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A B S T R A C T   

There is an increasing need of sharing harmonized data from large, cooperative studies as this is essential to 
develop new diagnostic and prognostic biomarkers. In the field of multiple sclerosis (MS), the issue has become 
of paramount importance due to the need to translate into the clinical setting some of the most recent MRI 
achievements. However, differences in MRI acquisition parameters, image analysis and data storage across sites, 
with their potential bias, represent a substantial constraint. This review focuses on the state of the art, recent 
technical advances, and desirable future developments of the harmonization of acquisition, analysis and storage 
of large-scale multicentre MRI data of MS cohorts. Huge efforts are currently being made to achieve all the 
requirements needed to provide harmonized MRI datasets in the MS field, as proper management of large im-
aging datasets is one of our greatest opportunities and challenges in the coming years. Recommendations based 
on these achievements will be provided here. Despite the advances that have been made, the complexity of these 
tasks requires further research by specialized academical centres, with dedicated technical and human resources. 
Such collective efforts involving different professional figures are of crucial importance to offer to MS patients a 
personalised management while minimizing consumption of resources.   

1. Introduction 

The increasing need of sharing data from large, cooperative studies is 
of paramount importance as this is essential to develop new diagnostic 
and prognostic biomarkers. In the field of multiple sclerosis (MS), the 

issue has become prominent due to the need to translate into the clinical 
setting some of the most important magnetic resonance imaging (MRI) 
achievements. However, the recent increase of large-scale MRI studies 
has highlighted the need to control the MR-related source of variability 
introduced by differences in scanners, acquisition protocols and image 
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analysis when combining MRI data across multiple sites (Shinohara 
et al., 2017; Biberacher et al., 2016). Such unwanted variability can 
have unpredictable effects and potentially influence the detection of 
pathological findings, leading to inconsistent results and spurious re-
lationships with clinical outcomes (Biberacher et al., 2016). Recent 
studies have tackled the challenges related to the lack of harmonization 
of MRI data from multiple sites (Dewey et al., 2019) showing that, with 
some new procedures, it can be possible to remove unwanted sources of 
scan variability while simultaneously increasing the power and repro-
ducibility of statistical analyses. However, the issue of harmonization of 
MRI data is far from being solved, with open challenges involving image 
acquisition, analysis and data storage. 

Issues with image acquisition include standardization across scan-
ners of certain characteristics (e.g., field strength, vendor, sequence 
type, coil channels, gradient distortions) and subject-related factors (e. 
g., positioning, motion, etc.). The key concept is the reproducibility of 
the MR examination, which is difficult to obtain even from the same 
vendor (Shinohara et al., 2017). Practical solutions have been proposed 
by the 2021 MAGNIMS-CMSC-NAIMS guidelines, merging recommen-
dations from the Magnetic Resonance Imaging in Multiple Sclerosis 
study group, Consortium of Multiple Sclerosis Centres, and North 
American Imaging in Multiple Sclerosis Cooperative, on the use of MRI 
in MS for clinical implementation in the diagnostic process and for 
establishing prognosis and monitoring patients (Wattjes et al., 2021a). 
While some serious attempts to standardize image acquisition protocol 
have been performed, this is much less the case for image analysis 
harmonization, which should include: i) quality assessment (QA) to 
homogeneously check the initial images, classifying or excluding sub-
optimal examinations, and fixing possible errors through a modified 
pipeline, and ii) choice of the most appropriate analysis method for a 
given task. Recommendations to improve imaging analysis of brain le-
sions and volume in longitudinal MS studies have been published by the 
MAGNIMS group (Vrenken et al., 2013), but many issues are presently 
unsolved and the harmonization of imaging analysis remains a concern. 
Finally, it is now clear that the availability of efficient data storage and 
sharing methods can have a huge impact to facilitate the management of 
large imaging datasets. 

Against this background, this review focuses on the state of the art 
and desirable future developments in the harmonization of acquisition, 
analysis, and storage of large-scale multicenter MRI data of MS cohorts. 
We will refer here to strategies aiming at reducing, after merging brain 
MRI scans from different datasets, the technical sources of variability 
due to acquisition and analysis but preserving the variability due to the 
disease-related abnormalities. To do this, we will organize this review as 
follows: first, we will describe the impact on imaging biomarkers used in 
MS of the most common sources of variability related to MRI scan 
acquisition and analysis and the possible solutions to deal with them; 
second, we will describe the latest statistical strategies to merge multi-
centre MRI data and to store and retrieve these large datasets. Third, we 
will highlight recent experiences with large multicenter MRI datasets 
with a focus on how the issue of data harmonization has been faced. 
Finally, we will describe future perspectives and provide conclusive 
recommendations. 

2. Methods 

An international workshop was held in Siena, Italy in 2019 under the 
auspices of the MAGNIMS study group, an intellectually independent 
European network of academic centers with a common interest in the 
study of MS with MRI (www.magnims.eu). The panel convened to the 
workshop was composed of experts in the use of MRI for the diagnosis 
and management of MS, and included neurologists, neuroradiologists 
and physicists from MAGNIMS institutions and one invited non- 
MAGNIMS expert. The panel met to present and discuss data from MS 
multicenter research studies (published in English) leading to advances 
in knowledge in the harmonization of MRI data. The first draft of the 

manuscript was written by the first and last authors and was based on 
contributions from each panelist. The draft was then circulated to all 
members, who iteratively modified the document until a final consensus 
was reached by all panel members. 

2.1. Harmonization of MRI biomarkers in MS 

We will tackle here issues related to the lack of harmonization of the 
MRI data from multiple sites and provide tailored solutions to reduce 
sources of variability for MS imaging biomarkers that have been 
extensively used in multicenter studies. For each MR-related biomarker, 
solutions to harmonize image acquisition and analysis will be consid-
ered. Fig. 1 shows the suitability of each MRI-derived metric towards 
harmonization, and Table 1 summarizes the main sources of variability 
in MRI acquisition and analysis and provides recommendation for their 
harmonization. 

Using the radar chart, each biomarker was ranked on 5 features that 
make it suitable to be used in multi-centers studies. The values range 
from 0 (no suitability) to 5 (excellent suitability). The scores of the 
different items were decided via consensus after being proposed by the 
first author. All co-authors agreed with the proposed scores. This 
multivariate, qualitative representation allows to compare the most 
used MRI biomarkers in MS. The chart shows that while atrophy mea-
sures (orange) and T2-Lesions (light blue) are more reliable measures in 
multi-center studies than functional connectivity related metrics 
(green), they do lack in specificity. 

2.2. White matter lesions 

The presence of T2-weighted (T2-w) hyperintense brain white matter 
(WM) lesions as detected by MRI is the hallmark of MS and play a crucial 
role in diagnosis, prognosis and treatment response of MS patients 
(Wattjes et al., 2021a). The 2017 revision of the MRI criteria for the 
diagnosis of MS recommended a strict standardization of MRI acquisi-
tion to avoid misdiagnosis (Thompson et al., 2018). Recently, the 2021 
MAGNIMS–CMSC–NAIMS consensus recommendations provided guid-
ance on how and when to use MRI for the management of patients with 
MS and suggested changes in MRI acquisition protocols to improve 
diagnostic accuracy (Wattjes et al., 2021a). 

To minimize between-site variability while maintaining maximum 
sensitivity in detecting brain WM lesions on clinical scanners, 3D T2w- 
fluid attenuated inversion recovery (FLAIR) images with spatial reso-
lution of 1 mm3 at a minimum strength of 1.5 T are recommended, as 
they lead to both improved lesion detection and realignment of 
anatomic orientation to detect new lesions in serial MRI scans (Wattjes 
et al., 2021b). Magnetic field strength also may play a role, as the visi-
bility of brain WM lesions is higher at 3 T than 1.5 T (Hagens et al., 
2019). 

For quantitative measurement of brain WM lesion volume (LV) in 
MS, early work using a semi-automated thresholding technique 
observed that, while LVs differed between fast-FLAIR, RARE (Rapid 
Acquisition with Relaxation Enhancement) and GRASE (GRadient And 
Spin Echo) sequences, repeatability was similar (Rovaris et al., 1999). 
For automated methods, while the performance on 2D FLAIR is limited, 
some methods on 3D FLAIR exhibit good performance (Egger et al., 
2017). Direct comparisons between scanners are scarce but between- 
scanner variability of LV is not as large as the variability found be-
tween different types of analysis software. However, even with harmo-
nized protocols and scanners from a single vendor, small systematic 
between-scanner LV differences remain (Shinohara et al., 2017). 

Quantitative measurement of spinal LV is under development and so 
the detection of these lesions represents the main goal. New automatic 
frameworks for segmenting the spinal cord and intramedullary MS le-
sions have been recently developed (De Leener et al., 2017; Gros et al., 
2019). The standardization of imaging protocols may potentially 
improve the performance of these tools and help the identification of 

N. De Stefano et al.                                                                                                                                                                                                                            



NeuroImage: Clinical 34 (2022) 102972

3

very small lesions while reducing the number of false positives (Cohen- 
Adad et al., 2021b; Cohen-Adad et al., 2021a). Various studies showed 
higher sensitivity to lesions for axial compared to sagittal images, 
including lesions located in the lateral columns, lesions of smaller size 
and gadolinium (Gd) enhancing lesions (Breckwoldt et al., 2017). 
Studies also showed that proton density (PD) images are sensitive 
(Karavasilis et al., 2019), making dual-echo or similar multi-contrast 
sequences the preferred imaging approach, given the technical chal-
lenges still associated with cerebrospinal fluid suppression in spinal cord 
FLAIR scans. Ideally, pooling together 3D T2w and T2* weighted axial 
images would allow a better automated MS cord lesion segmentation 
(Gros et al., 2019). 

Harmonization of the MRI acquisition 
Lesion number and volume should be assessed on images acquired on 

scanners with the same magnetic field strength (Di Perri et al., 2009; 
Stankiewicz et al., 2011). The automated detection of lesions can be 
improved by correcting for B1 inhomogeneity (Sajja et al., 2006). To our 
knowledge, no studies have been performed to assess, using the same 
MR scanner and sequence, the impact of a change in TR or TE on the 
evaluation of brain and spinal MS lesions. By contrast, for voxel di-
mensions, such a comparison was performed and suggested that lesional 
measures should be obtained from images with the same voxel di-
mensions (Molyneux et al., 1998). 

Harmonization of MRI analysis 
Manual lesion segmentation has always been considered the gold 

standard of LV measurement. However, this approach is time- 
consuming and not feasible in large MR datasets. In addition, the 
growing use of 3D FLAIR images makes this task nearly unfeasible in a 
lab setting (Filippi et al., 2019). The first step to obtain comparable 
results in LV number and estimation is to perform a careful QA to 
exclude images with low quality and artefacts. LV can be biased also by 
the intrinsic variability in MRI intensity. In a recent paper (Shinohara 
et al., 2017), where a single MS patient was scanned-rescanned (with 
replacement) seven times at seven different centers all equipped with a 
3 T scanner and performing the same MRI acquisition protocol, the 
center explained 80% of variability in manual lesion outlining. The same 

dataset was used to evaluate the improvement in manual lesion seg-
mentation when MICA (multisite image harmonization by CDF), a non- 
linear intensity transformation, was first applied to each MR image 
(Wrobel et al., 2020). This preprocessing step reduced the inter-center 
variability by one third, leading to a substantial improvement in 
lesion estimation. 

In last few years, an impressive number of new tools to automatically 
quantify lesions in MS have been based on artificial intelligence (AI) 
algorithms (Zeng et al., 2020). Deep learning (DL) based algorithms 
have shown good performance on independent datasets acquired with 
the same MR protocol. Studies showed, however, that their performance 
decreases when applied to images with features (i.e., signal to noise ratio 
[SNR], contrast to noise ratio [CNR]) different from those used in the 
training dataset (Mårtensson et al., 2020) or when simple procedures 
such as the facial features removal (FFR) (a step implemented before 
data sharing in order to protect the subject’s privacy) that could change 
the overall histogram intensity of the image are applied (de Sitter et al., 
2020). Nonetheless, using transfer learning, specific features of data 
from a new scanner can be learned to refine an existing trained network, 
which can yield good performance even when re-training based only on 
a single subject (Weeda et al., 2019a; Valverde et al., 2019). 

Recommendations 
Against this background, 3D FLAIR images with same/similar 

acquisition parameters should be used to outline lesions, after in-
homogeneity correction and intensity normalization. Isotropic 3D FLAIR 
images should be preferred to anisotropic 2D as they are more sensitive 
to lesion detection and less sensitive to artifacts. (Filippi et al., 2019). 
The criteria used to perform the QA should be provided. DL methods 
should be applied to images similar to those of the training dataset. 
These automated methods take advantage of and improve their perfor-
mance, when trained on more than one MR modality. Thus, for example, 
isotropic 3D T1-W, 3D T2-W and 3D FLAIR images could be used 
together to increase the precision of the trained algorithms. The mag-
netic field strength should be taken into account when merging lesion 
outputs from scanners with different magnetic fields. 

Fig. 1. Consensus Chart on the maturity of the main MRI biomarkers used in MS towards harmonization.  
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2.3. Atrophy 

Atrophy measurements have been extensively used in group studies 
to chart the MS disease course and to test treatment effects (Sastre- 
Garriga et al., 2020). However, brain volume measurements, both cross- 
sectional and longitudinal, can differ systematically between images 
acquired i) from scanners of different vendors (with rather poor agree-
ment) (Biberacher et al., 2016), ii) before and after scanner upgrade 
(Steenwijk et al., 2016), and iii) even from two different scanners of the 
same model in a single site (Takao et al., 2011). Moreover, changes of 
T1w sequence (i.e., from magnetization prepared-rapid gradient echo 
[MP-RAGE] to inversion recovery fast spoiled gradient recalled echo 
[IR-SPGR]) may have greater effects on brain volume measurements 
than intra-vendor scanner upgrades (Lee et al., 2019). 

Finally, the effects are not the same for all types of measurements (i. 
e., whole brain versus smaller brain structures) or analysis software 
used, as some seem to be more robust than others (Steenwijk et al., 
2017). Measurement of spinal cord volume in MS has mostly focused on 
the cervical segment, with issues similar to those of the measurement of 
brain volumes. 

Harmonization of the MRI acquisition 
Unenhanced 3D T1-weighted MRI is the reference sequence for brain 

volume quantification, although T2-FLAIR data have shown to provide 

robust and reproducible results (Goodkin et al., 2021). Specific strate-
gies can be adopted to reduce the impact of B0- and B1-inhomogeneities. 
The former can be reduced by repositioning the patient at the magnet 
isocenter (Caramanos et al., 2010) and using distortion correction 
techniques commonly implemented by scanner vendors (Jovicich et al., 
2006), including pre-computed displacement tables, phase mapping, 
and forward/reverse frequency-encoding gradients (Doran et al., 2005). 
The latter can be corrected after image acquisition by using several 
open-source online software tools (Song et al., 2017), often included in 
the analysis algorithms used for biomarker evaluation, e.g. the N3 and 
N4 methods (Sled et al., 1998; Tustison et al., 2010). In addition, the 
variability in MRI-based global and regional volume measurements can 
be reduced at the statistical analysis taking into account magnet vendor 
and magnetic field as confounding factors (Potvin et al., 2016; Battaglini 
et al., 2019). A standardized protocol should be always used in multi-
center studies, as it has been shown that the variance of brain volume 
measures increases with greater deviation from the standardized pro-
tocol in terms of repetition time, echo time and spatial resolution (Potvin 
et al., 2019). 

Atrophy of the upper cervical cord can be assessed through head 
scans rather than dedicated spinal cord scans (intra-class correlation 
coefficient [ICC] = 0.987) making reliable standardized acquisition 
more accessible (Liu et al., 2016), although correction for distortion due 

Table 1 
Sources of variability related to MRI scan acquisition and analysis and recommendation to reduce their impact for the most common imaging biomarkers used in MS.  

Biomarkers Sources of variability in MRI acquisition Sources of variability in MRI analysis Recommendations for harmonization of MRI acquisition and 
analysis 

WM lesions  • Different acquisition protocols  
• Different magnetic field strengths  
• Different scanners  
• B0 or B1 inhomogeneity  

• Inter rater variability in manual lesion 
segmentation  

• Variability in voxel intensity  
• Lack of deep learning generalizability  
• Registration pipelines (when used)  

• Standardization of imaging acquisition protocols (i.e., use of 
isotropic 3D FLAIR with spatial resolution of 1 mm3 acquired 
at minimum 1.5 Tesla)  

• Inhomogeneity and intensity normalization  
• Careful QC before the analysis  
• Use of machine learning-based algorithms on images similar to 

those of the training dataset  
• Inclusion of magnetic field strength and image characteristics 

when merging lesions outputs from different scanners 
Atrophy  • Different acquisition protocols  

• Different magnetic field strengths  
• Different scanners  
• B0 or B1 inhomogeneity  

• Presence of black holes  
• Variability in voxel intensity  
• Defacing  
• Software variability  
• Lack of automated segmentation 

generalizability  
• Registration pipelines (when used)  

• Standardization of imaging acquisition protocols and minimal 
hardware or software changes  

• Bias-field correction and intensity normalization  
• Careful QC before the analysis  
• Use of lesion-filled isotropic 3D T1-weighted images acquired 

at magnet iso-center 

MTR-derived 
metrics  

• Different acquisition protocols  
• Different magnetic field strengths  
• Different scanners  
• Strong dependency on radiofrequency 

pulse  
• Within scanner coil variability  

• Registration pipeline (when used)  • Careful QC before the analysis  
• Use of constant parameters for acquisition, same transmission 

coil and correction for B1 errors  
• Careful check of ROI identification on MTR images registered 

from T1-weighted images 

DTI-derived 
metrics  

• Differences in vendors and magnetic 
field strengths  

• Different protocols (with B0 
susceptibility distortions, number of 
diffusion gradients)  

• Eddy current distortions, Gibbs ringing 
artefacts, table vibration  

• Software variability  • MRI acquisition with same magnetic field strength, same 
number of diffusion gradients, using parallel imaging and 
opposite phase-encoding directions  

• Same voxel size, B0 volumes, TE and TR  
• Careful QC before the analysis  
• Use of software tools to reduce the effects of table vibration  
• Denoising  
• Identical software setting for pre and post processing 

(correction for eddy currents, motion, and B0 and B1- 
inhomogeneity) 

Functional MRI- 
derived metrics  

• Different acquisition protocols  
• Different magnetic field strengths  
• Different scanners  
• B0 susceptibility distortions and B1 

inhomogeneity  
• Eye movements artefacts, physiological 

noise artefacts, head motion  

• Different preprocessing pipelines (head 
motion and physiological noise correction) 
and software  

• Method to quantify fMRI activation or 
functional connectivity  

• MRI acquisition with same magnetic field strength, using 
opposite phase-encoding directions and same MRI protocol  

• Same temporal signal-to-fluctuation-noise-ratio across 
scanners  

• Careful QC before the analysis  
• EPI alignment and ICA analysis to correct for head motion  
• Scan to be performed with closed eyes to avoid/reduce eye 

movement artefacts.  
• Identical software setting for pre and post processing (motion, 

physiological noise correction and B0/B1-inhomogeneity) 

Abbreviations: MR: Magnetic resonance; DL: Deep learning; QC: Quality Control; MTR: Magnetization Transfer Ratio; GM: Grey Matter; WM: White Matter; ROI: Region 
of Interest; TE: Echo Time; TR: Repetition Time; ICA: Independent Component Analysis; EPI: Echo planar imaging. 
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to gradient nonlinearity is needed (Papinutto et al., 2018). Systematic 
between-scanner differences in mean upper cervical cord area (MUCCA) 
have been reported for patients scanned on multiple scanners as well as 
for multi-site travelling volunteers (Weeda et al., 2019b; Lukas et al., 
2021). Within-subject identical scanning protocol is mandatory to have 
reliable quantification of longitudinal spinal cord atrophy (Weeda et al., 
2019b; Papinutto and Henry, 2019). 

Harmonization of MRI analysis 
The first preliminary step to obtain comparable results in brain 

volume assessment is to perform a careful QC to exclude images with a 
suboptimal quality. Strategies of voxel intensity normalization can 
reduce atrophy measurement error (Wrobel et al., 2020; Battaglini et al., 
2018). DeepHarmony, a method of DL architecture aiming at creating 
intensity transformation maps to equalize images from two different MR 
scanners (Dewey et al., 2019); showed a significant decrease in the brain 
volume measurement error on a dataset of 12 subjects scanned at two 
different MR centers. To face the global intensity changes due to the 
pathological features such as the presence of T1-weighted hypointense 
lesions, a number of methods include the “filling” of WM lesions before 
image segmentation (Nakamura and Fisher, 2009; Sdika and Pelletier, 
2009; Battaglini et al., 2012), with a great reduction of the measurement 
error. The defacing step showed a significant systematic increase in the 
variability of brain volume measurement with over- or underestimation 
depending on the software used (de Sitter et al., 2020). 

Over the last decade, various studies assessing the variability in brain 
volume measurements (Sastre-Garriga et al., 2020) showed that 
different software tools have a weak ICC (Guizard et al., 2015; Popescu 
et al., 2016; Battaglini et al., 2009). Most of these tools showed 
increased variability when applied to MR images of the same subject 
that were acquired with different scans and/or vendors, in comparison 
with those acquired with the same MRI equipment (Storelli et al., 2018). 
Several studies have tried to optimize the software setting options in 
order to minimize the technical variability (Popescu et al., 2012; Lut-
kenhoff et al., 2014). More recently, several studies investigated the 
performance of DL architectures trained on binarized segmented GM 
regions obtained by specific software packages (Gabr et al., 2020; 
McKinley et al., 2021) and therefore referred to here as “silver stan-
dard”, as opposed to the “gold standard” that is represented by the 
binarised GM map manually segmented. Results showed comparable 
accuracy between the images used for training and those used for the 
evaluation, also when a small sample size (e.g., 10–20 subjects) was used 
for training the DL architecture (Narayana et al., 2020). Although 
promising, these results need confirmation when the training dataset is 
acquired with a different protocol compared to the evaluation dataset. 

Semiautomated software packages have been developed to assess 
spinal cord atrophy both cross-sectionally (De Leener et al., 2017; 
Horsfield et al., 2010), measuring the spinal cord cross-sectional area 
(CSA), and longitudinally, measuring the generalized boundary shift 
integral (GBSI) (Prados et al., 2020). 

Recommendations 
In general, the method of choice for quantification of brain and 

spinal cord volume remains the consistent use of the most appropriate 
MR sequence for the type of software package that is going to be used (e. 
g., unenhanced 3D gradient-echo T1-weighted), with the identical 
scanning protocol and as little hardware or software change as possible. 
When dealing with 2D acquisitions, almost all methods reformat input 
scans to 1 mm isotropic resolution to improve measurement precision 
(Amann et al., 2015). Hence, a direct acquisition of isotropic 3D T1- 
weighted images is preferable as it is less distorted by blurring due to 
interpolation. Thus, we recommend that brain volume measurement 
should be assessed on lesion-filled 3D T1-weighted images of patients 
placed at magnet iso-center, bias-field corrected, and intensity normal-
ized. The analysis pipeline should be clearly detailed as well as the 
criteria used to perform the QC. 

DL methods are promising but need to be applied to images similar to 
those used for the training, where the output “to be learnt” has been 

obtained using the same software. 
Spinal cord sequences should be acquired according to the selected 

software for the quantification of volume. As for brain atrophy, strictly 
harmonized protocols should be used. 

2.4. Microstructural biomarkers 

Using computational models of biophysical properties of tissues, it is 
possible to derive metrics sensitive to microstructural integrity and 
metabolic information of the underlying tissue (Granziera et al., 2021). 
Ultimately, the aim would be to provide patient-specific metrics able to 
predict outcomes and contribute to decision making on disease man-
agement (Granziera et al., 2021). 

To improve the reliability of microstructural biomarkers (e.g., using 
magnetization transfer ratio [MTR], myelin water imaging [MWI]), 
inter- and intra- intensity image harmonization is required to increase 
the sensitivity to disease-related effects and to better assess longitudinal 
changes. For specificity to biophysical properties, which allows to un-
derstand mechanisms of disease progression and treatment response, 
harmonization is needed to evaluate the tissue integrity (e.g. neurite 
density index, bound pool fraction). 

Despite their potential value, non-conventional MRI metrics are still 
dependent on acquisition parameters, which are heavily influenced by 
coil geometry, gradient systems and magnetic field strengths. This, 
together with the restricted availability of some non-conventional MRI 
sequences, has limited the use of some promising metrics (e.g., MWI) in 
multicenter studies and is important to consider in other, more widely 
used measures (e.g., MTR, diffusion metrics), which will be discussed 
here. 

Microstructural damage assessment using MTR 
Magnetization transfer (MT) images are obtained by the normalized 

difference between two images with and without MT pulse. They 
showed sensitivity to the inherent relaxation properties of heteroge-
neous tissues (Ropele et al., 2005). MTR is a semi-quantitative metric 
obtained by the two-pool model (restricted protons of macromolecules 
and free protons of bulk water), predominantly sensitive to myelin 
content, but also influenced by axonal loss and inflammation. MTR can 
be measured on multi-vendor MRI images using a standardized acqui-
sition protocol (Barker et al., 2005) and has been used as outcome 
measure in clinical trials in relapsing-remitting (RR) and progressive MS 
(Romme Christensen et al., 2014; Miller et al., 2015). Advances of 
modelling of the MT effect led to the development of multi-modal 
acquisition protocols such as the multi-parametric mapping, which al-
lows to quantify several parameters sensitive to tissue microstructural 
changes (MT saturation, apparent proton density, relaxation times). 
These parameters have been shown to be comparable, at least between 
scanners of the same vendor (Weiskopf et al., 2013). 

Harmonization of the MRI acquisition 
Due to dependencies on the MT weighting radiofrequency pulse, 

harmonizing this protocol is challenging, although recent developments 
in acquisition and scanner parameters (i.e. use of different resolutions 
and selective pulses for saturation) attempted to reduce confounding 
factors, thus improving MT feasibility (Zhang et al., 2019). Indeed, i) MT 
images from scanners with the same strength of magnet could be merged 
if they are equipped with the same transmission coil (Tofts et al., 2006); 
ii) impact of B1-inhomogeneity could be corrected by computing the 
linear regression between the B1 errors and MTR values (Ropele et al., 
2005); iii) acquisition parameters should be kept constant, as variability 
in the MTR measurement can be up to 15% when subjects are acquired 
on the same scanner but with different MR protocols (Sormani et al., 
2000). 

Harmonization of MRI analysis 
Features of MTR intensity histograms (Tortorella et al., 2000; Fer-

nando et al., 2005) and averaged MTR values (De Stefano et al., 2006) of 
the whole brain, GM, WM and lesions are the most widely used measures 
obtained from the MT images. There are currently no open-source 
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software tools able to automatically assess MTR values from specific 
ROIs. However, this should not represent a major limitation for MTR 
measurement, once registration and segmentation steps are fine-tuned 
on MR images of each center and visually checked. 

Recommendations 
MT images need to be acquired with the same transmission coil and 

corrected for B1 errors. The same acquisition protocol needs to be used. 
To obtain a precise assessment of average MTR values within the ROIs, 
registration needs to be carefully checked to avoid the inclusion of 
inappropriate voxels. 

Microstructural damage assessment using Diffusion Tensor Imaging (DTI) 
Information on microstructural integrity can also be assessed using 

diffusion weighted imaging (DWI) with a minimum of 6 gradient di-
rections, through either model-free approaches or computational 
modelling of DWI signal (Cercignani and Gandini Wheeler-Kingshott, 
2019). The most simplistic model is diffusion tensor imaging (DTI), 
which reduces the complex motion of water molecules within a tissue to 
three eigenvectors and corresponding eigenvalues. DTI provides metrics 
such as fractional anisotropy (FA), mean diffusivity (MD) and axial and 
radial diffusivity that are rotationally invariant, within the subject’s 
frame of reference and heavily influenced by the underlying tissue 
microstructure that poses hindrance or restriction to free motion of 
water. 

Recent studies reported that DTI can be highly reproducible and 
standardized at brain (Palacios et al., 2017) and spinal cord (Samson 
et al., 2016) levels. However, DTI metrics are non-specific since they are 
highly sensitive to microstructural alterations and higher order models 
are required to disentangle the source of signal anisotropy. Moreover, 
the time-dependence of the diffusion signal, that is how the signal 
changes by increasing the observational diffusion time, depends on the 
size of the underlying axons. This has been extensively studied in the 
brain (De Santis et al., 2016) and is particularly important for imaging 
the spinal cord, which has larger axons than brain and where, with a 
short diffusion time, a high number of large axons may not contribute to 
the signal (Grussu et al., 2019). To overcome these limitations, advanced 
DWI approaches have been developed (Assaf et al., 2004). However, 
although more specific to tissue microstructure, further studies are 
needed to prove the translation of these multiple-scale approaches into 
clinical practice. (Cercignani and Gandini Wheeler-Kingshott, 2019). 

Harmonization of MRI acquisition and data-preprocessing 
When applying a standardized MRI protocol across different centers, 

averaged FA and MD measures from large homogeneous ROIs (e.g., the 
mid-sagittal section of the corpus callosum) can be merged. On the other 
hand, differences in vendors, magnetic field strength and number of 
diffusion gradients should be statistically taken into account when 
measures from smaller ROIs are obtained, in order to reduce the intra- 
scanner and intra-protocol sources of variability (Pagani et al., 2010). 
B0 susceptibility-induced distortions can be corrected using parallel 
imaging and acquiring MRI data with opposite phase-encoding di-
rections. Susceptibility induced distortions can influence both intra- and 
inter-subject reproducibility (Ganzetti et al., 2016), but its effect can be 
reduced using the DTI-specific software (e.g., FSL topup (Andersson 
et al., 2003). Finally, specific DTI related sources of variability such as 
the eddy-current distortions, the Gibbs ringing artefacts (Perrone et al., 
2015) and those related to table vibration during the acquisition (Gal-
lichan et al., 2009) can be controlled by specific software tools (Max-
imov et al., 2019). Same voxel size, b = 0 (i.e., no -diffusion weighting) 
volumes, echo time and repetition time should be implemented across 
centers, to reduce the difference in SNR measure and harmonize the 
overall quality of the images (Laganà et al., 2010). 

Harmonization of MRI analysis 
Several software tools are able to derive FA and MD images from DTI 

data (Soares et al., 2013; Tournier et al., 2019). A comparison among 
four of them on the reconstruction of the main WM tracts showed poor 
between-software agreement for FA, axial and radial diffusivity (Chris-
tidi et al., 2016). 

Recently, various studies in the DTI field have applied DL techniques 
in order to reduce the scan time (Tian et al., 2020), reliably recon-
structing WM tracts (Li et al., 2020) and characterizing pathological 
conditions (Marzban et al., 2020). Although promising, such techniques 
need a further extensive validation. A few studies applied AI methods to 
DTI data, with the aim to characterize different stages of MS (Marzullo 
et al., 2019; Oladosu et al., 2021; Kontopodis et al., 2021). 

Recommendations 
Analysis from multicentre DTI can be more precise if images are 

acquired on MR scanners with the same magnetic field strength, number 
of gradients and opposite phase-encoding directions. Then, both pre- 
processing (i.e., correction for eddy currents, motion, B0- and B1- 
inhomogeneity) and post-processing software tools should be used 
with identical and well documented analysis algorithms. 

2.5. Functional biomarkers 

An important remark should be made on functional MRI (fMRI) and 
functional connectivity (FC). From a set of T2*-weighted EPI volumes it 
is possible to model the local tissue changes in the concentration of 
oxyhaemoglobin, which is diamagnetic, compared to deoxy-
haemoglobin, which is paramagnetic. Such changes are also linked to 
the baseline neuronal activity at rest, thus leading to a remarkable in-
crease in research studies of resting state fMRI (rs-fMRI) in MS. It is well 
known that low frequency signal fluctuations of regions belonging to 
networks supporting specific functions are synchronized, with altered 
FC strength occurring in pathologic conditions (Castellazzi et al., 2018). 
Harmonization of rs-fMRI acquisition should aim to strengthen the sta-
tistical inference of FC metrics and potentially propose an approach 
based on the single-subject comparison to healthy population. It is 
important that rs-fMRI acquisition protocols across scanners have the 
same sensitivity, which can be measured with parameters such as the 
temporal signal-to-fluctuation-noise-ratio (SFNR) (Glover et al., 2012). 

Harmonization of the rs-fMRI acquisition 
3 T scanners showed significantly higher reproducibility in blood- 

oxygenation level dependent (BOLD) signal than 1.5 T scanners (Zou 
et al., 2005; Badhwar et al., 2020). B0-susceptibility induced distortion 
can be reduced with the use of parallel imaging and the acquisition of 
data with opposite phase encoding directions (Andersson et al., 2003). 
Sophisticated strategies have been recently introduced to reduce the 
impact of B1-inhomogeneity through the creation of B1 maps by 
modelling the B1- receive and B1 + transmit fields (Glasser et al., 2013). 
Head motion is usually corrected by aligning EPI images (Graedel et al., 
2017), and the impact of patient movements can be further reduced by 
applying independent component analysis (ICA)-based method (Pruim 
et al., 2015); eye movement artefacts can be reduced by asking the 
subject to keep the eyes closed during the acquisition or to fix on a point 
(Costumero et al., 2020); physiological noise can be reduced by 
recording electrocardiogram (ECG) signal and regressing it out in the 
statistical analysis (Glover et al., 2000); ICA-based methods can be a 
good alternative when ECG recording is not available (Behzadi et al., 
2007). A short repetition time (e.g., 1,5 s or less) can provide a reliable 
rs-fMRI sequence to be potentially used in the clinical studies (Jahanian 
et al., 2019), by reducing the impact of eye motion and physiological 
noise compared with longer (i.e., >2 s) EPI sequences (Yang et al., 
2007). However, this requires the availability of efficient simultaneous 
multi-slice acquisition techniques on the scanner. The echo time selec-
tion is important for distinguishing between intra- and extra-vascular 
BOLD contributions (Ragot and Chen, 2019). Finally, larger voxel 
sizes can potentially increase SNR (Bennett and Miller, 2010). 

Harmonization of rs-fMRI analysis 
In general, rs-fMRI analysis methods can be divided into two groups: 

model-dependent, such as seed-based methods (Andrews-Hanna et al., 
2007), and model-free methods, including principal component analysis 
(PCA) (Friston et al., 1993), singular value decomposition (SVD) 
(Worsley et al., 2005) and ICA (Beckmann et al., 2005). In a recent study 
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(Botvinik-Nezer et al., 2020), 108 datasets with the same task (cogni-
tive)-fMRI were independently analyzed by 70 teams over the world, 
and no two of them chose identical workflows for data analysis. 
Different sources of variability were identified, from the smoothing level 
(the higher the spatial smoothing, the larger the activated region) to the 
head-motion correction procedures and the software package used. 
Overall, this study showed that “analytical choices have a major effect 
on reported results”. 

Although AI methods have extensively been applied to extract sig-
nificant features for disease classification (Wen et al., 2018), they need 
yet to be extensively validated on external datasets to prove reliability 
and robustness. 

Recommendations 
The most useful recommendation to date is that a harmonized 

dataset should be acquired on scanners with the same magnetic field 
strength, using opposite phase-encoding directions and the same MRI 
protocol. Both pre-processing (i.e., correction for head- cardiac- and 
eyes-related motion artefacts, correction for eddy currents, B0- and B1- 
inhomogeneity) and post-processing analysis software tools should use 
an identical and well documented pipeline. 

2.6. Mega and Meta-analysis 

Two distinct strategies can be followed to statistically analyze MRI 
data from multicenter studies, named mega- and meta-analysis. In the 
former, raw/individual data are pooled and analyzed centrally. In the 
latter, data of each center are locally analyzed and only the summary 
statistics from all centers are brought together, after weighting the role 
of each center-specific statistic. Both procedures must indicate the 
criteria followed to perform the QA of the images before the analysis, in 
order to avoid bias. This is particularly important when, as in the meta- 
analysis procedure, data can be collected retrospectively, with the risk of 
merging MR images with substantial differences in quality. 

An example of mega-analysis is the creation of normative data for 
biomarkers such as atrophy rate (Battaglini et al., 2019) and volume of 
deep GM structures (Potvin et al., 2016), where a single regression is 
performed on the pooled MRI data. In these cases, statistical analysis 
acts as a harmonization procedure per se considering, for example, 
different vendors or magnetic field strength as confounding variables. 
However, statistical procedures, such as regressions, can be performed 
also in the context of data harmonization at voxel-level, for modelling 
and subsequently removing the local unwanted inter-site variability. A 
notable example is ComBat (Fortin et al., 2016; Fortin et al., 2018), a 
batch-effect correction tool used in genomics and recently implemented 
for multi-center MRI data analysis. 

In performing meta-analysis, different criteria of gauging the role of 
each center-specific statistics can be employed. METAL (Willer et al., 
2010), one of the most commonly used software platforms to perform 
meta-analysis, has implemented two strategies of weighting, which are 
based on the inverse variance and the sample size. Using METAL with a 
sample size approach, recently a genome-wide association study 
(GWAS) discovered four new loci associated with hippocampal volume 
(Hibar et al., 2017). These jointed analyses, combining genomic and 
imaging biomarkers, may have a great potential implication in the MS 
field. 

Recommendations 
Mega– and meta-analyses are able to reduce the impact of the het-

erogeneity in acquisition protocols but have both pros and cons 
(Kochunov et al., 2014). On the one hand, mega-analysis, unlike meta- 
analysis, allows considering the individual variability and reducing the 
inter-center variability, even at voxel level. On the other hand, meta- 
analysis can be used to easily analyze retrospective data and without 
image data sharing, thus managing large MRI datasets without facing 
issues related to data organization and storage. Although both statistical 
approaches may be useful for merging images acquired in different 
centers with different protocols, a clear indication on the type of images 

included in the analysis remains mandatory. For example, if datasets of 
both 3D and 2D-T1W are merged for atrophy studies a reliability anal-
ysis must be performed (Eshaghi et al., 2021). 

3. Image and analysis pipeline transfer and storage 

Over the past few years, we moved from small studies with hundreds 
of subjects acquired cross-sectionally, to large multi-modal studies with 
thousands of subjects and several time points. Collaboration has 
increased among centers and consequently the need to merge different 
studies and manage large MRI datasets. This new scenario highlighted 
the key role of efficient data storage, managing and sharing, which can 
positively impact research results, ease longitudinal studies, facilitate 
data transfer, allow multiple users to work on the same dataset, optimize 
computational resources and, ultimately, reduce costs. Recently, Dojat 
et. al presented a comprehensive work analyzing different software and 
hardware infrastructures for image transfer and storage (Dojat et al., 
2017). All these features are essential in medical image-based research 
in the big data era where there is an increasing demand to keep track of 
the projects to avoid starting from scratch every time that new people 
start working on the data. In this context, tools such as XNAT (eXtensible 
Neuroimaging Archive Toolkit) (Marcus et al., 2007) are platforms that 
support medical image-based research data handling by efficiently 
managing clinical and non-clinical data for multi-center studies or data 
sharing. 

Sometimes, however, it might not be possible to install the infra-
structure to adopt a data management platform. Despite this, a reliable 
and robust data sharing between centres is still possible using a common 
folder and data structure. In that sense, BIDS (Brain Imaging Data 
Structure) (Gorgolewski et al., 2016) has become a standard for anno-
tating and storing neuroimaging data. The majority of data management 
platforms support importing or exporting data in BIDS format and BIDS 
is becoming popular across the neuroimage community. Noteworthy, 
specific platforms such as XNAT do facilitate sharing of analysis pipe-
lines where the optimized settings for each procedure used are “frozen” 
and therefore the analysis can be easily run using an identical setting 
from MR images of different centers. 

Recommendations 
The implementation of a state-of-the-art platform that efficiently 

stores, manages and shares a large amount of medical image-based 
research data that are being acquired nowadays is an investment that 
will have a major mid- and long-term impact in daily work. The common 
and centralized data access ensures to avoid repetitions (i.e., to compute 
several times brain lesion filling and tissue segmentation), promotes 
collaborations across research groups, keeps track of all the changes and 
data manipulation, avoids data loss and helps to keep a fluent and 
consistent workflow across people and along the projects. Finally, it is 
strongly recommended to share the analysis pipeline, as it is known that 
the same dataset can provide non-comparable results if analyzed with 
the same software but with different options (Botvinik-Nezer et al., 
2020). 

4. Current experience on harmonization of big data 

4.1. Experience of ADNI and European initiatives on Alzheimer’s disease 

The Alzheimer’s disease neuroimaging initiative (ADNI) is currently 
the most successful and valuable example of a freely accessible longi-
tudinal neuroimaging resource available for the study of Alzheimer’s 
disease (AD), mild cognitive impairment (MCI), and healthy aging brain 
(Weiner et al., 2017). This public-private partnership, now at its fourth 
wave of funding, has the primary goal to test whether serial imaging 
data (MRI and positron emission tomography [PET]) can be combined 
with clinical, neuropsychological and biological markers to measure the 
progression from normal aging to AD (Weiner et al., 2017). The most 
important changes over time have been: (i) inclusion of new subjects 

N. De Stefano et al.                                                                                                                                                                                                                            



NeuroImage: Clinical 34 (2022) 102972

8

especially cognitively normal controls and patients with MCI in addition 
to previously included subjects that are still “on study” (total expected 
number >1000), (ii) regular update of available datasets (last update: 10 
February 2020), (iii) continuous effort to provide uniform neuroimaging 
protocols for reaching an improved consistency in data analysis. As-
sessments are performed 6-monthly with now many years of follow-up 
available for the original subjects. 

From the release of ADNI dataset, a large amount of studies has 
enhanced our knowledge about AD so far, ranging from machine 
learning neuroimaging studies for a correct AD/MCI classification and 
prediction of AD conversion (Dimitriadis et al., 2018) to discoveries far 
beyond imaging, such as showing the importance of genetic and bio-
logical factors for AD heterogeneity (Ramanan et al., 2021). 

In terms of infrastructure, the free access to raw DICOM images 
through the LONI website (http://adni.loni.usc.edu/) poses some chal-
lenges of use, leading to duplication of efforts and inconsistent data 
usage. However, ADNI is under constant improvement and progressively 
focusing on advanced MRI techniques and novel PET tracers. Indeed, in 
the last version (ADNI-3), the scan protocol moved to accelerated 1 mm3 

3D T1-weighted sequences, from 2D T2-weighted to 3D T2-weighted 
FLAIR sequences, a wide use of arterial spin labelling (ASL) and 
improved DTI and rs-fMRI protocols (Jack et al., 2015). 

Similar European initiatives include PharmaCog (www.alzheimer- 
europe.org/Research/PharmaCo), which has a smaller dataset of 
healthy controls and MCI patients with high quality MRI, with access 
only through the principal investigators. Using this dataset, it has been 
shown that fMRI and DTI metrics are quite reproducible across centers 
(Jovicich et al., 2016). Recently, MRI structural biomarkers have been 
identified from this cohort to improve subject selection and to be used as 
surrogate outcomes of disease progression. Among these, hippocampus 
has been confirmed to be the most sensitive region to disease progres-
sion in MCI with prodromal AD (Marizzoni et al., 2019). 

More recently, the European prevention of Alzheimer’s dementia 
(EPAD) program (www.ep-ad.org) aims to deliver a platform, adaptive, 
phase 2 proof of concept trial for the secondary prevention of AD, 
including a longitudinal cohort study (Ritchie et al., 2020). 

EPAD currently involves 21 centers across Europe, and it has 
enrolled >2000 subjects with normal cognition or MCI with yearly 
follow-up assessment including biological and cognitive markers. The 
EPAD imaging protocol includes conventional MRI sequences for all 
subjects, advanced techniques such as rsFMRI, DTI, ASL and suscepti-
bility weighted imaging (SWI), in >50% of the dataset with repeated 
measurements (ten Kate et al., 2018). A subset of subjects will also have 
amyloid-PET for a specific substudy called AMYPAD (www.amypad.eu). 
The EPAD and AMYPAD data are structured in XNAT and will be made 
publicly available in the future. 

4.2. UK Biobank experience 

UK Biobank (www.ukbiobank.ac.uk) is a large prospective cohort 
study that recruited 500,000 people aged between 40 and 69 years in 
2006–2010 from across UK. Participants underwent a range of physical 
measures, provided their details, and gave blood, urine, and saliva 
samples for future analyses. They also agreed to be followed through 
linkage to their medical records. The proposal for an imaging 
enhancement in 100,000 participants was made in 2012. Meanwhile, 
three imaging centers have been operating (Stockport, Newcastle, 
Reading) and over 50,000 participants have been scanned. Access to the 
imaging datasets is provided (since March 2020) by previous examina-
tion of the researcher and its research proposal. The simultaneous im-
aging of brain, heart, arteries, abdomen, and bone in each individual and 
the combination of these data will provide a dataset that is uniquely able 
to address questions regarding the relationships between phenotypes 
across organs and to assess pathogenic mechanisms operating at a sys-
temic level. 

To meet the temporal, financial, and geographic constraints of 

scanning 100,000 participants, the measurements are made in different 
locations equipped with two scanners each (one 3 T MAGNETOM Skyra 
and one 1.5 T MAGNETOM Aera). Scanning sites were selected to 
optimize volunteer recruitment from UK Biobank participants across the 
UK. The comprehensive brain program runs for about 30 min exclusively 
on the 3 T systems while an integrated body and cardiac program is 
executed on the 1.5 T scanners for 10 and 20 min, respectively. 

In general, MRI at UK Biobank is subject to the same considerations 
as other long-term investigations with respect to protocol design, data 
storage and QA. However, the intended number of participants requires 
specific operational decisions to provide a most consistent dataset: 18 
participants are invited to each center every day. This implies that a 
delay or scan repeat must remain confined to the corresponding 
participant and lead to a shortening of the imaging program. 

Along with the examination protocols, a QA procedure was devel-
oped with three main aspects to consider over time: status of scanners, 
actual image quality, and data completeness (Alfaro-Almagro et al., 
2018). Specific to UK Biobank in comparison to many other large-scale 
imaging studies is the use of the same type of scanner and software 
version over the complete duration of the project. Identical procedures 
and protocol settings apply at all centers. This provides the potential to 
differentiate the effect of hardware variations with a great precision and 
to study individual variations in detail. In order to further separate 
technical from individual effects, phantom scans are executed daily and 
the time characteristics of field and noise are analyzed. 

4.3. INNI experience 

Given the paramount importance of MRI to diagnose and monitor 
MS, recent collaborations promoted the acquisition of relatively stan-
dard conventional MRI protocols. Good examples are the German 
Competence Network Multiple Sclerosis (https://www.kompetenznetz- 
multiplesklerose.de), the North American Registry for Care and 
Research in Multiple Sclerosis (NARCRMS, https://www.narcrms.org/), 
the Canadian Prospective Cohort Study to Understand Progression in MS 
(CanProCo) (Dimitriadis et al., 2018) and the MS PATHS (Mowry et al., 
2020). With the exception of CanProCo, these initiatives do not include 
advanced MRI techniques, such as DTI and rs-fMRI, which are very 
useful to characterize microstructural damage and functional reorgani-
zation occurring in this condition. The Italian Neuroimaging Network 
Initiative (INNI) (www.inni-ms.org/) is one of the latest and promising 
data sharing initiatives in the field of MRI in MS. It started from four 
Italian research centers with recognized expertise in the study of neu-
roimaging in MS (Filippi et al., 2017), with the support of the Italian MS 
Society, to promote the collection of conventional and advanced struc-
tural and functional (including DTI and rs-fMRI) MRI scans as well as 
clinical and neuropsychological data in a centralized repository. MRI 
data are added from each centre both retrospectively and prospectively. 
All imaging biomarkers are analyzed using advanced procedures for 
harmonization. 

The main goals of INNI are to identify and validate novel MRI bio-
markers, which can be used as predictors and/or outcomes in future MS 
studies, and to support a standardized use of neuroimaging protocols in 
MS at national level. According to the first INNI survey in 2017, >1300 
subjects were uploaded on the online platform (Filippi et al., 2017). This 
number has progressively increased over time reaching, to date, >2500 
MS patients and healthy controls (with>4200 MRI scans, including 
longitudinal assessments). Although similar MR acquisition protocols 
were implemented by different centers and data have to fulfil minimum 
requirements to be included, a full standardization of the MRI acquisi-
tion protocols across sites was not requested, at least in the first project 
phase (Filippi et al., 2017). However, a systematic quantitative QA 
procedure, which is essential to ensure rigorous results, was recently 
implemented for all data uploaded to the INNI repository, as an initial 
pre-processing step (Storelli et al., 2019). Thus, when centers upload the 
MRI scans on the INNI platform, an image QA is performed within 
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database content to rate image artefacts, distortions and in-
homogeneities. Only scans with an adequate image quality and a certain 
degree of harmonization will be used for the INNI research projects. 

Table 2 summarizes the main problems related to harmonization and 
if they have been addressed or not addressed yet by these large MRI 
datasets. 

5. Future perspectives and conclusions 

Multicenter demographic, clinical and MRI data, ideally combined 
with blood, cerebrospinal fluid and genetic biomarkers are undoubtedly 
needed to create the required large datasets to generate models based on 
artificial intelligence, which should be able to predict disability status 
and treatment response/failure in MS patients and thus provide a 
personalized management of patients. However, one of the major 
challenges to use MRI measures with this approach is the lack of 
harmonization on acquisition parameters, post-processing analysis tools 
and storage of the huge amount of imaging data. 

Homogeneous acquisition of MR images cross-sectionally and 
longitudinally across centers is still an unsolved issue, and this article 
analyses some solutions that could minimize this problem. These solu-
tions should be, ideally, independent of MR vendor and field strength, 
and of software and hardware upgrades in order to be widely imple-
mented. There is no doubt that the first requirement is to use a core 
standardized MRI protocol that should be obtained in a reasonable 
acquisition time in both clinical and research studies. Different scientific 
organizations in Europe (MAGNIMS) and in North America (CMSC, 
NAIMS) have actively worked to provide standardized protocols that can 
be easily implemented in clinical practice (Wattjes et al., 2021a). In this 
context, the use of synthetic images (e.g., Fingerprinting (Hsieh and 
Svalbe, 2020), Synthetic MR (Gonçalves et al., 2018) could be of 
extremely high value as they can provide harmonized, co-registered and 
simultaneous measures of different contrast-weighted images (Iglesias 
et al., 2021). 

Another essential requirement is to harmonize and validate the 
different post-processing tools that will facilitate the use of MRI quan-
titative data for both clinical and research purposes. Ideally, these tools 
should be available online, open to QA, and harmonized among different 
MR vendors. Availability of post-processing validated pipeline standards 
and analysis methods for specific aspects is an unmet need, which 
clearly requires the cooperation between academic medical centers, 
biopharmaceutical and bioinformatic companies and MR vendors. This 
is undoubtedly a win-win strategy between all these partners, whose 
final goal is to use quantitative and robust data to incorporate in 
learning health system models intended to provide continual improve-
ment in patient care, particularly regarding personalized selection of 
optimal treatment initiation and sequencing. 

Finally, one recent challenge for researchers using medical imaging 
is storing, indexing, and sharing their data, which requires professionals 
with information technology skills, and experts in the complex legal 
regulations on data management transfer. The complexity of the above- 
mentioned tasks overwhelms academic researchers and requires tech-
nical and human resources that should be provided by the academical 
centers to support research efforts. Huge efforts are currently being 
undertaken in order to achieve all the requirements needed to harmo-
nize the acquisition, analysis, storage and secure transfer of imaging 
data. Proper management of large imaging datasets is one of our greatest 
opportunities and challenges in the coming years. This is particularly 
important for offering MS patients an optimal individualized manage-
ment while minimizing consumption of resources. 
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Laganà, M., Rovaris, M., Ceccarelli, A., Venturelli, C., Marini, S., Baselli, G., 2010. DTI 
Parameter Optimisation for Acquisition at 1.5T: SNR Analysis and Clinical 
Application. Computational Intelligence and Neuroscience 2010, 1–8. 

Soares, J.M., Marques, P., Alves, V., Sousa, N., 2013. A hitchhiker’s guide to diffusion 
tensor imaging. Front Neurosci 7, 31. https://doi.org/10.3389/fnins.2013.00031. 

Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., 
Christiaens, D., Jeurissen, B., Yeh, C.-H., Connelly, A., 2019. MRtrix3: A fast, flexible 
and open software framework for medical image processing and visualisation. 
Neuroimage 202, 116137. https://doi.org/10.1016/j.neuroimage.2019.116137. 

Christidi, F., Karavasilis, E., Samiotis, K., Bisdas, S., Papanikolaou, N., 2016. Fiber 
tracking: A qualitative and quantitative comparison between four different software 
tools on the reconstruction of major white matter tracts. Eur J Radiol Open 3, 
153–161. https://doi.org/10.1016/j.ejro.2016.06.002. 

Tian, Q., Bilgic, B., Fan, Q., Liao, C., Ngamsombat, C., Hu, Y., Witzel, T., Setsompop, K., 
Polimeni, J.R., Huang, S.Y., 2020. DeepDTI: High-fidelity six-direction diffusion 
tensor imaging using deep learning. Neuroimage 219, 117017. https://doi.org/ 
10.1016/j.neuroimage.2020.117017. 

Li, B.o., de Groot, M., Steketee, R.M.E., Meijboom, R., Smits, M., Vernooij, M.W., 
Ikram, M.A., Liu, J., Niessen, W.J., Bron, E.E., 2020. Neuro4Neuro: A neural network 
approach for neural tract segmentation using large-scale population-based diffusion 
imaging. Neuroimage 218, 116993. https://doi.org/10.1016/j. 
neuroimage.2020.116993. 

Marzban, E.N., Eldeib, A.M., Yassine, I.A., Kadah, Y.M., Ginsberg, S.D., 2020. 
Alzheimer’s disease diagnosis from diffusion tensor images using convolutional 
neural networks. PLoS One 15 (3), e0230409. https://doi.org/10.1371/journal. 
pone.0230409. 

Marzullo, A., Kocevar, G., Stamile, C., Durand-Dubief, F., Terracina, G., Calimeri, F., 
Sappey-Marinier, D., 2019. Classification of Multiple Sclerosis Clinical Profiles via 
Graph Convolutional Neural Networks. Front Neurosci 13. https://doi.org/10.3389/ 
fnins.2019.00594. 

Oladosu, O., Liu, W.-Q., Pike, B.G., Koch, M., Metz, L.M., Zhang, Y., 2021. Advanced 
Analysis of Diffusion Tensor Imaging Along With Machine Learning Provides New 
Sensitive Measures of Tissue Pathology and Intra-Lesion Activity in Multiple 
Sclerosis. Front Neurosci 15. https://doi.org/10.3389/fnins.2021.634063. 

Kontopodis, E., Papadaki, E., Trivzakis, E., Maris, T., Simos, P., Papadakis, G., 
Tsatsakis, A., Spandidos, D., Karantanas, A., Marias, K., 2021. Emerging deep 
learning techniques using magnetic resonance imaging data applied in multiple 
sclerosis and clinical isolated syndrome patients (Review). Exp Ther Med 22 (4). 
https://doi.org/10.3892/etm.2021.10583. 

Castellazzi, G., Debernard, L., Melzer, T.R., Dalrymple-Alford, J.C., D’Angelo, E., 
Miller, D.H., Gandini Wheeler-Kingshott, C.A.M., Mason, D.F., 2018. Functional 
Connectivity Alterations Reveal Complex Mechanisms Based on Clinical and 
Radiological Status in Mild Relapsing Remitting Multiple Sclerosis. Front Neurol 9. 
https://doi.org/10.3389/fneur.2018.00690. 

Glover, G.H., Mueller, B.A., Turner, J.A., van Erp, T.G.M., Liu, T.T., Greve, D.N., 
Voyvodic, J.T., Rasmussen, J., Brown, G.G., Keator, D.B., Calhoun, V.D., Lee, H.J., 
Ford, J.M., Mathalon, D.H., Diaz, M., O’Leary, D.S., Gadde, S., Preda, A., Lim, K.O., 
Wible, C.G., Stern, H.S., Belger, A., McCarthy, G., Ozyurt, B., Potkin, S.G., 2012. 
Function biomedical informatics research network recommendations for prospective 
multicenter functional MRI studies. J Magn Reson Imaging 36 (1), 39–54. https:// 
doi.org/10.1002/jmri.23572. 

Zou, K.H., Greve, D.N., Wang, M., Pieper, S.D., Warfield, S.K., White, N.S., 
Manandhar, S., Brown, G.G., Vangel, M.G., Kikinis, R., Wells, W.M., 2005. 
Reproducibility of functional MR imaging: Preliminary results of prospective multi- 
institutional study performed by Biomedical Informatics Research Network. 
Radiology 237 (3), 781–789. https://doi.org/10.1148/radiol.2373041630. 

Badhwar, AmanPreet, Collin-Verreault, Y., Orban, P., Urchs, S., Chouinard, I., Vogel, J., 
Potvin, O., Duchesne, S., Bellec, P., 2020. Multivariate consistency of resting-state 
fMRI connectivity maps acquired on a single individual over 2.5 years, 13 sites and 3 
vendors. NeuroImage 205, 116210. https://doi.org/10.1016/j. 
neuroimage.2019.116210. 

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., 
Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., 2013. 
The minimal preprocessing pipelines for the Human Connectome Project. 
Neuroimage 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127. 

Graedel, N.N., McNab, J.A., Chiew, M., Miller, K.L., 2017. Motion correction for 
functional MRI with three-dimensional hybrid radial-Cartesian EPI. Magn Reson 
Med 78 (2), 527–540. https://doi.org/10.1002/mrm.26390. 

Pruim, R.H.R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J.K., Beckmann, C.F., 
2015. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from 

N. De Stefano et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.nicl.2014.11.010
https://doi.org/10.1093/brain/awab029
https://doi.org/10.1093/brain/awab029
https://doi.org/10.1002/mrm.20310
https://doi.org/10.1007/s10334-004-0095-z
https://doi.org/10.1007/s10334-004-0095-z
https://doi.org/10.1212/WNL.0000000000000361
https://doi.org/10.1212/WNL.0000000000001360
https://doi.org/10.3389/fnins.2013.00095
https://doi.org/10.3389/fnins.2013.00095
https://doi.org/10.1016/j.mri.2018.11.010
https://doi.org/10.1016/j.mri.2018.11.010
https://doi.org/10.1007/s10334-006-0049-8
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0360
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0360
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0360
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0365
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0365
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0365
https://doi.org/10.1093/brain/awh654
https://doi.org/10.1093/brain/awl152
https://doi.org/10.1002/nbm.3888
https://doi.org/10.3174/ajnr.A5025
https://doi.org/10.1371/journal.pone.0155557
https://doi.org/10.1016/j.neuroimage.2016.01.047
https://doi.org/10.1016/j.neuroimage.2016.01.047
https://doi.org/10.1002/mrm.27463
https://doi.org/10.1002/mrm.20274
https://doi.org/10.1002/jmri.22186
https://doi.org/10.3389/fninf.2016.00010
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/j.neuroimage.2015.06.068
https://doi.org/10.1002/hbm.20856
https://doi.org/10.1002/hbm.24691
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0440
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0440
http://refhub.elsevier.com/S2213-1582(22)00037-7/h0440
https://doi.org/10.3389/fnins.2013.00031
https://doi.org/10.1016/j.neuroimage.2019.116137
https://doi.org/10.1016/j.ejro.2016.06.002
https://doi.org/10.1016/j.neuroimage.2020.117017
https://doi.org/10.1016/j.neuroimage.2020.117017
https://doi.org/10.1016/j.neuroimage.2020.116993
https://doi.org/10.1016/j.neuroimage.2020.116993
https://doi.org/10.1371/journal.pone.0230409
https://doi.org/10.1371/journal.pone.0230409
https://doi.org/10.3389/fnins.2019.00594
https://doi.org/10.3389/fnins.2019.00594
https://doi.org/10.3389/fnins.2021.634063
https://doi.org/10.3892/etm.2021.10583
https://doi.org/10.3389/fneur.2018.00690
https://doi.org/10.1002/jmri.23572
https://doi.org/10.1002/jmri.23572
https://doi.org/10.1148/radiol.2373041630
https://doi.org/10.1016/j.neuroimage.2019.116210
https://doi.org/10.1016/j.neuroimage.2019.116210
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1002/mrm.26390


NeuroImage: Clinical 34 (2022) 102972

13

fMRI data. Neuroimage 112, 267–277. https://doi.org/10.1016/j. 
neuroimage.2015.02.064. 

Costumero, V., Bueichekú, E., Adrián-Ventura, J., Ávila, C., 2020. Opening or closing 
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