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Abstract: The study of the human microbiome in oncology is a growing and rapidly evolving field.
In the past few years, there has been an exponential increase in the number of studies investigating
associations of microbiome and cancer, from oncogenesis and cancer progression to resistance or
sensitivity to specific anticancer therapies. The gut microbiome is now known to play a significant
role in antitumor immune responses and in predicting the efficacy of immune-checkpoint inhibitors
in cancer patients. Beyond the gut, the tumor-associated microbiome—microbe communities located
either in the tumor or within its body compartment—seems to interact with the local microenvironment
and the tumor immune contexture, ultimately impacting cancer progression and treatment outcome.
However, pre-clinical research focusing on causality and mechanistic pathways as well as proof-of-
concept studies are still needed to fully understand the potential clinical utility of microbiome in cancer
patients. Moreover, there is a need for the standardization of methodology and the implementation of
quality control across microbiome studies to allow for a better interpretation and greater comparability
of the results reported between them. This review summarizes the accumulating evidence in the field
and discusses the current and upcoming challenges of microbiome studies.

Keywords: tumor microbiome; gut microbiome; dysbiosis; cancer; carcinogenesis; metagenomics

1. Introduction: Microbiology Meets Oncology

This is the “decade of microbiome”, reported Forbes’ last publication of 2019. While
the existing link between microbiome and health in the human host has been known for
years, it was not until recently that the influence of the microbiome reached several medical
disciplines, including oncology, going from unknown to mainstream.

The human microbiome is defined as the collective genomes and by-products of
all the microorganisms inhabiting the human body, including bacteria, viruses, fungi,
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protozoa, and archaea [1,2]. These microbial communities are distributed in multiple
compartments throughout the body (e.g., skin, oro-gastrointestinal, urogenital tracts)
and vary in type and number depending on each compartment, although they all seem
to share core functions such as glycolysis, ATP synthesis, and activation of translational
machinery [1,2]. The microbiome has a symbiotic and dynamic relationship with the human
host, with some microorganisms being key players in several physiological functions
that mainly involve regulation of metabolic processes and immune system responses [2].
Although the precise underlying mechanisms are not completely understood, changes
in the microbiome composition of a specific body compartment caused by either host
intrinsic or external factors (e.g., genetics, infections, diet, or antibiotics) can alter the
local homeostasis and induce chronic inflammation, damaging tissues and dysregulating
local and systemic immune responses, ultimately leading to disease [3]. These pathology-
associated alterations are also known as dysbiosis, and they have been linked to several
disorders, including cancer [4].

The association between the microbiome and cancer is not new. Up to 20% of can-
cers are actually related to infections [5], and several pathogenic bacteria and viruses
contribute to the etiopathogenesis of specific tumor types [6–8]. However, beyond these
well-established agent-tumor causality associations, overall quantitative and/or qualitative
shifts in the microbiome composition of a specific compartment may also trigger cancer ini-
tiation, development, and progression. The International Cancer Microbiome Consortium
postulates that the microbiome is one apex of a carcinogenesis-leading tripartite, jointly
with (epi)genetics and environment [9]. This idea is supported by the Ecological Koch’s
postulate that sustains that a dysbiosis resulting from (epi)genomics, environment, and
microbiome leads to a single disease [10].

In addition to its role in tumorigenesis and cancer progression, the microbiome has
also emerged as a new potential biomarker in cancer diagnosis, risk stratification, and
prognosis. Microbial signatures detected in cell-free DNA from human fluids have been
linked to specific tumor types and could be used for diagnostic purposes [11]. Other studies
have shown a correlation between tumor-associated bacteria and survival or response to
anticancer therapies [12,13]. Recently, accumulating evidence has implicated the gut
microbiome in the modulation of host anticancer immune responses and the efficacy of
immune-checkpoint inhibitors across many tumor types [14–17]. These findings have
led to preclinical and clinical investigations on how to manipulate the microbiome to
use it as a therapeutic tool to boost the efficacy of anticancer therapies through different
strategies, from dietary interventions and probiotic/antibiotic therapies to fecal microbial
transplantation [3,18] (NCT04264975, NCT01895530, NCT03817125).

2. Tumor-Associated Microbiome

Bacteria, viruses, and other micro-organisms located in different body compartments
have been correlated with increased susceptibility of developing different cancers [19–22].
Cancer patients seem to harbor a specific microbiome composition in the tumor niche and
also within the tumor’s body compartment, which differs from healthy controls [23–26].
These specific changes in the microbial communities intratumor or nearby observed in
cancer patients are what we define as tumor-associated microbiome. Whether this tumor-
associated microbiome is involved in carcinogenesis or if it is merely a by-stander effect
due to the tumor microenvironment is yet to be fully elucidated. It is hypothesized that
a dysbiosis in a specific compartment or tissue could start an oncogenic process through
(1) the induction of chronic inflammation, (2) the inhibition of cellular apoptosis, (3) the
production and release of carcinogenic substances, or (4) the modulation of local anti-
tumor immunity and tumor microenvironment [27]. For instance, changes in the relative
abundance (RA) of a given group of bacteria has been shown to directly cause DNA damage
leading to genetic dysregulation and initiation of tumorigenesis [28,29]. A recent elegant
study conducted by Nejman et al. revealed that intra-tumor microbiome composition is
diverse and cancer type-specific [23]. Interestingly, bacteria found in tumor tissue were



Int. J. Mol. Sci. 2021, 22, 1446 3 of 25

biologically active and mainly located in the cytoplasm of both tumor and immune cells,
suggesting an implication in both oncogenesis and antitumor immunity.

In this section, we revise the evidence available on the tumor-associated microbiome
by cancer type and its potential clinical use as a diagnostic, prognostic, or predictive
biomarker (Table 1).

Table 1. Tumor-associated microbiome.

Disease Site Tumor Type Sample Type Tumor-Associated
Taxa

Potential Clinical
Utility Based on
Recent Evidence

Head and neck SCC Saliva
tumor tissue

Kingella and
Corynebacterium [20,30] Cancer prevention

Porphyromonas
gingivalis [31] Diagnostic

Fusobacterium nucleatum
[32,33] Prognostic

Head and Neck and
Upper

Gastrointestinal
Tumors

Esophageal ADC Tumor tissue Campylobacter species
[34–36] Diagnostic

Esophageal SCC Tumor tissue Fusobacterium nucleatum
[13,33] Prognostic

Gastric carcinoma Tumor tissue Helicobacter pylori [6] Diagnostic

Hepatocarcinoma and
Pancreatic Cancer Ductal ADC Tumor tissue VHB, VHC [5] Screening

Diagnostic

Normal tissue

H. pylori, P gingivalis,
Fusobacterium sp.,
Aggregatibacter sp.,

Prevotella sp., or
Capnocytophaga sp. [37]

Diagnostic

Pancreatic ductal ADC Tumor tissue

Pseudoxanthomonas sp.,
Streptomyces sp.,

Saccharopolyspora sp.,
Bacillus clausii,

Proteobacteri sp. [26]

Prognostic

Gammaproteobacteria
[38] Predictive

Colorectal Cancer Colorectal ADC
Tumor tissue

Stool
Saliva

Fusobacterium nucleatum
[39–43]

Diagnostic
Prognostic
Predictive

Therapeutic

Tumor tissue
Enterotoxigenic

Bacteroides fragilis [44] Cancer Prevention

Escherichia coli (pk+)
[45]

Stool

Peptostreptococcus
stomatis, Parvimonas,

Porphyromonas [39,40]
Ascomycota,

Basidiomycota,
Orthobunyavirus [46–48]

Diagnostic
Screening tool
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Table 1. Cont.

Disease Site Tumor Type Sample Type Tumor-Associated Taxa
Potential Clinical
Utility Based on
Recent Evidence

Genitourinary tumors Urothelial carcinoma Urine Fusobacterium, Firmicute
[49,50] Diagnostic

Renal cell carcinoma Tumor tissue Chloroplast, Streptophyta
[51] Diagnostic

Prostate SDC Tumor tissue Akkermansia muciniphila
[52] Predictive of response

Listeria monocytogenes [53] Prognostic

Endometrial cancer Tumor tissue Porphyromonas sp.,
Atopobium vaginae [54] Diagnostic

Lung cancer Lung ADC and SCC Normal site Chlamydia pneumonia,
Mycobacterium tuberculosi

[55]
Cancer prevention

Saliva
Tumor tissue

Veillonella, Capnocytophaga,
Selenomonas Megasphaera,

Neisseria [56]
Diagnostic

Family Lachnospiraceae,
genera Faecalibacterium
and Ruminococcus [57]

Prognostic

Faeces Akkermansia muciniphila
[14] Predictive of response

Breast cancer Triple-positive ductal
ADC (HR/HER-2+) Tumor tissue

Bordetella, Campylobacter,
Chlamydia, Chlamydophila,
Legionella, Pasteurella [58]

Diagnostic

Triple-negative ductal
ADC (HR/HER-2 -) Tumor tissue

Aerococcus, Arcobacter,
Geobacillus, Orientia, Rothia

[58]
Diagnostic

HPV-related cancers Oropharyngeal SCC Saliva Lactobacillus-enriched [32] Diagnostic

Cervical SCC Tumor tissue HPV16 [5] Prognostic

Vaginal fluid

Lactobacillus,
Gardnerella,

Atopobium, Fusobacterium,
Sneathia [59]

Diagnostic
Prognostic

EBV-related cancers Nasopharyngeal
carcinoma

Tumor tissue EBV [60] Diagnostic
Prognostic

Gut Functional metabolic
signature [61] Prognostic

Abbreviations: SCC = squamous cell carcinoma; ADC = adenocarcinoma; HR = hormonal receptors; HPV = human papillomavirus; EBV =
Epstein–Barr virus.

2.1. Cancers of the Upper Aerodigestive Tract: Head and Neck and Esophageal Tumors

Head and neck, esophageal, and gastric cancers arise from the epithelium and mucosa
of the oro-gastrointestinal tracts and upper airway. These compartments are constantly
exposed to external aggressions such as smoking, alcohol consumption, or infections, which
can alter their microbiome composition [62,63]. Some viral infections such as Epstein–Barr
virus (EBV) and human papillomavirus (HPV) are well-established etiopathological agents
of nasopharyngeal (NPC) and oropharyngeal carcinomas (OPC), respectively [60,64], while
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the bacterial species Helicobacter pylori (H. pylori) is causally associated with the incidence
of gastric adenocarcinomas and mucosa-associated lymphoid tissue lymphoma [6,65]

However, beyond these specific pathogen–tumor type causality relationships, which will
be further discussed, oro-gastrointestinal dysbiosis has been correlated with increased risk
of head and neck (HNC), esophageal (EC), and gastric cancers (GC) [66–69]. Several retro-
spective case–control studies have found differential microbiome composition in the saliva,
mucosal, and tumor tissues of patients with these tumor types when compared to healthy
individuals, suggesting an implication in tumor initiation and development [25,70–72]. Other
commensal bacteria have been shown to be protective of cancer development and could be
used for cancer prevention purposes—both Kingella and Corynebacterium species, which are
functionally implicated in the biodegradation and/or metabolization of carcinogens from
tobacco and/or alcohol (e.g., Acetaldehyde), have been linked with decreased risk of head
and neck squamous cell carcinomas (HNSCC) among smokers/alcohol consumers in a nested
case–control study within a prospective cohort [20,30].

Oropharyngeal and esophagogastric compartments share similar commensal microor-
ganisms as well as microbiome pathogenic alterations [73]. For instance, increased RA
of oral Porphyromonas gingivalis, a bacterium associated with periodontal disease, has
been suggested to facilitate the development of oral carcinomas through the activation
of immune evasion mechanisms and oncogenic pathways, but it also has been correlated
with cancer cell differentiation and metastasis in patients with esophageal squamous cell
carcinoma (SCC) [31,74]. Fusobacterium nucleatum (F. nucleatum) is also found in both head
and neck and esophageal SCC and is associated with advanced tumor stages and a more
aggressive tumor behavior in both patient populations [32,33,75]. In contrast, different
microbiome composition has been described within the same compartment in association
with a specific tumor histology, indicating that intercompartmental dysbiosis might lead
to different tumor types or vice versa; whether these findings are cause or consequence
is yet unclear. Campylobacter species are found increased in the esophageal mucosa of
patients with gastroesophageal reflux disease (GERD) and Barrett’s esophagus, and seem
to be implicated in the development of esophageal adenocarcinomas but not SCC through
the activation of immune pathways linked to toll-like receptors [34–36]. In the case of EC
and GC, infections by other microorganisms such as fungi have also been implicated in
carcinogenesis through mucosal injury and dysregulation of the local immune system and
oncogenic pathways [76,77].

Fewer studies are available on the potential impact of tumor-associated microbiome
on outcome and response to therapy in patients with cancer of the upper aerodigestive
tract. In HNC, there is no evidence of oral/tumor-associated microbiome as a biomarker of
response to standard therapies such as radiotherapy, chemotherapy, or immunotherapy,
although studies are underway (NCT03410615). To date, the only study that evaluated
the oral microbiome in a subgroup of patients with recurrent/metastatic HNSCC treated
with antiPD-1 agent nivolumab within the CheckMate-141 clinical trial failed to show any
correlation with treatment response [78]. However, the small number of patients and the
low percentage of responses might have influenced these results. In terms of toxicity, two
studies have shown a correlation between oral dysbiosis and increased radiation-induced
mucositis in patients with HNC [79,80]. In patients with esophageal SCC, increased
RA of intratumoral F. nucleatum has been associated with poor response to neoadjuvant
chemoradiation and higher risk of recurrence [13].

2.2. Hepatocarcinoma, Pancreas, and Biliary Tract Cancers

Cancers from the hepato-biliary system are under the influence of the microbiomes
belonging to each of the organs involved but also of the gut microbiome via blood flow
through the portal vein [37]. The relationships between gut microbiome, biliary acids,
and liver diseases, including hepatic steatosis, non-alcoholic liver disease, non-alcoholic
steatohepatitis, cirrhosis, biliary tract cancers, and hepatocellular carcinoma (HCC), have
been reviewed extensively [81,82]. A recent pre-clinical study by Zhang et al. evaluated
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the gut microbiome in 127 mouse models for primary sclerosis cholangitis, colitis, and
cholangiocarcinoma [83]. They were able to show that Gram-negative commensal bacteria
from the gut control the accumulation of hepatic myeloid-derived immunosuppressive cells
(MDSCs) through a TLR4/CXCL1/CXCR2129-dependent mechanism and thus contribute
to an immune-suppressive microenvironment in the liver [83].

Among viruses, hepatitis B (VHB) and C (VHC) infections are well-established risk
factors not only for liver cancer but also for pancreatic ductal adenocarcinoma (PDAC).
Alcohol-induced tumors (including HCC and PDAC) were observed to have distinct mi-
crobiome composition from virally induced tumors, suggesting that liver microbiome may
differ in response to different etiological factors [84]. Beyond viruses, certain pathogenic
bacteria such as H. pylori and oral periopathogens such as P gingivalis, Fusobacterium sp., Ag-
gregatibacter sp., Prevotella sp., or Capnocytophaga sp. seem to play a role in the development
of PDAC via induction of chronic inflammation, antiapoptotic changes, cell survival, and
cell invasion [37]. In this regard, a study by Pushalkar et al. detected specific gut and tumor
microbiome in murine models of PDAC, suggesting a potential bacterial translocation
from the intestinal tract into the peritumoral milieu [85]. Interestingly, PDAC-associated
microbiome as well as gut microbiome were involved in immune-suppression in pancreatic
tissue, a characteristic often observed in PDAC. Together, these data suggest that gut
and/or tumor microbiome represent a potential therapeutic target to modulate disease
progression in PDAC.

The PDAC-associated microbiome appears to also have a prognostic role, although its
correlation with the incidence of this disease has not been evaluated sufficiently. Riquelme
et al. evaluated the intratumor microbiome composition of PDAC patients according to
short-term survival (STS) and long-term survival (LTS), identifying a specific intra-tumoral
microbiome signature (Pseudoxanthomonas–Streptomyces–Saccharopolyspora- Bacillus clausii) that
was predictive of long-term survivorship in both discovery and validation cohorts [26]. Chak-
ladar et al. profiled the intra-tumor pancreatic microbiome through large-scale sequencing
data from The Cancer Genome Atlas (TCGA) (187 pancreatic cancer samples). The authors
found that the increased prevalence and poorer prognosis of PDAC in males and smokers
were linked to the presence of potentially cancer-promoting or immune-inhibiting microbes
(most of them belonged to Proteobacteria phylum) [86]. Another study showed that intra-
tumor Gammaproteobacteria in PDAC modulates tumor sensitivity to gemcitabine, one of
the few active and standard of care chemotherapy drugs used in PDAC [38].

In HCC, a small study evaluated the changes in gut microbiome after antiPD-1 therapy
in eight patients with Barcelona Clinic Liver Cancer (BCLC) Stage C disease. Differences
in microbiome diversity and composition were observed between responders and non-
responders, thus suggesting that gut microbiome dynamics might be predictive of response
to these agents in patients with HCC [87].

2.3. Colorectal Cancer

The microbiome in colorectal cancer (CRC) is one of the most studied across ma-
lignancies, but its role in the development of this tumor is still a matter of debate. The
“Driver-Passenger CRC model” defines as drivers those bacteria with pro-carcinogenic fea-
tures that are found in pre-malignant lesions or in early CRC, while the term “passengers”
refers to bacteria that act as tumor promoters or suppressors in later stages of disease [88].
Among drivers, enterotoxigenic Bacteroides fragilis drives tumor growth through different
mechanisms encompassed in the so-called alpha-bugs hypothesis, such as DNA damage,
induction of cell proliferation, and induction of T helper 17 inflammation [44]. Escherichia
coli, which is a producer of toxin colibactin (pk+), has also raised interest as a driver, since
it may cause toxin-induced DNA damage, promoting a specific CRC mutational profile
based on insertions and deletions [45]. F. nucleatum is the paradigmatic passenger bac-
terium because it is rarely detected in adenoma, but it may have a relevant role at latter
stages of carcinogenesis [89]. Preclinical studies have shown that this species is capable of
activating oncogenic pathways such as MAPK and Wnt [19,90], and to impair antitumor
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immune response through the activation of NF-κB signature and the interaction with
immune-checkpoints [91–93]. Of note, its presence has been also found in synchronous or
metachronous liver metastases from CRC primary tumors harboring this bacterium [94],
suggesting that F. nucleatum could disseminate to other organs/locations via systemic
circulation, such as cancer cells. Moreover, F. nucleatum is more abundant in right-sided
tumors [95] and those with mismatch repair deficiency, indicating a potential relationship
with the mutator phenotype pathway of CRC carcinogenesis [39,40].

Beyond the oncogenic role of the abovementioned species, the CRC-associated mi-
crobiome has emerged as a potential screening tool as well as a prognostic and predictive
biomarker. The detection of a specific bacterial signature (including Peptostreptococcus
stomatis, Parvimonas spp., and Porphyromonas sp., among others) in stools may be used
for screening purposes on the basis of the results of two meta-analysis of seven and eight
datasets whose patients belonged to different geographic areas, including Europe, Asia, and
North America [96,97]. Higher levels of F. nucleatum in CRC tissue correlated with worse
disease-specific survival in the largest series with more than 10 years of follow-up [41]. The
persistence of this same species in tumor tissue after neoadjuvant chemoradiotherapy for
locally advanced rectal cancer was associated with higher relapse rates, while other studies
have shown a correlation between higher levels of the bacteria and resistance to oxaliplatin
and 5-fluorouracil in the adjuvant setting [12,42,43].

Beyond bacteria, the composition of other microbiota such as viruses, fungi, and
archaea seem to be different in CRC but their direct impact in CRC carcinogenesis or their
utility in tumor management are still unknown [46–48].

2.4. Genitourinary Cancers

Genitourinary cancers are a miscellany of tumors whose data regarding their tumor-
associated microbiome is scarcer than in other malignancies. Like stool in CRC, urine
must also be considered in the study of microbiome associated with kidney cancer and
urothelial carcinoma. In spite of the postulated sterility of urine, very preliminary data
obtained through sequencing methods suggest the presence of bacteria in the urine of
healthy individuals [98].

A few studies have shown differential urine microbiome composition in patients
with urothelial carcinoma when compared to healthy controls, mainly characterized by
an enrichment of Fusobacterium and Firmicutes and a decrease of Streptococcus RA [49,50].
However, the potential causality relationship between the bladder tissue/urine microbiome
and urothelial carcinoma—most frequent histology in bladder cancer—is yet to be eluci-
dated. The only exception is schistosomiasis as a well-established cause of the squamous
carcinoma of the bladder, but as a result of previous infection by this pathogen [99]. In
renal cell carcinoma, different taxonomic profiles consistent in higher RA of Chloroplast
and Streptophyta have been described in the tumor niche when compared to surrounding
normal tissue [51]. A prognostic role of urine/tissue microbiome has not been described,
neither in urothelial carcinoma nor in kidney cancer.

In prostate adenocarcinoma, intratumor bacteria such as Listeria monocytogenes have
been found to be inversely correlated with adverse prognostic features (Tumor-Node-
Metastasis classification, Gleason score, prostate serum antigen, levels, or androgen re-
ceptor expression) and it is hypothesized that they counteract tumor growth via local
recruitment of immune cells [53]. Moreover, some other intratumor bacteria seem to
correlate with specific genomic alterations associated with tumor progression and local
immune suppression. From a therapeutic perspective, Akkermansia muciniphila seems to be
relevant for the activity of abiraterone acetate in patients with castrate-resistant prostate
cancer. This bacterium triggers the bacterial biosynthesis of vitamin K2, which inhibits
androgen-dependent tumor growth [52].

The contribution of genital tract microbiome in the pathogenesis of female genital-
tract malignancies is also raising interest. Ovarian cancer tissue samples associate a
specific microbiome profile of fungi, viruses, parasites, and bacteria [100]. In the same
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way, endometrial cancer shows higher representation of Porphyromonas sp. and Atopobium
vaginae compared with healthy tissue [54].

2.5. Other Cancers

HPV- and EBV-related cancers: both HPV and EBV are known to initiate the onco-
genic process through viral DNA integration into the human genome and through ac-
quisition of cell survival capabilities, causing different tumors depending on the body
compartment or organ infected [64,101]. HPV is a well-established cause of oropharyn-
geal and anogenital tract squamous cell carcinomas, while EBV is directly related with
nasopharyngeal and gastric cancers as well as some types of lymphoma [60,101–103]. Be-
yond the etiopathogenic role of these agents, they also seem to impact the composition
of the tumor-associated microbiome. The group of Guerrero-Preston reported different
prevalence and RA of specific taxa between HPV-related and unrelated oropharyngeal
carcinomas [32]. Interestingly, this study also observed that the saliva of patients with
HPV-related oropharyngeal carcinomas was found to be enriched in commensal species
(Lactobacillus species) from the vaginal flora. In this regard, changes in the composition
of the vaginal microbiome have been associated with the risk and clearance of HPV in-
fection as well as with development of pre-malignant cervical lesions [59]. However, the
mechanisms involved in these correlations have not been elucidated. Beyond vaginal fluid,
stool samples from patients with localized cervical cancer showed different microbiome
composition when compared to healthy controls. This brings about the possibility of using
stools as a diagnostic tool for early-stage cervical cancer and, in fact, preliminary data have
shown good performance in differentiating healthy patients from cancer patients according
to gut microbiome profile using stool samples [104].

Data on the role of microbiome in EBV-related cancers are scarce. EBV-associated
gastric carcinomas account for nearly 10% of gastric cancers [101]. A recent study involving
a very small number of patients was able to detect differences in gut microbiome compo-
sition between EBV-related and unrelated carcinomas [61]. The gut bacterial functional
pathways using the Kyoto Encyclopedia of Genes and Genomes data and tumor expression
of immune-lipid metabolism functional proteins by immunohistochemistry (IHC) differed
in terms of EBV presence as well. A score based on these factors was found to be predictive
of outcome in this cancer [61]. Whether tumor-associated microbiome has a prognostic or
predictive role in terms of response to therapies has not yet been evaluated.

Breast ductal carcinomas have different microbiome composition when compared
to adjacent normal tissue and overlying skin within the same patient, and also when
compared to breast tissue from healthy individuals [58,105]. Interestingly, intratumor
taxonomic composition of breast cancer patients appear to differ also according to the
tumor subtype (triple-negative vs. triple-positive ductal carcinomas).

In lung cancer, many studies have consistently reported different bacterial commu-
nities in the lung tissue of patients with lung cancer when compared to healthy indi-
viduals [22,106,107]. A meta-analysis of epidemiologic studies analyzed previous lung
infections as risk factors for lung cancer. The results showed that a previous infection
by Chlamydia pneumoniae or Mycobacterium tuberculosis was associated with an increased
risk of lung cancer [55]. Although the potential mechanisms between the microbiome and
lung carcinogenesis are not well-known, it seems that the metabolites produced by certain
bacteria might be potentially oncogenic [56]. In that sense, pre-clinical in vitro and in vivo
research from Tsay et al. showed that exposure to Veillonella, Prevotella, and Streptococcus
bacteria are capable of inducing epithelial cell transformation through the activation of the
PI3K and ERK pathways [56].

3. Microbiome and Antitumor Immunity
3.1. Interplay between the Microbiome, the Immune System, and Response to Anticancer Therapies

The crosstalk between gut microbiome and the immune system is key to maintain
the intestinal homeostasis as it enables tolerance to commensal microorganisms while
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inducing inflammatory responses against invading pathogens. These gut microbiome
interactions are in fact crucial for shaping and modulating innate and adaptive immune
responses locally and also systemically, as they are responsible for the development and
maturation of myeloid and lymphoid cells [108–111]. Gut microbial communities can
balance immune responses towards an anti- or pro-inflammatory effect, depending on the
type of immune cell they affect [112]—specific bacteria and their by-products (metabolites)
have anti-inflammatory effects by inducing T regulatory cell differentiation [113–115],
while other are pro-inflammatory as they activate/stimulate dendritic cells (DC), T helper
cells, or CD8+ cells [116–120]. Multiple mechanisms orchestrate this microbiome–immune
system crosstalk [121]. For example, microbial-associated molecular patterns (MAMPs)
from gut bacteria are detected by toll-like receptors (TLR) and can directly modify the
function and maturation of innate immune cells [122]. Additionally, metabolites produced
by certain bacteria such as trimethylamine N-oxide (TMAO) [123] and butyrate [124]
can modulate innate immune cell differentiation and polarization [121]. Hence, the gut
microbiome not only contributes to the immune system development, but also balances
pro- and anti-inflammatory immune cell responses, ultimately having an effect on a variety
of diseases such as cancer, auto-immune diseases, and obesity [125].

The interplay between the gut microbiome and the immune system can also affect
antitumor immune-mediated responses (Figure 1) [109]. Accumulating data indicates that
tumor responses to chemotherapies such as gemcitabine [38] and cyclophosphamide [126]
depend on the gut microbiome. Several studies have shown a correlation between the
gut microbiome composition and diversity and the efficacy of immunotherapy in patients
with different tumor types, including melanoma, renal clear cell carcinoma, and lung
cancer [4,15,17,127–130]. Recent data from melanoma patients revealed that the adminis-
tration of stools from responders to immune checkpoint inhibitors (ICI) to non-responders
can revert the primary resistance to these agents and lead to increased tumor infiltration
by CD8 T cells [131], as previously suggested in pre-clinical studies [127]. Although fur-
ther research is warranted, these data indicate an existing link between gut microbiome
composition and tumor immune responses in cancer patients. Although the underlying
mechanisms explaining this correlation are still not fully understood, a few hypotheses
have been suggested [132,133]. One of the hypotheses is that some antigens are shared
between bacteria and tumors and thus lead to cross-reactive T cells against the tumor cells.
In this regard, recent data involving non-small cell lung cancer (NSCLC) and renal cell
carcinoma (RCC) patients showed that the expression of an enterococcal cross-reactive
antigen by tumors correlated with response to anti-PD-1 therapy [134]. Other proposed
mechanisms include T cell priming and activation mediated by dendritic cells upon pre-
sentation of microbe- and pathogen-associated molecular patterns (MAMPs and PAMPs,
respectively) present in the gut or from systemic circulation or increased pro-inflammatory
cytokines and microbial metabolites [16,133,135–138]. Zhang et al. recently demonstrated
that gut bacteria induce the expression of immunosuppressive chemokines in hepatocytes
that cause the accumulation of MDSCs, ultimately promoting the development and growth
of cholangiocarcinomas [83].

Beyond the gut, the tumor-associated microbiome might also play a role in antitumor
immune responses, although less data are available in this regard [13,38,85]. Unraveling
the exact mechanisms through which gut- and tumor-associated microbiome can mediate
antitumor immune-responses will be crucial in order to tailor microbiome manipulation to
boost antitumor responses in cancer patients.
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Figure 1. Impact of tumor-associated and gut microbiomes in cancer. (A) Carcinogenesis: intratumor bacteria and/or
viruses and their by-products can activate oncogenic pathways and promote cell growth and proliferation. (B) Antitumor
immunity: chronic inflammation caused by the local microbiome could lead to an immunosuppressive tumor microenviron-
ment through altered antigen presentation and Tregs and myeloid-derived immunosuppressive cell (MDSC) stimulation,
ultimately impairing anti-tumor immune-responses. (C) Gut–tumor immune-mediated response: gut bacteria and their
by-products can enhance CD8+ T cell-mediated antitumor responses via (1) cross-reactivity of shared bacteria and tumor
antigens recognized by T cells in the gut; (2) activation of dendritic cells, which will lead to T cell priming and expansion; (3)
local pro-inflammatory cytokines or other bacterial products entering systemic circulation along with activated T cells. (D)
Resistance to anticancer therapies: intratumoral bacteria can alter the efficacy of certain chemotherapies by altering the
metabolism or through generating resistance to radiotherapy through hypoxic mechanisms.

3.2. Modulation of Gut Microbiome to Boost Antitumor Responses

Preclinical and clinical studies strongly support the key role of the gut microbiome
in the modulation of systemic and antitumor immune responses in cancer patients [139].
However, many host intrinsic and extrinsic factors such as genetic susceptibility, dietary
habits, or concurrent medication contribute to the microbiome composition and diversity
and might ultimately affect immune-mediated antitumor responses [140,141]. For example,
antibiotics are a known cause of gut dysbiosis [4], and their use seems to detrimentally
impact on the overall survival and progression-free survival of cancer patients [142–144],
and also impair responses to ICI [145,146].

The therapeutic manipulation of the gut microbiome to increase the efficacy of anti-
cancer therapies, particularly of immunotherapy, is under evaluation, and several strategies
have been proposed including dietary modifications; the use of probiotics, prebiotics, or
selected antibiotics; and fecal microbiota transplantation (FMT) [18,147,148]. A recent
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review on this specific topic discusses the advantages and disadvantages of each of these
approaches and highlights some on-going trials [149].

Dietary changes such as including or excluding specific nutrients classes (e.g., lipids)
or diet supplementation with oral probiotics or prebiotics are capable of altering the gut
microbiome composition [150]. Probiotics are “live organisms that might confer a health
benefit to the host” while prebiotics are dietary fibers that are non-digestible by the host
but digestible by gut microbes, and as such, they can favor the colonization and expansion
of particular bacteria and their specific metabolites [151]. The combination of prebiotics
and probiotics is known as synbiotics [152]. Pre-clinical studies suggest that diet and pre-
and probiotics can enhance immune response and have antitumor properties via several
mechanisms including modulation of apoptosis and cell differentiation, production of
pro-inflammatory cytokines (IL-2, IL-12, and IFN-y), antioxidants (superoxide dismutase,
catalase, glutathione peroxidase), and anti-angiogenic factors and reduction of cancer-
specific proteins, polyamine contents, and pro carcinogenic enzymes [153,154]. However,
whether they actually may enhance antitumor responses and boost the efficacy of therapies
in cancer patients is still unknown.

Other strategies such as FMT, that is, a fecal suspension into the digestive tract, or
stool substitutes such as oral bacterial consortia (mixture of pure live cultures of bacteria,
often isolated from a stool sample of a healthy donor) are promising [155]. FMT has
been proven successful for recurrent and refractory Clostridium difficile infection and has
rapidly expanded to multiple fields of extra-gastrointestinal diseases [156,157]. Recently,
Baruch et al. performed a phase I clinical trial to assess the safety, feasibility, and immune
cell impact of FMT plus anti-P-D1 in PD-1 in refractory metastatic melanoma patients.
Interestingly, this combination appeared safe and induced radiological tumor responses
and tumor immune infiltration by CD8+T cells [131].

4. Microbiome in Oncology: Are We Ready for Prime Time?

A recent report from the International Agency for Cancer Research points out a high
degree of heterogeneity across microbiome studies in terms of method of description, tech-
niques used, taxonomic deepness, and lack of information about confounding factors [22].
There is an urge for standardization of methodology and result-reporting as well as for
bias control in microbiome-related studies. Figure 2 summarizes the current challenges of
microbiome studies in cancer.

Figure 2. Challenges of microbiome studies in cancer.

4.1. Benchmarks in Standardization of Collection and Preservation Methods

Microbiome analyses can be performed in multiple types of biological samples (e.g.,
tumor tissue, body fluids, or stools) and using different collection and preservation meth-
ods, and as such, results obtained might vary. For instance, while gut bacterial communities
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seem to have a homogeneous distribution along the colon mucosa, the overall diversity of
the microbiome differs when we use stool samples versus intestinal mucosal tissue [158].
The choice of sample type and collection and storage methods when studying tumor-
associated microbiome is highly relevant. While it might be obvious that microbiome
composition will differ between separated body compartments (e.g., oral vs urinary tract),
it is unclear whether tumor tissue or a sample from the cancer-associated compartment
(e.g., oral cancer tissue vs. saliva or CRC tissue vs. stool) would be equally representative.
Stool samples currently used for gut microbiome analysis are limited if the goal is to study
CRC-associated microbial communities [159]. In contrast, in HNC studies, microbiome
composition, and diversity appeared similar when using saliva, tumor tissue, or tumor
swab [33]. The same has been shown in patients with urothelial cancer when using urine
and tumor tissue [160]. However, more studies to further evaluate this are needed.

Sample handling and preservation methods are relevant in order to avoid bacterial
continuous growth and contamination. Several studies have analyzed the variability
and the stability of microbiome diversity and composition when using different times
and/or preservation temperatures [161]. In general, immediate sample freezing at -20ºC is
considered the best option, but this may not be always feasible. In regard to stool samples,
preservation using 95% ethanol, fecal occult blood test (FOBT), fecal immunochemical tests
(FIT) tubes, Flinders Technology Associates (FTA) cards, or RNAlater provide good stability
at room temperature up to 7 days, showing good correlation with fresh frozen samples [162].
No preservation media or 70% ethanol are not recommended. The International Human
Microbiome Standards (IHMS) consortium (http://www.microbiome-standards.org) has
published guidelines and standard operating procedures for sample collection according
to the possibility to process the samples within 4 or 24h and to the possibility to freeze the
sample and transport it frozen. If transcriptomic analyses are required, RNAlater can be
used, having been successfully used to preserve stool and saliva samples for transcriptomic
analyses, although it may impact of DNA yield [163,164].

For large-scale epidemiological studies, samples collected during CRC screening
for the fecal occult blood test have been used successfully, and no major degradation
of bacterial DNA has been observed. Validation studies have shown that the collection
kits kept at room temperature maintain stable results up to 14 days when compared to
immediately frozen samples [165].

4.2. Microbiome Analysis

Even after the microbial genetic material has been extracted, there are many tech-
nologies and techniques available for sequencing and bioinformatic analysis, each with
advantages and shortcomings (Table 2). Not only have we not reached standardization
of methodology, but the human microbiome itself still remains partially unknown, with
different levels of “dark matter” [166].

4.2.1. Sequencing Techniques

The most widely used sequencing techniques to perform microbiome analysis and
characterize community composition (taxonomic relative abundance) in human samples
are high throughput 16S ribosomal RNA gene amplicon sequencing (16S rRNAseq) and
whole shotgun metagenomics [166]. 16S rRNAseq is based on amplifying the 16S rRNA
gene of bacteria by PCR before sequencing, allowing for a cheap characterization of the
microbiome. Usually, a few variable regions of the 16S rRNA gene are sequenced (V3–V4),
providing a resolution limited to the genus level [167]. The 16S rRNA can also be sequenced
with long reads, expanding the whole gene, providing higher resolution [168]. Whole
shotgun metagenomics, on the other hand, is based on sequencing the whole DNA present
in samples and allows for the identification of species and genes of all microorganisms, not
only of bacteria, provided that sequencing depth is adequate. In the case of 16S sequencing,
the PCR amplification step guarantees that only microbial DNA will be sequenced. This

http://www.microbiome-standards.org
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is not the case for shotgun sequencing, where the DNA samples need to be enriched for
microbial DNA beforehand.

Table 2. Methodology for microbiome analysis: problems and solutions.

Type Technique Problem Solution/Alternative

Sequencing technique 16S rRNA-seq Low taxonomic resolution
Limited functional analysis

Full-length 16S sequencing,
shotgun sequencing

Whole shotgun sequencing
More expensive

Human DNA also gets
sequenced

Sequencing at low coverage
Adequate source material,
enrichment of microbial

material before sequencing

Long read sequencing Sequencing errors are difficult
to detect

Combining long read
sequencing with short read

shotgun

16S bioinformatics OTU-based methods Loss of information in
clustering ASV-based methods

ASV-based methods Reliance on the algorithm to
detect sequencing errors

Shotgun bioinformatics Taxonomic profiling Reliance on incomplete
databases

New assemblies will provide
more complete databases

Functional profiling
Reliance on incomplete
databases, proteins of

unknown function

Further characterization of
microbial proteins is still

needed

De novo assembly
Incomplete assemblies,

chimeric genomes, strain
heterogeneity

Strict quality control
Long-read sequencing will
provide better assemblies

Biostatistics Traditional statistics Datasets are compositional

Compositional methods,
estimation of total microbial

presence to avoid
compositionality

Compositional analysis Presence of zeroes
Difficult to interpret Zero-replacement

Spatial in situ resolution RNA in situ hybridization Low-throughput (only 2-3
bacterium can be detected)

Use it when information about
spatial resolution is needed

4.2.2. Bioinformatic Analysis

Bioinformatics analysis of 16S samples has traditionally relied on clustering similar
sequencing reads up to a level of similarity (normally, 97%) into operational taxonomic
units (OTUs). This clustering removes sequencing errors, but this also implies a loss of
information. Alternatively, novel approaches attempt to retain all amplicon sequence
variants (ASV). As opposed to clustering reads, they attempt to algorithmically distinguish
sequencing errors from biological variation [169,170]. QIIME2 is a bioinformatics toolkit
that provides frameworks for integrating all steps of 16S analysis [171].

In the case of shotgun metagenomics, many analysis lines are available. On one
hand, read-based classification algorithms aim to provide a taxonomic assignment to
each sequencing read. Taxonomic profiles allow us to analyze which microorganisms
are present in biological samples, qualitatively and/or quantitatively. Different software
implementations are available for this task [172]. Reads can also be classified by functional
potential as opposed to taxonomy. These algorithms classify reads into gene families, which
can provide different insights (identification of toxicity genes, reconstruction of pathways,
etc.). In both cases, what can be detectable is limited to what is present in the databases
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that are used. Lastly, shotgun metagenomics reads can be used to reconstruct the original
genomes (de novo assembly). This approach does not rely on any database, and thus it
can be used to discover new genomes. For a review of bioinformatics methodology for
shotgun metagenomics, please see the study by Breitwieser et al. [173].

4.2.3. Statistics for Microbiome Analysis

Calculation of diversity metrics is common when analyzing taxonomic profiles. Diver-
sity measures (Shannon, Simpson indices) are used to query the within-sample diversity
or diversity, while β diversity metrics (Bray–Curtis, UniFrac) are used to investigate
between-sample diversity. Besides diversity analyses, common statistics may be used
to find statistically significant differences between groups. However, it is important to
note that sequencing-derived microbiome datasets are compositional, that is, they do not
provide absolute descriptions of the microbiome, but are relative to the whole microbiome
present in each sample, requiring specific statistical methodology [174]. This complicates
the interpretation of results and arises the possibility of spurious associations unless specific
methodology is used. Alternatively, quantification of the total microbial load completely
avoids the problem of compositionality and has been shown to provide more insights [175].

4.2.4. Spatial In Situ Resolution

Although metagenomic and metatranscriptomic analyses have revolutionized the
study of microbial communities, they have the main drawback of not providing spatial
information on how these communities are distributed in the sample, thus preventing
a full understanding of how the bacteria interact with each other or with the microen-
vironment [176,177]. Fluorescence in situ hybridization (FISH) targeting the rRNA can
identify almost any microbe in a given tissue sample [178]. Fluorescence spectral imaging
allows for the differentiation of many fluorophores identifying all members of a com-
plex microbial community, thus offering a systems-level view of the spatial structure of
the microbiome [179]. Because of technical limitations, rRNA FISH can only be used to
differentiate only two or three microbial types simultaneously.

RNAscope is a recently developed RNA in situ hybridization technology that allows
for direct visualization of RNA in formalin-fixed, paraffin-embedded (FFPE) tissue, en-
abling sensitive and specific spatial analysis of all RNA molecules present in a sample
simultaneously [180]. In a study conducted by Serna et al., RNAscope technology was
used to visualize F. nucleatum in rectal cancer tissue and to evaluate how this species [42]
interacts with host cells within the tumor microenvironment. An automated version of
the RNA in situ hybridization assay was originally developed for bacteria visualization in
matched primary and metastatic CRC-intact FFPE tissues [94].

4.2.5. Pre-Clinical Tools to Study Microbiome in Cancer

In vivo models are needed to understand the mechanisms through which some mi-
crobial communities or specific single microorganisms drive tumorigenesis [181]. Murine
models provide excellent tools to study microbiota-associated human diseases [182]. Two
main methods have emerged to explore the effects of the microbiota on physiology and
disease in mice: germ-free models, which can be used for studying the functional properties
of microbiome, and broad-spectrum antibiotic-treated models, which are used to study the
cause–effect relationship between dysbiosis and resistance to therapies.

Beyond in vivo studies, in vitro models are also required to study the complexity
of microbial interactions as they have the advantage of not being influenced by factors
such as age, sex, diet, geography, genetic background, and antibiotic use, which may
lead to bias in human and animal models [183]. Examples of in vitro models include
organoids cultures and bioreactor system. The organoids are a three-dimensional culture
of tissue that represent an excellent system for studying how microbiota induces and
promotes cancer growth [184]. These technologies can be used to investigate the impact of
dysbiosis on tumorigenesis and to find therapeutic strategies to modulate the microbiome
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to improve treatment efficacy [185]. For instance, the use of organoids in a study evaluating
the role of Helicobacter pylori in gastric carcinogenesis was able to demonstrate how this
species promoted cell proliferation and activation of the c-Met oncogene through NF-κB
signaling [186].

Another in vitro model is the Bioreactor system, which allows for the study of complex
gut microbial ecosystems in a controlled environment [187]. The “Robogut” bioreactor has
been established in the Allen-Vercoe laboratory to culture gut microbial ecosystems in vitro
under physiologically relevant conditions [188]. The laboratory uses the bioreactors as a
model of the colonic microbiota in determining the effectiveness of antibiotic pretreatment
in ulcerative colitis caused by Clostridioides [189]. The goal of this technology is to culture
novel and highly fastidious species that cannot be cultured using conventional methods of
cell culture in static dishes [190].

4.3. Challenges in Microbiome Studies in Cancer: Controlling for Bias

Observational studies of the intra-tumoral microbiome can be broadly grouped into (1)
those with the goal of evaluating tissue microbiome composition in relation to prognostic
events (treatment response/resistance, tumor recurrence, and tumor-related mortality) in
patients with cancer or precursor lesions (case-only studies), and (2) those with the goal
of comparing tissue microbiome composition between patients with cancer (or precursor
lesions) and individuals free of cancer (case–control studies). A key component of group 1
studies is the evaluation of prognostic events over time. As in all clinical or epidemiological
studies of the microbiome, other sources of microbiome variation need to be accounted
for in the statistical analysis if they act as confounders or modifiers of the association
between microbiome composition and prognostic events. Depending upon the tumor type,
these could include clinical features of the diagnosed tumors (e.g., diagnostic method and
stage, previous surgeries, familial gene mutations, other genetic variants, and diagnostic
or prognostic biomarker levels), recent usage of pharmaceutical drugs (e.g., antibiotics,
proton-pump inhibitors, metformin, and non-steroidal anti-inflammatories), demographic
factors (e.g., place of residence, age, sex, and race/ethnicity), and lifestyle factors (e.g., diet
or nutritional status at diagnosis, body weight, tobacco smoking, and alcohol consumption).
Measurement errors in assessing lifestyle factors, especially dietary intake, must be carefully
considered when planning a study. Nutritional status at diagnosis or surgery could be an
alternative if an accurate dietary assessment by questionnaire is not available or feasible.
Ideally, tissue specimens for microbiome analysis should be collected before therapeutic
interventions, but this may not be possible if neoadjuvant chemo- or radiotherapy is
indicated. In general, lifestyle and demographic factors have not shown strong associations
with microbiome composition in terms of stool samples, but it should be noted that
these associations remain largely unexplored in studies of tissue-specific or organ-specific
microbiomes [191].

In group 2 studies, tissue microbiome composition is compared between cancer
patients and cancer-free individuals—these are essentially case–control studies; moreover,
in the absence of major biases due to study execution including recruitment strategy,
microbiome analysis process, or differential errors in the measurement of epidemiologic
variables, such studies would have the intention to evaluate tissue microbiome composition
as a potential risk factor for the development of cancer [192]. In such studies, tissue samples
collected for microbiome assessment are usually measured at, or shortly after, the date of
diagnosis, and this fact is a major weakness of this study design since observed associations
may not be causal. Further, depending upon the tumor site, the acquisition of normal
tissues from cancer-free individuals from the same base population as the cases could
range from moderately challenging to impossible. Normal colonic mucosal tissue from
individuals free of cancer can be relatively easily obtained in studies using tissue collection
via colonoscopy. Studies that utilize normal tissue obtained from national tissue banks or
local tissue donor programs might be useful in giving a general overview of microbiome
composition in individuals free of cancer, but caution should be exercised when interpreting
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differences with tumor tissues since tissue-bank or donor normal tissues may differ in
other important ways such as age, overall health status, and other variables. The study
of case–control differences in oral or gut microbiome composition from saliva or stool
samples as proxies for tissue microbiomes or as risk factors themselves (e.g., via systemic
effects on inflammation) has been considered in the majority of epidemiological studies of
microbiome composition as a potential risk factor for cancer [22].

It is important to note that in the absence of a truly prospective cohort study in
which biological samples for microbiome composition are collected before disease onset,
microbiome-disease association signals observed in retrospective case–control studies may
or may not be causal. Replication of observed association signals in additional case–control
studies from similar and different populations is therefore necessary, as well as deeper
mechanistic investigation through in vivo studies, for instance [191].

5. Future Directions

The study of microbiome as a new hallmark of cancer is just getting started. In
this past year, 2048 publications related to “microbiome AND cancer” were indexed
in PubMed, nearly 2000 more than 10 years ago. Whether understanding the tumor-
associated microbiome will lead to a better comprehension of the pathogenesis of disease
and corresponding molecular traits and will ultimately become a clinically useful biomarker
tool for cancer prevention, diagnosis, and treatment is yet to be fully established, although
evidence for this is beginning to accumulate. Examples of that are the microbiome-based
screening tests for early detection of CRC, or the encouraging results of a phase I trial using
FMT to boost ICI responses in refractory melanoma patients [131,193].

Despite the amount of knowledge being gathered, there are still some caveats that
should be addressed. One of the most urgent is the standardization of microbiome method-
ology from sample collection to bioinformatic analysis in order to improve comparabil-
ity/interpretation of results across studies [194]. Initiatives such as The Microbiome Quality
Control (MBQC) project are already working to overcome this challenge. Special focus
should be put on unveiling mechanistic processes to better define the link between micro-
biome (tumor-associated or from compartments distant from tumor-hosted organ) and
carcinogenesis. More preclinical and clinical studies are needed to evaluate not only the
community composition but also associated functional and multi-omic analyses. The Hu-
man Microbiome Project Consortium found shared metabolic pathways between healthy
individuals despite having different microbiome taxa composition, which could also be
the case in cancer patients [195]. Overall, there is a lack of longitudinal studies assessing
the potential evolution of the microbiomes relevant for cancer. Both the microbiome and
tumorigenesis are dynamic “systems”. Although viral and bacterial genomes appear to
be stable in time in healthy individuals, point mutations in some bacteria could lead to a
functional change, such as antibiotic resistance [195–198]. In addition, changes in extrinsic
factors can also cause microbiome compositional variations over time and impact the re-
sults of microbiome manipulation strategies. Currently, different therapeutic strategies are
under evaluation in clinical trials. Solving the knowledge gaps and the abovementioned
weaknesses will allow clinicians to better determine who might benefit the most from these
therapies. In fact, several questions remain to be answered regarding the use of micro-
biome therapeutics such as best approach or setting (in combination with standard chemo-,
radio-, or immunotherapy, in metastatic or adjuvant settings), potential toxicities, ethical
implications, and classification [3]. Of note, some of these therapies such as prebiotics or
probiotics are widely used in the general population without proper regulation [199].

Microbiome research in oncology is an exciting field to be explored. The creation of
collaborative multidisciplinary networks will be fundamental to augment the knowledge
and optimize resources. Continued efforts should be made to overcome the challenges and
ensure that we are ready for prime time.
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