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Sphingolipids are an extensive class of lipids with different functions in the cell, ranging
from proliferation to cell death. Sphingolipids are modified in multiple cancers and are
responsible for tumor proliferation, progression, and metastasis. Several inhibitors or
activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide
nanoliposomes (CNLs), SKI-II, a-galactosylceramide, fingolimod, and sonepcizumab,
have been described. The objective of this review was to analyze the results from
preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-
targeting drugs have been tested alone or in combination with chemotherapy, exhibiting
antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a
consequence of treatments, the most frequent mechanism of cell death is apoptosis,
followed by autophagy. Aslthough all these drugs have produced good results in
preclinical studies of multiple cancers, the outcomes of clinical trials have not been
similar. The most effective drugs are fenretinide and a-galactosylceramide (a-GalCer). In
contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been
observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs,
SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough
clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic
effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects
related to their mechanism of action are discussed in this review.

Keywords: cancer, sphingolipids, preclinical, clinical studies, therapy
INTRODUCTION

Sphingolipids are key structural components of cellular membranes containing a backbone of
sphingosine (aliphatic amino alcohol) as the base of their structures. They are synthesized,
metabolized and trafficked among several cell organelles. Sphingolipids are remarkably diverse
and have crucial roles in maintaining barrier function and fluidity, as well as regulating the cell
cycle, cell motility, differentiation, adhesion, and apoptosis (1).

Sphingolipids include ceramides, sphingomyelins, cerebrosides, sulfatides, globosides and gangliosides
(Figure 1). De novo sphingolipid synthesis begins with the formation of 3-keto-dihydrosphingosine by
serine palmitoyltransferase (SPT). Next, 3-keto-dihydrosphingosine is reduced to form
dihydrosphingosine, which is acylated by a ceramide synthase (CerS) to form dihydroceramide. CerS
enzymes have different affinities for acyl-CoA substrates, resulting in the generation of dihydroceramides
with differing chain lengths (C14-C26). Dihydroceramides are then desaturated to form ceramides (2, 3).
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De novo generated ceramide is the central hub of the sphingolipid
pathway and subsequently has several fates (Figure 2). It is
phosphorylated by ceramide kinase (CK) to form ceramide-1-
phosphate or it can be glycosylated by glucosylceramide synthase
to form glycosphingolipids (cerebrosides, globosides, gangliosides).
In addition, ceramide can be converted to sulfatides by the action of
galactosylceramide synthase followed by cerebroside sulfotransferase
(CST). Additionally, ceramide is also converted to sphingomyelin by
the addition of a phosphorylcholine headgroup by sphingomyelin
synthase (SMS). Finally, ceramide may be degraded by ceramidase
(CDase) to formsphingosine. Sphingosinemaybephosphorylatedby
sphingosine kinase 1/2 (SPHK1/SPHK2) to form sphingosine-1-
phosphate (S1P), which has a prosurvival role and is critical for
immunomodulation (1, 4, 5) (Figure 2).

SPHK1/2 are overexpressed in numerous cancer cell types, but
catabolic pathways allow the reversion of S1P to ceramide by
sphingosine-1-phosphatase (SPP1/2) and ceramide synthase. The
complex glycosphingolipids are hydrolyzed to glucosylceramide
and galactosylceramide. These lipids are then hydrolyzed by beta-
glucosidases and beta-galactosidases (GCDase) to regenerate
ceramide. Similarly, sphingomyelin may be degraded by
sphingomyelinase (SMase) and ceramide-1-phosphate by
ceramide-1-phosphatase (C1PP) to form ceramide (4) (Figure 2).

In addition to their roles in the organization of the plasma
membrane, sphingolipids also play roles as key molecules in
signaling processes [for reviews, see (1, 4)]. A classic example is the
increase in ceramide and sphingosine levels causedbychemotherapy,
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radiation, and/or oxidative stress and the subsequent induction of
apoptosis by these molecules. In contrast, sphingosine-1-phosphate
displays antiapoptotic and prosurvival properties. Because some of
these enzymes regulate the abundance of sphingolipids, their
aberrant expression or activity exerts a negative effect on cancer (5).
Thus, numerous studies have been performed targeting the enzymes
that catabolize ceramide, generateS1P,or regulate sphingolipid levels.
Generally, different strategies have been used to exploit the potential
antitumor effects of sphingolipids. Among them, we highlight the
following biological processes: autophagic cell death, apoptosis
induction, including mitochondrial activation (mitophagy),
proliferation inhibition, and cell cycle arrest, and effects on
angiogenesis and migration (Figure 3).

CHEMOTHERAPY AND SPHINGOLIPID-
RELATED DRUGS
In general, chemotherapy is an effective treatment for cancer due
to its ability to kill highly proliferative cells. Chemotherapeutic
agents induce stress in cancer cells at the cytoplasmic level (i.e.,
reactive oxygen species [ROS] production and nuclear DNA
damage), and in response, ceramide levels are increased followed
by the induction of apoptotic cell death. For example,
daunorubicin, etoposide, and gemcitabine have all been
described as inducers of de novo ceramide generation (6).
Chemotherapy resistance has also been linked to altered
sphingolipid metabolism, favoring the production of lipid
FIGURE 1 | Structures of sphingolipids. Sphingosine is the base for simple sphingolipids. Ceramide contains a fatty acid residue. The addition of a phosphate group
to sphingosine or ceramide yields sphingosine-1-phosphate and ceramide-1-phosphate, respectively. Complex sphingolipids are synthesized through ceramide
modifications. The addition of a phosphocholine group to ceramide yields sphingomyelin, but the addition of glucose or galactose to ceramide yields
glycosphingolipids and sulfatides. Figure created with BioRender.com.
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FIGURE 2 | Sphingolipid metabolic pathways. The sphingolipid modulators (in red) and affected tumor processes (processes by which molecules promote tumor
growth are indicated with red arrows, whereas those that inhibit tumor growth are indicated with green arrows) are shown. Ceramide is the central molecule that is
synthesized through the de novo pathway or other catabolic pathways through conversion from ceramide-1-phosphate, sphingomyelin, sphingosine,
glycosphingoplidis, or sulfatides (glucosyl or galactosyl-ceramide). Figure created with BioRender.com.
FIGURE 3 | Signaling pathways and cancer hallmarks affected by sphingolipid modulators. Upregulated pathways are indicated in green, and downregulated
pathways are indicated in red. Figure created with BioRender.com.
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species that ultimately lead to cell survival (7). In this sense,
many inhibitors or modulators of sphingolipid metabolism have
been developed to kill tumors and reverse chemotherapy
resistance (8). These drugs have been employed in preclinical
studies using cancer cell lines and orthotopic mouse models, as
well as in clinical trials (Table 1). In the next sections, this review
highlights the drugs most frequently used to target sphingolipid
signaling, indicates their mechanisms of action and discusses
their successes and limitations in preclinical and clinical trials of
cancer treatment. The main results from published preclinical
and clinical trials are summarized in Table 1.
FENRETINIDE

Fenretinide (N-(4-hydroxyphenyl)retinamide; 4-HPR) reduces
the de novo synthesis of ceramide by targeting dihydroceramide
desaturase (DES) while inducing an increase in dihydroceramide
levels. This enzyme is responsible for the desaturation of
dihydroceramide, the final step in the de novo synthesis of
ceramide lipid species from dihydroceramide precursors.
Dihydroceramides induce autophagy and inhibit cell growth by
inducing cell cycle arrest in cancer cells (215, 216). In addition to
DESs, other enzymes are fenretinide targets (i.e., CerS5).

Fenretinide treatment induces cell death through the following
mechanisms: apoptosis (increased cleavage of caspases and PARP
proteins; induction of NR4A1 expression, which interacts with Bcl-
2, exposing aBH3 domain and a pro-apoptotic function; and
induction of ATF3 expression, ATF4 expression, and NOXA
transcription) (9, 11–14, 16, 18, 43); autophagy (increased LC3-II
levels) (9); endoplasmic reticulum stress and accumulation of
reactive oxygen species (ROS) (11, 14, 16–18, 43); repression of
mammalian target of rapamycin (mTOR) signaling and a
subsequent reduction in Erk1/2 activity (9); ceramide production
(9, 17); antitumor activity against CSCs (reduced CD44, ALDH,
Nanog, Sox2, and POU5F1 expression) (10, 16, 18); induction of cell
cycle arrest (decreased p-AURA, CDC25, cyclin E2, and cyclin A2
levels and increased p16 levels) (9, 11, 12, 18); and p38-MAPK
signaling (19) (Figure 3). Several articles have shown that
fenretinide preferentially targets CSCs when sphere formation and
stemness markers are analyzed (9–11, 14–16).

Preclinical studies have indicated the antitumor activity of
fenretinide in vitro and in vivo in several tumor types in the
absence of toxicity in mice. However, clinical trials have reported
some mild side effects of fenretinide, such as musculoskeletal
complaints (55), diarrhea, reversible night blindness, allergic
reaction (21), and dermatological disorders (40). Furthermore,
fenretinide lacks antitumor activity in most studies (n=13) but
has been shown to stabilize the disease or exert protective effects
on some cancers (n=6), mostly breast cancer. Fenretinide
preferentially accumulates in fatty tissues, such as the breast,
which may contribute to its effectiveness against breast cancer
(42). Fenretinide has shown a lack of activity against other
cancers. For example, fenretinide does not reduce the time to
recurrence of renal carcinoma, consistent with low intratumor
drug concentrations (33). Additionally, fenretinide does not
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substantially modulate the levels of several biomarkers in
prostate cancer, including transforming growth factor alpha
(TGF-a), insulin-like growth factor 1 (IGF-I), insulin-like
growth factor binding protein 3 (IGFBP-3), sex hormone
binding globulin (SHBG), and prostate-specific antigen (PSA),
which are indicative of insufficient biological activity (36, 37).
The remarkable hydrophobicity of this drug may be one of the
factors responsible for its lack of effectiveness in clinical trials.
Better formulations, such as encapsulation into nanocarriers for
oral administration, have been reported to be a feasible option to
increase its activity (13, 217).

However, fenretinide induces a positive hormonal (47) and
metabolic profile in premenopausal women (50) and exerts a
beneficial effect on total serum cholesterol and HDL levels (53).
These beneficial effects have been observed in some cancers, such as
breast cancer, but not in others, thereby indicating a possible
specificity of fenretinide for this tumor type. Interestingly, there
are some correlations between oncogenic alterations and the efficacy
of this drug. For example, the sensitivity of Ewing’s sarcoma cells to
fenretinide-induced cell death is decreased following
downregulation of the oncogenic fusion protein EWS-Fli1 and
p38(MAPK) activity (218). Also, fenretinide caused induction of
oncogene c-Fos expression, whereas such an effect was not observed
in resistant cells to fenretinide-induced apoptosis (219).

Also, the combination of fenretidine and ABT-263 (Bcl-2
inhibitor) induces the apoptosis of a large number of HNSCC
cells, regardless of the human papillomavirus (HPV) or p53 status.
The primary targets of apoptosis induced by these drugs are MCL1
(a Bcl-2 family apoptosis regulator), and Bcl-2 like 1 (Bcl-XL) (220).
Remarkably, the nanomicellar combination of lenalidomide–
fenretinide suppresses tumor growth in a MYCN-amplified
neuroblastoma tumor mediated by increased expression of GD2,
a disialoganglioside expressed on tumors of neuroectodermal origin
(221). Moreover, treatment with a combination of fenretinide,
tocilizumab, and reparixin significantly suppresses IL-6 release,
IL-8 release, stem cell gene expression, and invasion in CSC
populations (222), which may be due to increased ceramide levels
and decreased IL6 and CXCR1/2 levels.
SAFINGOL

Safingol [(2S, 3S)]-2-aminoctadecane-1,3-diol] is an inhibitor of
SPHK1, PKCb-I, PKCd, PKCϵ, PI3K, and glucose uptake (223).
Safingol also affects the balance of ceramide/dihydroceramide
levels. The inhibitory effects on signaling, particularly on PKCϵ
and PI3k, concomitant with the presence of ROS (67) synergize to
induce apoptosis (decreased Bcl-2 levels and increased caspase
cleavage) (59, 60, 62–65, 68) and/or autophagy (63, 67) (Figure 3).
According to preclinical studies, the combination of safingol with
conventional chemotherapy agents, such as doxorubicin (67),
irinotecan (66), and mitomycin C (65), potentiates their effects,
inducing apoptotic cell death and ROS production in different cell
lines. Additionally, the administration of safingol in combination
with bortezomib inhibits lung tumor growth and metastasis
(through the modulation of NF-kB signaling) in orthotopic
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TABLE 1 | Summary of preclinical and clinical studies of inhibitors/modulators of sphingolipids and cancer.

Drug name Study type Tumor type

Fenretinide Preclinical Lung and colorectal cancer (9)
Fenretinide Preclinical Lung, colon and melanoma (10)
Fenretinide Preclinical Colon cancer (11)
Fenretinide Preclinical AML (12)
Fenretinide Preclinical Ovarian and breast cancer (13)
Fenretinide Preclinical Myeloid leukemia (14)
Fenretinide Preclinical Ovarian cancer (15)
Fenretinide Preclinical AML (16)
Fenretinide Preclinical AML (17)
Fenretinide Preclinical Medulloblastoma (18)
Fenretinide Preclinical Liver cancer (19)
Fenretinide Clinical (phase I), NCT00003191 High-risk solid tumors (20)
Fenretinide Clinical (phase I), NCT00589381 Solid tumors or lymphoma (21)
Fenretinide Clinical (phase I) Breast cancer (22)
Fenretinide Clinical (phase I) Hematologic malignancies (23)
Fenretinide Clinical (phase I), NCT00295919 Neuroblastoma (24)
Fenretinide Clinical (phase I) Bladder cancer (25)
Fenretinide Clinical (phase I-II) Ovarian cancer (26)
Fenretinide Clinical (phase I-II) Breast cancer (27)
Fenretinide Clinical (phase I-II) Breast cancer (28)
Fenretinide Clinical (phase I-II) Ovarian cancer (29)
Fenretinide Clinical (phase I-II) Breast cancer (30)
Fenretinide Clinical (phase I-II) Invasive Bladder Cancer (31)
Fenretinide Clinical (phase II), NCT00077402 Prostate cancer (32)
Fenretinide Clinical (phase II), NCT00011973 Renal cell carcinoma (33)
Fenretinide Clinical (phase II), NCT00006080 Recurrent Malignant Glioma (34)
Fenretinide Clinical (phase II) Bladder cancer (35)
Fenretinide Clinical (phase II) Recurrent prostate cancer (36)
Fenretinide Clinical (phase II) Prostate cancer (37)
Fenretinide Clinical (phase II) Breast cancer and melanoma (38)
Fenretinide Clinical (phase II) Recurrent small cell lung cancer (39)
Fenretinide Clinical (phase II) Breast cancer (40)
Fenretinide Clinical (phase II) Bladder cancer (31)
Fenretinide Clinical (phase III), NCT00004154 Bladder Cancer (41)
Fenretinide Clinical (phase III) Breast cancer (42)
Fenretinide and ABT-199 Preclinical Neuroblastoma (43)
Fenretinide and paclitaxel Preclinical Ovarian cancer (44)
Fenretinide and lenalidomide Preclinical Neuroblastoma (45)
Fenretinide and SAHA Preclinical Glioblastoma (46)
Fenretinide and tamoxifen Clinical (phase I-II) Breast cancer (47)
Fenretinide and tamoxifen Clinical (phase I-II) Breast cancer (48)
Fenretinide and tamoxifen Clinical (phase I-II) Breast cancer (49)
Fenretinide and tamoxifen Clinical (phase II) Breast cancer (50)
Fenretinide and tamoxifen Clinical (phase II) At higher risk for breast cancer (51)
Fenretinide and tamoxifen Clinical (phase II) At higher risk for breast cancer (52)
Fenretinide and tamoxifen Clinical (phase II) Metastatic breast cancer (53)
Fenretinide and tamoxifen Clinical (phase II) Metastatic breast cancer (54)
Fenretinide and tamoxifen Clinical (phase III), NCT00002646 Receptor-positive breast cancer (55)
Safingol Preclinical Isolated hepatocytes (56)
Safingol Preclinical Prostate cancer (57)
Safingol Preclinical Breast and colon cancer (58)
Safingol Preclinical Multiple Myeloma (59)
Safingol Preclinical Squamous cell carcinoma (60)
Safingol Preclinical Acute myeloid leukemia (61)
Safingol Preclinical HNSCC (62)
Safingol Preclinical Solid tumors (63)
Safingol Preclinical Acute promyelocytic leukemia (64)
Safingol and mitomycin C Preclinical Gastric cancer (65)
Safingol and irinotecan Preclinical Colon cancer (66)
Safingol and Carboplatin, doxorubicin, gemcitabine, vincristine Preclinical Breast, ovarian, lymphoma, mouth cancer (67)
Safingol and (–)-epigallocatechin-O-3-gallate (EGCG) Preclinical CLL (68)
Safingol and bortezomib Preclinical Triple-negative breast cancer (69)
Safingol and cisplatin Preclinical Gastroesophageal cancer (70)

(Continued)
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TABLE 1 | Continued

Drug name Study type Tumor type

Safingol and cisplatin Preclinical HNSCC (71)
Safingol and CNL Preclinical AML (72)
Safingol and cysplatin Clinical (phase I), NCT00084812 Several solid tumors (73)
Safingol and doxorubicin Clinical (phase I) Several solid tumors (74)
ABC294640 Preclinical Breast cancer (75)
ABC294640 Preclinical Breast cancer (76)
ABC294640 Preclinical Colon cancer (77)
ABC294640 Preclinical Breast cancer (78)
ABC294640 Preclinical Primary effusion lymphoma (79)
ABC294640 Preclinical Resistant prostate cancer (80)
ABC294640 Preclinical Prostate cancer (81)
ABC294640 Preclinical Resistant prostate cancer (82)
ABC294640 Preclinical Kaposi sarcoma (83)
ABC294640 Preclinical Skin squamous cell carcinoma (84)
ABC294640 Preclinical Cervical carcinoma (85)
ABC294640 Preclinical NSCLC (86)
ABC294640 Preclinical Epithelial ovarian cancer (87)
ABC294640 Preclinical Cholangiocarcinoma (88)
ABC294640 Preclinical Diffuse Glioma (89)
ABC294640 Preclinical Multiple myeloma (90)
ABC294640 Preclinical Lymphocyte leukemia (91)
ABC294640 Preclinical Triple-negative breast cancer (92)
ABC294640 Clinical (phase I), NCT03414489 Several solid tumors (93)
ABC294640 and (SKI)-II Preclinical Triple-negative breast cancer (94)
ABC294640 and paclitaxel Preclinical Ovarian cancer (95)
ABC294640 and TRAIL Preclinical NSCLC (96)
ABC294640, C6 ceramide and SKI-II Preclinical Colorectal cancer (97)
ABC294640 and sorafenib Preclinical Cholangiocarcinoma (98)
ABC294640 and PDMP Preclinical Lung cancer (99)
ABC294640 and SKI Preclinical Prostate cancer (100)
ABC294640 and gemcitabine Preclinical Pancreatic cancer (101)
ABC294640 and doxorubicin Preclinical NSCLC (102)
ABC294640 and ABT-199 Preclinical Multiple mieloma (103)
ABC294640 and regorafenib Preclinical HCC (104)
CNL Preclinical Breast cancer (105)
CNL Preclinical Chronic lymphocytic leukemia (106)
CNL Preclinical Melanoma and breast cancer (107)
CNL Preclinical Breast and pancreatic cancer (108)
CNL Preclinical Ovarian cancer (109)
CNL Preclinical Liver cancer (110)
CNL Preclinical Lymphocyte leukemia (111)
CNL Preclinical Melanoma (112)
CNL Clinical (phase II) Breast cancer (113)
CNL and sorafenib Preclinical Melanoma and breast cancer (114)
CNL, gemcitabine and PDMP Preclinical Pancreatic cancer (115)
CNL and tamoxifen Preclinical Triple-negative breast cancer (116)
CNL and vinblastine Preclinical HCC and colorectal cancer (117, 118)
CNL and tamoxifen Preclinical Colon cancer (119)
CNL and doxorubicin Preclinical Breast cancer and leukemia (120)
CNL and tamoxifen Preclinical AML (121)
CNL and chloroquine (CQ) Preclinical HNSCC (122)
CNL and PPMP Preclinical Leukemia (123)
CNL and vinblastine Clinical (phase I), NCT02834611 AML or with MDS-related changes (AML-MRC) (118)
SKI-II Preclinical Gastric cancer (124)
SKI-II Preclinical Solid tumors (125)
SKI-II Preclinical Kidney adenocarcinoma (126)
SKI-II Preclinical HNSCC (127)
SKI-II Preclinical Breast cancer (128)
SKI-II Preclinical Prostate cancer (129)
SKI-II Preclinical Large granular lymphocyte leukemia (130)
SKI-II Preclinical Glioblastoma (131)
SKI-II Preclinical HCC (132)
SKI-II Preclinical HCC (133)

(Continued)
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TABLE 1 | Continued

Drug name Study type Tumor type

SKI-II Preclinical Colorectal cancer (134)
SKI-II Preclinical AML (135)
SKI-II Preclinical Gastric cancer, glioblastoma, cervical cancer (135)
SKI-II and myriocin Preclinical Merkel cell carcinoma (136)
SKI-II and temozolomide Preclinical Glioblastoma (137)
SKI-II and ABT-263 Preclinical Leukemia (138)
SKI-II and gefitinib Preclinical Triple-negative breast cancer (139)
SKI-II and OSI-906 Preclinical Breast cancer (140)
SKI-II and cisplatin Preclinical Gastric cancer (141)
SKI-II and curcumin Preclinical Ovarian cancer (142)
SKI-II and paclitaxel Preclinical NSCLC (143)
SKI-II and U0126 Preclinical HCC (144)
SKI-II and EX527 Preclinical Leukemia (145)
SKI-II and 5-FU Preclinical HCC (146)
a-GalCer Preclinical Ovarian and breast cancer metastasis (147)
a-GalCer Preclinical Breast cancer and melanoma (148)
a-GalCer Preclinical (149)
a-GalCer Preclinical (150)
a-GalCer Preclinical (151)
a-GalCer Preclinical Colon cancer (152)
a-GalCer Clinical (phase I) NSCLC (153)
a-GalCer Clinical (phase I) Melanoma (154)
a-GalCer Clinical (phase I) Lung cancer (155)
a-GalCer Clinical (phase I) HNSCC (156)
a-GalCer Clinical (phase I) HNSCC (157)
a-GalCer Clinical (phase I) NSCLC (158)
a-GalCer Clinical (phase I) HNSCC (159)
a-GalCer Clinical (phase I) HNSCC (160)
a-GalCer Clinical (phase I) Advanced cancer (161)
a-GalCer Clinical (phase I) NSCLC (162)
a-GalCer Clinical (phase I) Metastasis (163)
a-GalCer Clinical (phase I) NSCLC (164)
a-GalCer Clinical (phase I) Head and neck cancer (157)
a-GalCer Clinical (phase I) Melanoma (165)
a-GalCer Clinical (phase I) Metastasis (166)
a-GalCer Clinical (phase I) Metastasis (167)
a-GalCer Clinical (phase I-II) NSCLC (168)
a-GalCer Clinical (phase II) HNSCC carcinoma (169)
a-GalCer Clinical (phase II) NSCLC (170)
a-GalCer Clinical (phase II) NSCLC (171)
a-GalCer and SLP (palmitoylated synthetic long peptides) Preclinical Dendritic cells (172)
a-GalCer and irradiation or MHC-binding peptides Preclinical Lymphoma (173)
a-GalCer and pioglitazone Preclinical Melanoma (174)
a-GalCer and lenalidomide Clinical (phase II), NCT00698776 Myeloma (175)
Fingolimod Preclinical Prostate cancer (176)
Fingolimod Preclinical Breast cancer (177)
Fingolimod Preclinical Prostate cancer (178)
Fingolimod Preclinical Pancreatic cancer (179)
Fingolimod Preclinical Prostate cancer (180)
Fingolimod Preclinical Prostate cancer (181)
Fingolimod Preclinical Breast and prostate cancer (182)
Fingolimod Preclinical Ovarian cancer (183)
Fingolimod Preclinical Breast Cancer (184)
Fingolimod Preclinical Breast cancer (185)
Fingolimod Preclinical Thyroid cancer (186)
Fingolimod Preclinical Prostate cancer (187)
Fingolimod Preclinical Colorectal cancer (188)
Fingolimod and TRAIL Preclinical Renal cancer (189)
Fingolimod and rapamycin Preclinical Pancreatic cancer (190)
Fingolimod, sphingosine, ISP-I-55 (FTY720 derivative) Preclinical Breast and colon cancer (191)
Fingolimod and sunitinib malate Preclinical Breast cancer (192)
Fingolimod and cisplatin Preclinical Ovarian cancer (193)
Fingolimod and cetuximab Preclinical Colon cancer (194)

(Continued)
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syngeneic mouse models (69). Unfortunately, hepatic toxicity,
renal toxicity, changes in liver histology, and decreases in body
weight have been observed in mice treated with safingol (56, 57).
Two out of two clinical trials have indicated stable disease or
minor responses to safingol in a subgroup of patients (73, 74).
However, hepatic toxicity has been observed in a clinical trial of
safingol (73), resulting in few additional clinical trials of this drug.
In resistant cancer types, such as gastroesophageal cancer,
treatment with the combination of safingol with other
chemotherapeutic agents, such as cisplatin, has been proposed to
potentially overcome cytotoxic drug resistance. This conclusion is
based on the following observations: i) cisplatin resistance
correlates with increased SPHK1 expression and with decreased
sphingosine-1-phosphate lyase 1 (SGPL1) expression; and ii) the
survival of patients treated with chemotherapy prior to surgery but
not patients treated with surgery alone (70).
ABC294640

ABC294640 (opaganib, Yeliva, 3-(4-chlorophenyl)-N-(pyridin-
4-ylmethyl)adamantane-1-carboxamide) is a selective inhibitor
of both SPHK2 and DES1 that decreases the synthesis of the pro-
proliferative and antiapoptotic lipid S1P, which may eventually
lead to the induction of apoptosis and inhibition of cell
proliferation in cancer cells overexpressing SPHK2 (75–77, 82).
In vitro studies have indicated that ABC294640 reduces the
proliferation and viability of several cancer cell lines and
mouse xenografts without any toxic side effects. The decrease
in proliferation is mediated by inhibition of SPHK2 activity (82,
85, 97), S1P depletion (76, 79, 84, 85, 95, 97, 99), accumulation of
ceramide (79, 84, 85, 89, 99), induction of apoptosis (increased
caspase cleavage, decreased Bcl-2 levels, and decreased NOXA
transcription) (76, 78, 79, 84–91, 94–96, 98, 99, 102, 103),
Frontiers in Oncology | www.frontiersin.org 8
induction of autophagy (increased LC3-II and beclin-1 levels)
(77, 83, 98), estrogen/androgen receptor signaling (decrease in
progesterone or androgen receptor levels) (75, 81, 82), cell cycle
arrest (increased Myt1, p-cdc2, p53, and p21 levels and decreased
pRb, cyclin B1, and cyclin D1 levels) (81, 85–87, 100, 101), and
modulation of cell survival pathways (decrease or inhibition of
NF-kB, pERK1/2, pJNK, pAKT, c-Myc, and survivin expression,
as well as p21-activated kinase 1 (PAK1)/p-Lin-11/Isl-1/Mec-3
kinase 1 (LIMK1)/Cofilin1 signaling) (77, 78, 81, 82, 84, 87, 90–
92, 100–103) (Figure 3). The combination of ABC294640 with
other drugs, such as regorafenib, sorafenib, PDMP, and ABT-
199, induces synergistic potentiation of the treatment effect,
reducing chemoresistance in various cancer types (98, 99, 103,
104). For example, SPHK2/SPP1 arbitrates regorafenib resistance
by activating signal transducer and activator of transcription 3
(STAT3) and nuclear factor kappa light chain enhancer of
activated B cells (NF-kB). SPHK2 targeting by ABC294640
significantly reduces resistance to regorafenib in an in vivo
model of hepatocellular carcinoma (HCC) (104).

Overall, only one clinical trial for ABC294640 has been reported,
and some reversible toxicities (nausea, vomiting, diarrhea, fatigue
and nervous system disorders) were documented. These side effects
are likely due to off-target effects. The efficacy evaluation indicated
stable disease in a subgroup of patients (40%), partial response (7%)
and progressive disease (53%) (93).
CERAMIDE NANOLIPOSOMES

Ceramide nanoliposomes (CNLs) are lipid-based nanoparticle
formulations composed of ceramide encapsulated within
nanoliposomes, inducing apoptosis in the target cells due to
lysosomal membrane permeabilization that leads to the leakage
of hydrolytic enzymes into the cytoplasm or by conferring PI3K
TABLE 1 | Continued

Drug name Study type Tumor type

Fingolimod, doxorubicin, and etoposide Preclinical Colon cancer (195)
Fingolimod, 5-FU, SN-38, and oxaliplatin Preclinical Colorectal cancer (196)
Fingolimod and radiation Preclinical Breast cancer (197)
Fingolimod and TRAIL Preclinical Renal, breast, and colon cancer (198)
Fingolimod and SKI-II Preclinical Uterine cervical cancer (199)
Fingolimod and docetaxel Preclinical Resistant prostate cancer (200)
Fingolimod and doxorubicin Preclinical Breast cancer (201)
Fingolimod and TASP0277308 Preclinical Cancer-induced bone pain (202)
Fingolimod and cisplatin Preclinical NSCLC (203)
Fingolimod, carboplatin and tamoxifen Preclinical Ovarian cancer (204)
Fingolimod and methotrexate Preclinical Oral squamous cell carcinoma (205)
Fingolimod and gemcitabine Preclinical Pancreatic cancer (206)
Fingolimod and cisplatin Preclinical Breast cancer (207)
Fingolimod and pemetrexed Preclinical NSCLC and ovarian cancer cells (208)
Fingolimod, lapatinib and sorafenib Preclinical NSCLC (209)
Fingolimod and methotrexate Preclinical Thyroid cancer (210)
Fingolimod nanoparticles Preclinical Thyroid cancer (211)
Fingolimod Preclinical Breast cancer (212)
Sonepcizumab Preclinical Breast and ovarian cancer (213)
Sonepcizumab Clinical (phase II) Metastatic renal cell carcinoma (214)
AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; NSCLC, non-small cell lung cancer.
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and PKCz tumor-suppressive activities (107, 224). Interestingly,
CNLs have also been reported to target the Warburg effect in
chronic lymphocytic leukemia in vitro and in vivo (106).
Ceramide alone is insoluble and has a short half-life; therefore,
nanoliposomes increase its solubility and half-life. Upon
administration, CNLs accumulate in the tumor environment
due to enhanced permeation and retention caused by the
‘leakiness’ of the tumor vasculature (225). No targeting effect
on a tumor marker or tropism of CNL for a particular tissue has
been observed. However, one method for increasing the
specificity of ceramide derivatives for mitochondria (to induce
apoptosis by inducing cytochrome c release) is the introduction
of a positive charge on the fatty acid residue by adding a pyridine
structure. Pyridine-ceramides localized more readily to the
mitochondria, altering their structures and functions and
inducing pancreatic cancer cell death (226).

Preclinical assays with cell lines and xenografts show that CNLs
potentiate the effect of chemotherapy (114–116, 120); reduce tumor
proliferation mediated by apoptosis (increased cleavage of PARP
and caspases) (110–112, 114, 116–119, 121, 123), autophagy
(increased LC3-II and Atg5 levels) (117, 122), necrosis (106),
necroptosis (109), anoikis (108), mitophagy (mitochondrial
membrane permeabilization) (116, 119, 121–123), and cell cycle
arrest (increased p53 expression) (116, 119); increase ROS levels
(110); inhibit lysosomal function (116, 122); inhibit integrin affinity
(105, 107); and target CD44 receptor (108), survivin (111), PI3K
(107, 114), MAPK (105, 114), mammalian target of rapamycin
(mTOR) (112, 121),Akt andErk1/2 (110, 115) signaling (Figure 3).
For example, Shawetal. indicated that the combinationofC6-CNLs
with chloroquine (an inhibitor of lysosomal function and therefore
an autophagy inhibitor) significantly increases apoptosis in
response to ceramide by avoiding the repair of mitochondrial
damage (122).

To our knowledge, two clinical trials have tested the efficacy of
CNLs in cancer. In the first trial, only one patient with cutaneous
breast cancermanifested a partial response, yielding a response rate
of 4% and a median progression-free survival of 2 months. Topical
ceramides were also well tolerated, with no grade 3 or 4 toxicities
reported (113). Another clinical trial (phase I) with C6-CNLs
concluded that the combination of ceramide and vinblastine is
safe and has the potential to treat the heterogeneous nature of acute
myelogenous leukemia (AML) through the induction of apoptotic
pathways (118); therefore, phase II studies may be conducted.
SKI-II

SKI-II (SKi, SphK-I2, 4-[[4-(4-chlorophenyl)-1,3-thiazol-2-yl]
amino]phenol) is a highly selective inhibitor of both SPHK1 and
SPHK2 (227). In vitro studies have shown that SKI-II decreases
cancer cell proliferation by inducing apoptosis (increased PARP
cleavage, increased caspase cleavage, decreased Bcl-2 expression,
and increased Bax levels) (124, 126, 129, 130, 135–137, 142, 144–
146), autophagy (137), necrosis (136), endoplasmic reticulum
stress, oxidative stress, and cell cycle arrest [increased levels of
p27 and sirtuin-1 (SIRT1)] (124, 130, 145). In addition, SKI-II has
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been shown to decrease sphingomyelin and S1P levels (130, 136),
inhibit chemotaxis (131), increase ceramide levels (126, 130, 137,
138, 142), and/or increase the activation of other crucial signaling
pathways, including transcription factor NF-kB (124, 126, 144,
146), the Janus kinase 1-signal transducer and activator of
transcription 1 axis (JAK-STAT) (130, 134, 145), mitogen-
activated protein kinase 1 (MAPK) (125, 141, 146), Akt (125,
142–144, 228), Erk1/2 (141, 143–145), c-Jun NH2-terminal
kinase 1 (JNK1) (191), tripartite motif containing 14 (TRIM14),
metalloproteinases (MMP2 and MMP9), vascular endothelial
growth factor (VEGF) (134), estrogens (128), Wnt family
member 5A (Wnt5A) concomitant with b-catenin (132),
epidermal growth factor receptor (EGFR), insulin-like growth
factor binding protein 3 (IGFBP-3) (139), focal adhesion kinase
(FAK), and insulin-like growth factor 1 receptor (IGF-1R) (146)
(Figure 3). Sensitization of cell lines to SKI-II along with
chemotherapy has also been observed (139, 141, 143).
Unfortunately, clinical trials of this drug have not been conducted.
a-GALACTOSYLCERAMIDE (a-GALCER)

The last decade has revolutionized cancer therapy with the
development of immunotherapy, producing good outcomes in
patients with a fatal diagnosis. a-GalCer (KRN-7000, a-
galactosylceramide-pulsed antigen presenting cells) is a
glycosphingolipid and synthetic iNKT (invariant Natural Killer T)
cell ligand. Dendritic cells are pulsed with a-GalCer and
administered to patients for achieving effective presentation and
activation to iNKT cells (172). In other approaches, dendritic cells
are mixed with iNKT cells or peptides derived from cancer antigens
(154). Dendritic cells (DC) capture antigens and present them to
several types of T-cells for their activation. Invariant natural killer T
(iNKT/type I NKT) cells are a subset of T cells endowed with innate
and adaptive effector functions. They are characterized by the
expression of invariant T cell receptor chain Va24-Ja18, which
recognizes lipid antigens presented by CD1d (229). They exhibit
powerful cytotoxic activity mediated by perforin/granzyme B. In
addition to their direct antitumor effect, iNKT cells also regulate the
damaging activities of NK cells, CD8+ T cells, B cells and innate
cells by release of a wide variety of pro-inflammatory cytokines
(153, 154, 172).

Preclinical and clinical trials using a-GalCer have shown that
this therapy is safe, exhibits durable activation, and increases the
number of iNKT, NK, tumor-specific, CD4+, CD8+ T, and B
cells (148, 149, 151, 153–156, 160, 161, 169, 172, 173, 175). This
activation is associated with increased serum levels of cytokines
that stimulate the growth and function of T cells [IL-12 (150,
175) and IL-2 receptors (175)] and other factors that enhance
natural killer cell activity (i.e., interferon gamma [IFN-g] (150,
155, 156, 158, 161, 163, 172), CD16 (175), and tumor necrosis
factor a [TNF-a]) and immune cell maturation (GMCSF) (164).
In eleven out of twelve completed phase I-II clinical trials, tumor
regression, stable disease, partial response or increased median
survival time were observed in a subgroup of patients (153, 157,
159, 160, 162–169). These promising clinical findings are
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associated with the activation of natural killer cells, cytotoxic
CD8+ T cells and CD4+ T cells, which are the most relevant
immune responses to cancer (230).

Attempts to improve efficacy of iNKT treatments have
focused on transduced with CARs (chimeric antigen receptors)
(NCT03294954; NCT03774654), chemical modifications to the
a-GalCer to stabilize interactions with CD1d, optimizing
presentation through encapsulation in particulate vectors,
making structural changes that help binding to CD1d, injecting
agonists covalently attached to recombinant CD1d. Also,
facilitate formation of resident memory CD8+ T cells could
find a role in this therapy.
FINGOLIMOD

Fingolimod (FTY720, Gilenya, 2-amino-2-[2-(4-octylphenyl)
ethyl]propane-1,3-diol) is a functional antagonist of the
sphingosine-1-phosphate receptor (S1PR) and structural analog
of sphingosine (1). Fingolimod causes the internalization of S1PR,
which sequesters T lymphocytes in lymph nodes (absent in the
periphery) (231), preventing them from contributing to
inflammatory and autoimmune reactions. The most universal
mechanism for its potential anticancer function is limiting the
conversion of sphingosine to S1P (7). Fingolimod is effective at
reducing inflammatory relapses in patients with multiple sclerosis
(232). Fingolimod also shifts macrophages to an anti-
inflammatory M2 phenotype and modulates their proliferation,
morphology, and cytokine release (233). Preclinical studies of
fingolimod have indicated that this drug is safe, potentiates the
effect of chemotherapy (192, 195, 196, 200, 201, 234), and
suppresses tumor growth by inducing apoptosis (increased
cleavage of PARP and caspases, decreased Bcl-2 and Mcl-1
levels, and increased Bax levels) (176, 177, 179, 181, 182, 187,
189, 194–199, 203, 204, 206), autophagy (increased LC3-II, beclin-
1, and Atg7 levels, and decreased p62 expression) (197, 203, 208,
209), necrosis (183, 210), cell cycle arrest (increased levels of cell
cycle inhibitory proteins [p27 and p21]); and decreased expression
of cyclin D1 and C-X-C motif chemokine receptor 4 [CXCR4])
(186, 187, 197, 204, 209). Fingolimod also increases ceramide
levels (181, 204), the proteasomal degradation of SPHK1 (182),
inactivation of RhoA-GTPase (178), histone deacetylase (HDAC)
activity (185), multidrug resistance protein 1 (ABCB1) levels
(195), protein phosphatase 2A (PP2A) reactivation (196, 205,
206), and modulation of signaling pathways (VEGF (176, 186,
199), MMP2, MMP9, CD31, E-cadherin, b-catenin (176),
estrogens (187), JNK (191), NF-kB (206), STAT3 (201, 206),
AMP-activated protein kinase (AMPK) (208), mTOR (208),
Erk1/2 (182, 186, 189, 191, 196, 197, 206), and PI3K/Akt (179,
180, 194, 196, 197, 206) (Figure 3).

However, no clinical trials have assessed the effectiveness of
fingolimod in cancer, potentially due to the impairment of
cytotoxic CD8+ T and CD4+ T cell trafficking and activation,
which precludes tumor infiltration to kill cancer cells.
Fingolimod blocks the immunosurveillance of B cells by
suppressing the migration of tumor-specific Th1 cells from
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lymph nodes to the incipient tumor site, thereby preventing
Th1-mediated activation of tumoricidal macrophages (235).
Furthermore, it impairs the ability of cytotoxic CD8+ T cells to
kill their target cells and reduces IFNg and Granzyme B levels in
splenic CD8+ T cells (236, 237). Thus, an effective action of this
drug in clinical trials is not anticipated, as T cells are the main
cells involved in the immune response to tumors.
SONEPCIZUMAB

Sonepcizumab (LT1009) is a humanizedmonoclonal antibody against
S1P. Sonepcizumab slows tumor progression in murine models with
orthotopic tumors by blocking the function of proangiogenic growth
factors (decreased VEGF, bFGF, and IL-8 levels) and inducing
apoptosis (increased caspase cleavage). Additionally, sonepcizumab
inhibits tumor vascularization in vitro and in vivo, and it neutralizes
S1P-induced stimulation of proliferation in multiple cell lines (213)
(Figure 3). A phase II study of sonepcizumab was terminated because
it failed to meet its primary progression-free survival endpoint in
patients with metastatic renal cell carcinoma who received three prior
therapies. However, researchers were encouraged by the overall
survival (21.7 months) and safety profile of sonepcizumab, and they
advised “further investigation in combination with VEGF-directed
agents or checkpoint inhibitors”. Ten percent of patients achieved a
partial response, with a median duration of response of 5.9 months.
No grade 3/4 treatment-related adverse events were observed in >5%
of patients (214).

An increase in systemic S1P concentrations was detected
following sonepcizumab treatment, suggesting that S1P signaling
was still active, which might explain the limited efficacy of the drug
in the clinic. Thus, future studies are needed to improve the
neutralization of S1P signaling. In addition, studies testing the
efficacy of this drug in combination with SPHK1/2 inhibitors or
S1PR2 antagonists are warranted (1).
CONCLUSIONS

Sphingolipid-targeting drugs have been tested against several
hematological malignancies and solid tumors, alone or in
combination with chemotherapy, and have produced some
encouraging results (42, 47, 48, 50, 52, 54). Treatments targeting
sphingolipid exhibit antitumoractivity in vitro and in vivo, inducing
apoptosis or occasionally autophagy, as well as several other
mechanisms of cell death. Among these agents, the most effective
and promising treatments in clinical trials are fenretinide and a-
galactosylceramide. Some plausible explanations for the partial
success of these safe drugs in clinical trials have been proposed.
Fenretinide accumulation in breast tissue along with the induction
of apoptosis or autophagy (in caspase-defective breast cancer cells)
by dihydroceramidemay be responsible for its success. Researchers
presumed that its accumulation in breast tissue (and not in other
tissues) might be related to hormone-associated pathways that are
active in these cancer types. Regarding a-galactosylceramide, the
induction of an antitumor immune response mediated by iNKT,
NK, T cells and B cells is the functional mechanism. Among several
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anticancer therapies, immune checkpoint inhibitors occupy a
relevant place because of the activation of the antitumor function
of T cells (238), which indirectly indicates an important role for the
adaptive immune system in the efficacy of anticancer treatments.
However, despite different proposals (mutations thatpreventT cells
from entering the tumor, inhibition of T cell activation pathways,
etc.), researchers have not yet clearly determined why
immunotherapy is not efficient against some types of tumors.

Current research gaps in the other drugs are associatedwith side
effects,modestfindingsor the absenceof clinical trials. For example,
safingol and ABC294640 induced side effects on humans in clinical
trials, which may be the main reason for the limited number of
clinical trials. Safingol is an inhibitor of several enzymes (SPHK1,
PKCb-I, PKCd, PKCϵ, and PI3K) and glucose uptake (223), which
are needed for the proper function of normal tissues. Targeted
therapyagainstproteinkinases relies on theupregulation/activation
of these molecules in particular tumors. For example, imatinib is a
specific inhibitor of the constitutively activeBcr-Abl tyrosine kinase
and is used to treat leukemia with the Philadelphia chromosome
(Bcr-Abl) (239). Therefore, we understand that off-target effects of
sanfingol due to the inhibition of several enzymes and glucose
uptake are likely responsible for the hepatic toxicity observed in
mouse and human studies. Potential developments in this field to
alleviate this limitationmight include some chemicalmodifications
designed to increase the specificity for SPHK1 or targeting an
upregulated sphingolipid in a specific tumor. Nevertheless, their
use is expected to vary depending on the type of cancer, which in
turn is determined by the levels of aberrant sphingolipids expressed
in each type of tissue, among other factors. In addition, glucose
uptake is a universal and vital step for obtaining ATP through
glycolysis and oxidative phosphorylation.

CNLs are already being investigated in clinical trials, but the
expected results were very modest, potentially because of a lack of
CNL tropismfor a specific tumor tissue type (i.e., breast).Noclinical
trials for SKI-II and fingolimod have been reported. For the latter,
an effective action in cancer clinical trials is not expected, as this
immunosuppressive drug impairs the tissue infiltration and
activation of cytotoxic CD8+ T and CD4+ cells, which are the
most relevant cells involved in the immune response to tumors.
Clinical studies confirm this fact, as spontaneous regressionofT cell
lymphoma has been observed in patients with multiple sclerosis
after discontinuing fingolimod (240).

With respect to sonepcizumab, an increase in systemic S1P
concentrations was observed in a clinical trial (214), although it is a
monoclonal antibody against S1P. Treatment with this drug
resulted in a reduction in the absolute serum lymphocyte levels,
which was expected based on the known effect of S1P blockade on
peripheral lymphocyte trafficking (214).Moreover, upregulation of
the S1PR1-STAT3pathway enablesmyeloid cells to intravasate and
mediate tumor proliferation and metastasis (241). In addition,
S1PR1 signaling in T cells drives Treg accumulation in tumors,
limits CD8+Tcell recruitment and activation, andpromotes tumor
growth (242, 243). Therefore, sonepcizumab does not provide
effective S1P blockade in clinical trials, and the potential tumor
infiltration of Tregs andmyeloid cells and reduction of lymphocyte
numbers fosters tumor growth.
Frontiers in Oncology | www.frontiersin.org 11
The exhaustive characterization at several levels, including
immunity, pharmacodynamics, pharmacokinetics, dosing and
metabolomics, is required in preclinical studies before entering
clinical trials. The most relevant factor associated with side effects is
the presence of off-target effects, which might be improved by
chemical modification of these drugs or new synthesis to increase
specificity. For this task, the use ofmolecular docking based on three-
dimensional protein structures would be able to develop new and
more specific drugs. In addition, the lack of tissue-specific targeting
andhydrophobicityof thedrugsprecludesaneffective action.Theuse
of aberrant sphingolipids in specific tumors as targets and
nanocarriers or chemical modifications are solutions to these issues.

Aberrant sphingolipid signaling is a consequence (not the
cause) of carcinogenesis due to mutations in crucial oncogenes
and tumor suppressor genes. Hence, effective treatment with
sphingolipid modulating drugs should be based on multiple
therapeutic combinations, including immunotherapy (activates
antitumor immune CD4+ and CD8+ T cells) and conventional
chemotherapy Interestingly, conventional chemotherapy (i.e.,
tamoxifen) is active against SPHK1 and GCS; thus, the use of
tamoxifen might be beneficial in patients who have acquired
resistance to these enzymes. One opportunity is based on the fact
that many chemotherapeutic agents modulate ceramide levels;
therefore, the rational use of these agents with sphingolipid
inhibitors could increase lethal levels of ceramide that are
more effective at killing the tumor. Overall, an increased
understanding of the mechanisms by which sphingolipids
control cancer cell signaling together with in-depth studies
using animal models will fill these gaps and improve future
anticancer therapy based on these compounds.
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