmark Ultra	prediluted	Recorded in increments of 10%
HHV8 Lana	13B10	Roche	Ventana Benchmark Ultra	prediluted	Positive or negative
MYC	Y69	Roche	Ventana Benchmark Ultra	prediluted	40%
CD19	BT51E	Leica Biosystems	Bond polymer refine detection kit	1 to 50	30%
PAX5	24/PAX-5	BD Transduction	Bond polymer refine detection kit	1 to 10	30%
EBER	EBER Oligo- nucleotide probe	Leica Biosystems	Bond polymer refine detection kit	prediluted	0-10% vs. >10%
PDL2	D7U8C	Cell Signalling	Bond polymer refine detection kit	1 to 100	30%

Supplementary Table 3: Availabilities for utilized methods, tools, databases and software

Method/Tool/Software	Version	Available at	Ref.	Notes	
HISAT2	2.1.0	http://daehwankimlab.github.io/hisat 2/download	58, 59	Alignment method	
Genome Analysis Toolkit (GATK) / Mutect	4.1.2.0 / 2.1	https://github.com/broadinstitute/gatk /releases	61, 62	GATK contains Mutect 2.1 for variant discovery	
TransVar	2.4.1	https://github.com/zwdzwd/transvar	64	Variant annotator (installed via pip)	
MutSig2CV	3.11	https://software.broadinstitute.org/ca ncer/cga/mutsig	71	Gene level mutation analysis (registration required)	
DESeq2	1.30.0	https://bioconductor.org/packages/D ESeq2/	91	Differential expression analysis of shRNAs	
BLAT	36, standalone	https://users.soe.ucsc.edu/~kent/src/	90	Used for alignment of reads for shRNA screening	
NGSCheckMate	1.0.0	https://github.com/parklab/NGSChec kMate	60	Matching QC of tumor/normal pairs	
Chromosome Analysis Suite (ChAS)	4.0	https://www.thermofisher.com/de/de/ home/life-science/microarray- analysis/microarray-analysis- instruments-software- services/microarray-analysis- software/chromosome-analysis- suite.html	n.a.	Software suite from SNP array manufracturer	
ASCAT	2.4.3	https://github.com/Crick- CancerGenomics/ascat	16	Copy number segmentation and sample purity	
GISTIC	2.0.23	http://portals.broadinstitute.org/cgi- bin/cancer/publications/pub_paper.c gi?mode=view&paper_id=216&p=t	15	Cohort level SNCA analysis (Matlab runtime required)	
Torrent Suite	5.12.0	https://github.com/iontorrent/TS	n.a.	For validation by targeted resequencing (license/measurement device required)	
Ion Reporter Software	5.16.0.2	https://www.thermofisher.com/order/ catalog/product/4487118#/4487118	n.a.	For validation by targeted resequencing (license/measurement device required)	
Integrated Genomics Viewer	2.6.3-2.8.0	http://software.broadinstitute.org/soft ware/igv/download	75	Variant plots in context of their measured reads for visual QC	
ProteinPaint	n.a. (web app)	https://pecan.stjude.cloud/proteinpai	79	Mutation overview plots over protein sequences	
Open-Source PyMOL	2.2.0	https://pymol.org/2	81	Mutation overview plots in 3D protein context	
GNU parallel	20161222	https://www.gnu.org/software/paralle	77 Local parallelization of jobs capsuled as bash scripts		
samtools	1.10	http://www.htslib.org	76	76 Sequence file related tasks (manual QC, resorting, indexing)	
bedtools	2.27.1	https://bedtools.readthedocs.io	74	QCs	
maftools	2.7.41	https://bioconductor.org/packages/m aftools	78	TMB plot	
picard	2.18.4	https://broadinstitute.github.io/picard/	n.a.	n.a. Sequence file related tasks (manual QC, resorting, indexing)	
CrossMap	0.4.0	http://crossmap.sourceforge.net	73	Genome coordinates conversion between different assemblies	
vcfanno	0.3.0	https://github.com/brentp/vcfanno/rel eases	70	Quickly combine variant annotation sources	

IDEs, general purpose software, runtimes	Version	Available at	Ref.	Notes
MATLAB	R2018a- R2020a	https://www.mathworks.com/pricing- licensing.html?prodcode=ML&intend eduse=edu	n.a.	General purpose analysis software suite (license required)
Microsoft Excel	2016-2019	https://www.microsoft.com/en- us/microsoft-365/excel	n.a.	Spreadsheet software for collecting clinical metadata and presenting analysis results (license required)
Python	2.7 and 3.6	https://www.python.org/	n.a.	General purpose language and runtime (needed by TransVar)
R	3.6.3	https://www.r-project.org/	n.a.	Statistics analysis language and runtime (needed by ASCAT)

Resources/databases	Version	Available at	Ref.	Notes	
COSMIC	85	https://cancer.sanger.ac.uk/cosmic	67	Resource database of known somatic mutations	
NCBI ClinVar	20180429	https://www.ncbi.nlm.nih.gov/clinvar/	69	Resource database of variants with known clinical significance	
gnomAD/ExAC	based on v2	provided via GATK resource pack (file af-only- gnomad.hg38.ensemble.vcf.gz); see https://gatk.broadinstitute.org/hc/en- us/articles/360035890811- Resource-bundle	63	Resource database of known population germline variants, originally based on ExAC	
PDBe-KB	2020	https://www.ebi.ac.uk/pdbe/pdbe-kb	80	Used for depicting protein 3D structures in Fig. 1c	
NCBI Common Human Variants	20180418	file common_all.vcf.gz from https://www.ncbi.nlm.nih.gov/variatio n/docs/human_variation_vcf	68	Resource database of common human variants, part of dbSNP build 151	
NCBI RefSeq gene models	20190227	provided via TransVar download; file hg38.refseq.gff.gz.transvardb	65	65 Gene models used for advanced variant annotation, e.g. in the codon frame context	
APPRIS	20200122	https://github.com/appris/appris	66	Principal isoforms/transcripts of genes	
Human Reference Genome	GRCh38	http://daehwankimlab.github.io/hisat 2/download/#h-sapiens	59	Besides the reference genome, this resource contains indexes for sequence alignment via HISAT2; the identical reference genome was utilized for all downstream analyses	

Supplementary Table 4: List of used primers

Name	Sequence	Target
sh <i>IRF4</i> #1	CCGCCATTCCTCTATTCAAGA	IRF4
sh <i>IRF4</i> #2	GTGCCATTTCTCAGGGAAGTA	IRF4
sh <i>STAT</i> 3#1	GCCACTTTGGTGTTTCATAAT	STAT3
sh <i>STAT</i> 3#2	GCATAGCCTTTCTGTATTTAA	STAT3