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Abstract
Sepsis is a heterogeneous disease with variable clinical course and several clinical phenotypes. As 
it is associated with an increased risk of death, patients with this condition are candidates for 
receipt of a very well-structured and protocolized treatment. All patients should receive the 
fundamental pillars of sepsis management, which are infection control, initial resuscitation, and 
multiorgan support. However, specific subgroups of patients may benefit from a personalized 
approach with interventions targeted towards specific pathophysiological mechanisms. Herein, 
we will review the framework for identifying subpopulations of patients with sepsis, septic shock, 
and multiorgan dysfunction who may benefit from specific therapies. Some of these approaches 
are still in the early stages of research, while others are already in routine use in clinical practice, 
but together will help in the effective generation and safe implementation of precision medicine in 
sepsis.

Key Words: Sepsis; Septic shock; Organ dysfunction; Precision medicine; Biomarkers; Phenotype; Endotype

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Sepsis is a heterogeneous disease with different clinical courses and several clinical phenotypes. 
Precision medicine in sepsis allows the identification of specific subgroups of patients who may benefit 
from a personalized approach with interventions targeted towards specific pathophysiological 
mechanisms.
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INTRODUCTION
Sepsis requires a structured and protocolized treatment, which have been thoroughly reviewed in the 
literature[1-3]. The last version of the Surviving Sepsis Campaign (SSC) guidelines was released in 2021
[4], and the hour-1 bundle was updated in 2018[5]. The implementation of the SSC recommendations 
and bundles[6] is associated with a sustained reduction in the risk of death. Still, mortality from sepsis 
remains unacceptably high[7].

All patients with sepsis are candidates for receipt of the main pillars of sepsis treatment: Infection 
control, initial resuscitation, and multiorgan support. However, specific subgroups of patients not 
responding to conventional therapies may benefit from other therapies, which can be considered 
therapeutic rescue strategies.

Currently, sepsis is defined as organic dysfunction associated with a dysregulated response of the 
host to infection[8]. The host response is initiated when bacterial endotoxin or other bacterial structures 
interacting with the host´s immune system stimulate the production of a cascade of immune mediators 
that activate and target leukocytes, leading to organ dysfunction.

SEPSIS: A HETEROGENEOUS DISEASE
We have to ask ourselves whether all septic patients' clinical courses are predictable. Does dysregulated 
host response to infection progress and manifest similarly in all patients? The answer is clear and 
resounding: No. In sepsis, there is significant heterogeneity between individuals. In a certain way, such 
heterogeneity is foreseen based on the existing differences in age, causative microorganisms, types of 
sepsis foci, and comorbidities. Pathophysiologically, there are also significant differences. The inflam-
matory response occurs in two distinct stages: The pro-inflammatory and the anti-inflammatory phases. 
These phases vary among individuals and within the same individual, depending on a particular 
moment within the clinical course. This could explain the observed heterogeneity in responses to 
available immunomodulating treatments (e.g., corticosteroids, elimination of cytokines, and anti-
cytokine antibodies).

https://www.wjgnet.com/2220-3141/full/v11/i1/1.htm
https://dx.doi.org/10.5492/wjccm.v11.i1.1
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Therefore, patients with a low risk for adverse outcomes are candidates to receive conventional 
treatments. In contrast, patients with a high risk of clinical deterioration could benefit from specific 
therapies addressing their particular pathophysiological characteristics. This gives rise to so-called 
‘precision medicine’. This term comes from oncology and described the adaptation of a treatment to 
each patient’s traits based on the genomic study and the molecular characteristics of tumors.

In this narrative review, we explain the different strategies to create and implement precision 
medicine for sepsis, with the intent of supporting individualization of patients’ management (Figure 1). 
In the first part of this manuscript, we will review the technologies developed to identify endotypes and 
phenotypes (omics-based biomarkers, bioinformatics, and biomarkers commonly used in the clinic). In 
the second part of the manuscript, we will describe the different endotypes with their specific potential 
treatments (e.g., immunoglobulins, endotoxin- and cytokine-hemadsorption, restoration of immunopa-
ralysis) (Table 1). Omics-based biomarkers research is still in the early stages, while other biomarkers 
are now available and in use in the clinic.

TECHNOLOGIES DEVELOPED TO IDENTIFY ENDOTYPES AND PHEN-OTYPES
Omics technologies
Novel technologies have been developed in recent years to detect different evolutionary patterns or 
other patterns in response to different therapies in sepsis. Omics-based biomarkers and bioinformatics 
can select various endotypes and phenotypes of sepsis patients indistinguishable from the clinical point 
of view at the bedside. Therefore, they help in the adaptation of specific therapies to patients according 
to their individual characteristics[9].

Genomics and epigenomics: Genomics is defined as the study of genes and their functions. The 
different clinical presentations and prognoses of sepsis patients have already been associated with 
particular genetic variants. A genetic polymorphism is an allelic variant that exists in an unalterable 
state in a population, with a frequency (generally > 1%) that cannot be accounted for by new mutations. 
Various poly-morphisms have been described in the genes that encode pro-inflammatory and anti-
inflammatory cytokines. This is also true for cytokine receptors, cellular recognition pathways, 
intracellular signaling pathways, and hemostasis molecules. All these pathways are involved in the 
severity and risk of mortality in sepsis[10].

Epigenomics studies the additional changes that alter gene expression without changing the DNA 
sequence. These include DNA methylation, non-coding (nc)RNAs, histone variants, and histone post-
translational modifications. Epigenetic modifications can respond to environmental stimuli by 
activating or inhibiting gene transcription. Lorente-Sorolla et al[11] showed that sepsis patients 
undergoing widespread changes in the methylome of their circulating monocytes had associated 
aberrant levels of interleukin (IL)-10 (IL-10) and IL-6, and a high occurrence of organ dysfunction. 
Changes in histone modifications, especially histone acetylation, can lead to abnormal expression of IL-
10 mRNA[12]. An ncRNA is a functional RNA molecule transcribed from DNA, though not translated 
into a protein. ncRNAs regulate gene expression at the transcriptional and post-transcriptional levels. 
The three major classes of short ncRNAs are known as micro (mi)RNAs, short interfering (si)RNAs, and 
piwi-interacting (pi)RNAs. Plasma levels of miR-133a are higher in critically ill patients with sepsis than 
in patients with non-infectious inflammation, and predict intensive care unit (ICU) and long-term 
mortality[13]. Consequently, epigenetic biomarkers could help detect patients with clinical deterioration 
and unfavorable evolution[11-14].

Individualized treatment based on the genetic characteristics of the host has not yet been 
implemented in clinical practice, even though it is undoubtedly one of the most promising research 
fields for the future management of patients with sepsis and septic shock.

Transcriptomics: The transcriptome is the set of messenger RNAs and ncRNA molecules in a specific 
cell or tissue. Transcriptomics is the study of the transcriptome of one particular cell or tissue in a 
specific circumstance, based on the analysis of gene expression profiles. It aims at monitoring gene 
activity and regulation. Transcriptomic studies have made possible the characterization of different 
gene expression profiles in sepsis.

Interindividual transcriptome variation in sepsis has been evaluated in several large cohorts. Maslove 
et al[15] identified two subtypes in septic patients. The subtype 1 gene expression profile is characterized 
by a significantly increased expression of genes involved in inflammatory and Toll-like receptor (TLR)-
mediated signaling pathways. This profile is associated with a higher prevalence of sepsis. Davenport et 
al[16] analyzed peripheral blood leucocyte global gene expression of 265 critically ill patients with 
community-acquired pneumonia and organ dysfunction. That transcriptomic study showed two distinct 
sepsis response signatures: SRS1 and SRS2. SRS1, present in 41% of patients, identified patients with an 
immunosuppression phenotype that included features of endotoxin tolerance, T cell exhaustion, and 
down-regulation of human leucocyte antigen class II. SRS1 was associated with higher 14-, 28- and 60-d 
mortality than SRS2. Sweeney et al[17] performed an unsupervised clustering analysis on pooled 
transcriptomic profiles from 14 datasets of sepsis patients (n = 700). The authors described three 
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Table 1 Clinical applicability of precision medicine strategies

Precision medicine 
strategy Target (s) Clinical application

Genetic variants Prognosis, severityGenomics and epigenomics

Genotypes Susceptibility to sepsis

Gene expression profiles, activity and regulation Susceptibility to sepsisTranscriptomics 

Sepsis response signatures Severity, prognosis

Small molecules produced by cells PrognosisMetabolomics

Metabolomic profile Response to treatment

Proteins expressed by the genome under certain 
conditions

Diagnosis, PrognosisProteomics

Biomarkers Diagnosis, prognosis

Diagnosis

Prediction of clinical trajectories

Assessment and treatment of organ dysfunction

Bioinformatics Machine learning techniques

Clinical phenotypes

Phenotypes 

Antimicrobial stewardship

Prediction of organ dysfuntion

Allocation of hospital resources

Diagnosis

Biomarkers Levels of molecules (mostly inflammatory)

Severity

Immunoglobulins Immunoglobulin levels Detection and treatment of sepsis-associated hypogammaglobu-
linemia

Endotoxin and hemoad-
soption

Endotoxin levels and elimination by hemoadsoption Rescue therapy

Cytokines and hemoad-
soption

Cytokine levels and elimination by hemoadsoption Rescue therapy

Immunoparalysis detection

Immunoadjuvant treatment

mHLA-DR expression

Stratification of patients

Immunoparalysis

GM-CSF therapy

GM-CSF: Granulocyte-macrophage colony-stimulating factor.

transcriptomic subtypes based on their functional analysis: the inflammopathic, adaptive, and coagulo-
pathic subtypes. The adaptive subtype was associated with a lower clinical severity and lower mortality 
rate than the other subtypes. The coagulopathic subtype was associated with higher mortality and 
occurrence of clinical coagulopathy than either the adaptative or inflammopathic subtypes. Septic shock 
was more frequent in the inflammopathic subtype. Wong et al[18,19] conducted a genome-wide 
expression profiling using whole blood-derived RNA from 98 children with septic shock, and identified 
three subclasses of patients, which they designated as A, B, and C. Patients in subclass A were charac-
terized by repression of genes corresponding to adaptive immunity and glucocorticoid receptor 
signaling. The subclass A patients had higher illness severity and mortality rate than the patients in 
subclasses B and C.

In the future, transcriptomic studies should help us in the early identification of patients with 
evolutionary patterns associated with greater severity and mortality, allowing for more personalized 
treatment.

Metabolomics: Metabolomics is the study of the metabolome, a collection of small molecules produced 
by cells[20]. This technology has been increasingly used in various investigations, such as the identi-
fication of biomarkers, drug activities, or drug-induced toxicity and metabolism. Critical illnesses, such 
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Figure 1 Strategies to create precision medicine in sepsis.

as sepsis, alter the metabolomic profile. Thus, metabolomic studies in sepsis have been aimed at 
discovering metabolites that discriminate between patients with sepsis and non-infectious systemic 
inflammatory response syndrome (SIRS), identifying prognostic factors, and recognizing changes in 
response to treatment[21].

Su et al[22] studied a total of 65 patients (35 with sepsis, 15 with SIRS, and 15 healthy subjects). Levels 
of dimethylisine, 2-phenylacetamide, glyceryl-phosphoryl-ethanolamine, and D-cysteine were 
associated with the severity of sepsis. In addition, four other metabolites (S-(3-methylbutanoyl)-
dihydrolipoamide-E, glycerophosphocholine, and S-succinyl-glutathione) were elevated within 48 h 
prior to death, indicating their potential use in predicting mortality. Neugenbauer et al[23] 
demonstrated that high levels of putrescine, lysoPCaC18:0, and SM C16: 1 are associated with higher 
mortality in community-acquired pneumonia and intra-abdominal infections. In a previous study, 
Mickiewicz et al[24] found 20 metabolites significant for discrimination between survivors and non-
survivors. The pathways highlighted in this study were related to energy metabolism and branched-
chain amino acid processes.

Metabolomic studies have characterized the fundamental role of lysophospholipids, especially 
lysophosphatidylcholine (LPC), in sepsis prognosis[25-27]. Ferrario et al[28] studied the changes in lipid 
homeostasis that occur during sepsis progression. Plasma samples from 20 patients with septic shock 
were studied on days 1 and 7 of septic evolution. The authors identified 137 metabolites, many of which 
were significantly different between survivors and non-survivors. LPC and phosphatidylcholine were 
found at lower levels in non-survivors than in survivors on day 1 and day 7. Using regression models, 
the lowest levels of LPC on day 7 were identified as the strongest predictors of mortality. Drobnik et al
[26] observed that the LPC concentration was markedly reduced in patients with sepsis compared to 
controls, and a negative correlation between these levels and mortality was found. Instead, Cho et al[25] 
found no association between low LPC levels and severity of the disease in septic patients. They also 
observed no differences in LPC levels between survivors and non-survivors.

In sum, metabolomics is a tool that allows for predicting the severity and prognosis of sepsis patients. 
This technology also provides a higher level of biochemical detail and knowledge than other systems 
biology approaches.

Proteomics: Proteomics is the part of omics that is responsible for the study of the proteome. The 
proteome comprises the set of all proteins expressed by the genome of a cell, tissue, or organism at a 
given time and under certain conditions of time and environment[29]. This technology provides an 
analysis of the expression, location, function, and interaction of proteomes. Compared to other immuno-
logical tests, proteomics is a novel method that has the advantage of having high throughput, 
sensitivity, and specificity. The development of proteomics has provided a means to study cellular 
processes, such as cell signaling, identifying protein modifications, and the characterization of specific 
biological markers[30].

For more than a decade, the study of proteomics has been sought to find new biomarkers 
determining sepsis diagnosis and prognosis. Su et al[31] selected 192 proteins in patients with sepsis and 
septic shock for investigation. Of these, vimentin (a molecule that modulates lymphocyte apoptosis and 
inflammatory response) increased significantly in patients with sepsis and septic shock compared to 
controls. The non-survivors had higher vimentin levels in serum, and its expression was increased in 
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lymphocytes in particular. As such, this molecule could be a marker for prognosis prediction in patients 
with sepsis. In a previous study of 16 critically ill patients, Punyadeera et al[32] found that a 
combination of various proteins [e.g., IL-1α, interferon gamma-induced protein 10 (IP-10), soluble tumor 
necrosis factor receptor (sTNF-R)2 and soluble cell death receptor (sFAS)] could induce the progression 
of sepsis to septic shock. Furthermore, a combined measurement of matrix metalloproteinase (MMP)-3, 
IL-1α, IP-10, soluble IL-2 receptor (sIL-2R), sFas, sTNF-R1, soluble receptor for advanced glycation end 
products (i.e., sRAGE), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-1β, and eotaxin 
could differentiate survivors from non-survivors. Latour-Pérez et al[33] observed that increased levels of 
activator receptor 1 expressed in myeloid cells (i.e., sTREM-1) throughout the first 3 d of evolution were 
associated with high mortality in critically ill patients with sepsis. The high initial severity of illness 
explained this finding. Gibot et al[34] found that the progressive decrease in plasma concentrations of 
sTREM-1 indicated a favorable clinical course during the recovery phase of sepsis and discriminated 
between survivors and non-survivors. Decoux et al[35] analyzed the serum proteome in a group of 
patients with early sepsis. To cope with the large dynamic range of serum protein samples, the authors 
performed N-glycosylation, a chemical enrichment of glycopeptides and subsequent differences were 
found in the serum proteome between survivors and non-survivors. For instance, some modified 
proteins and glycopeptides belong to common pathways, such as the coagulation cascade and the 
complement system. The authors also found decreased total neutrophil gelatinase-associated lipocalin 
(NGAL) and vascular cell adhesion molecule 1 (VCAM-1) levels in non-survivors, two molecules 
believed to be part of the inflammatory response. Thus, even though VCAM and NGAL increase in 
sepsis, their study suggested that these increases may be part of a beneficial response necessary for 
survival, and pointed to the complexity of the regulatory network that is already activated in these 
patients at an early stage.

Proteomics has also helped to understand the role of proteolysis in sepsis by studying circulating 
peptides. Bauzá-Martinez et al[36] described a higher number of circulating peptides in patients with 
septic shock than in sepsis patients or non-hospitalized healthy subjects. The peptide count and 
abundance in septic shock patients were higher in non-survivors than in survivors, suggesting an 
association between the magnitude of proteolysis and the outcome. The predominant role of serine 
proteases, such as chymotrypsin and MMPs, in causing the observed proteolytic degradation was 
demonstrated.

Ultimately, proteomics helps increase our understanding of the pathophysiology of sepsis and 
identify new molecules that can predict patients’ evolution. This technology also aids in the identi-
fication of significant prognostic factors in sepsis patients. Therefore, proteomic approaches are 
promising for clinical applications and biomarker studies of sepsis.

Bioinformatics
A major trend today in research is improving the accuracy of the diagnosis of sepsis. The definition of 
sepsis was updated in 2016 and advocated using the quick Sequential Organ Failure Assessment 
(qSOFA), which assesses blood pressure, respiratory rate, and mental status for sepsis diagnosis[8]. A 
major criticism by the medical community of this score lies in its low specificity[37]. For this reason, 
different research teams are trying to enhance this scale through the addition of bedside parameters (e.g.
, bio-marker data), which could improve these diagnostic criteria. Another critical aspect in clinical 
research is obtaining a set of baseline phenotypes and patient trajectories in the ICU through 
multivariate analysis techniques, such as principal component analysis, factor analysis, and probabilistic 
clustering. For instance, a previous study[38] defined the following four different phenotypes for sepsis 
through consensus k-means clustering: (1) Patients with low vasopressor titration; (2) Patients with 
chronic conditions and renal dysfunction; (3) Patients with high inflammation and pulmonary 
dysfunction; and (4) Patients with liver dysfunction and septic shock. Another study[39] defined the 
following phenotypes predicting ICU outcomes: (1) Patients requiring mechanical ventilation support; 
(2) Patients with severe organ dysfunction; (3) Patients with high severity scores; and (4) Patients with 
hepatic dysfunction.

Therefore, improved versions of the qSOFA scale are evaluated in the context of all available data at 
hospital admission through standard machine learning techniques, such as multivariate logistic 
regression, relevance vector machines, support vector machines, shallow neural networks or random 
forests, taking the diagnosis of sepsis confirmed through hemocultures as the main outcome. To predict 
organ dysfunction before its onset, phenotypes are now being improved by adding different clinical 
traits and biomarkers that become altered before organ dysfunction is detected at a systemic level. 
Current initiatives are intended to enhance these phenotypes by applying a generalization of the factor 
analysis method with Deep Autoencoders to assess the strength of associations between variables and 
their importance within each patient phenotype.

Deep Reinforcement Learning has also become an important research line for assessing the 
continuum of organ dysfunction in sepsis. For instance, Raghu et al[40] proposed a continuous state-
space model for sepsis management in a twist beyond the more traditional development and use of 
discriminative classifiers.
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Other studies have used Bayesian Networks and Random Forests[41] for assessing patient trajectories 
of septic and septic shock patients in the acute phase. A common trend between these initiatives is that 
they all pave the way to study patient tra-jectories in the ICU. Patient trajectory assessment includes 
studying the prevalence of each phenotype and their impact on other clinical outcomes, such as long-
term survival (e.g., 100-d survival rate), vasopressor resistance, and days on organ support[38,39,42].

An accurate assessment of the organ dysfunction continuum is possible with the inclusion of 
biomarker data (e.g., complement cascade, platelet degranulation, acute inflammation response, 
negative regulation of endopeptidase activity, and blood coagulation), through the development of 
comprehensive, interpretable and mathematically rigorous models of knowledge representation 
through Deep Learning techniques such as Deep Reinforcement Learning and standard machine 
learning techniques based on graphical models[42]. These techniques will improve diagnosis, trajectory, 
and long-term survival prediction in sepsis and septic shock. Also, they could set the basis for the 
personalized treatment of organ dysfunction.

Available biomarkers at clinics
The reliability of clinical assessments in patients with sepsis is often limited, and there is a need to 
individualize decision-making processes based on objective data. The heterogeneity of patients with 
sepsis has led to the use of biomarkers for patient stratification according to prognosis and severity of 
illness, improving phenotyping, intensifying medical therapy in high-risk patients, guiding antimi-
crobial stewardship, and allocating hospital resources.

Procalcitonin (PCT) is the most widely studied biomarker and is helpful as an adjunctive clinical tool 
for predicting prognosis and supporting clinical decisions in sepsis[43]. In a previous study of patients 
with septic shock and high vasopressor requirements, patients who had PCT levels of > 2 ng/mL 
benefited from receiving adjuvant therapy with hydrocortisone, vitamin C, and thiamine to reduce the 
progression of organ dysfunction[44]. High initial levels of PCT (> 6 ng/mL) are helpful to predict 
progressive organ dysfunction and an increased risk of mortality[45]. Thus, this subgroup of patients 
may be considered for receiving personalized rescue therapies, as conventional treatment may be 
insufficient to improve prognosis. Interestingly, PCT non-clearance is a predictor of adverse outcomes 
and treatment failure[46-48]. In a large observational study, the inability to decrease PCT by more than 
80% was a significant independent predictor of mortality[49]. This finding may aid in sepsis care, 
potential suitability of adjuvant treatments, and allocation of resources. Well-designed randomized 
controlled trials (RCTs) and meta-analyses have shown a mortality benefit when using PCT-guided 
algorithms for antimicrobial stewardship in sepsis[50-52].

Mid-region fragment of pro-adrenomedullin (MR-proADM) is a biomarker mainly produced by 
vascular endothelial cells. MR-pro-ADM directly reflects plasma levels of adrenomedullin, a potent 
vasodilator agent with metabolic and immune-modulating properties. MR-proADM levels increase in 
sepsis, and high plasma clearance at day 5 has been associated with better outcomes[53]. Furthermore, 
the role of this biomarker for the early identification of patients at higher risk of organ dysfunction has 
been recognized. In a recent study, the use of MR-proADM performed better in the prediction of 
mortality compared to lactate, PCT, C-reactive protein, and SOFA score[54]. Former studies have 
evaluated MR-proADM to predict ICU admission and the need for urgent treatment[55]. Thus, MR-pro-
ADM is found beneficial to guide clinical decisions regarding the use of ICU and hospital resources.

The use of sepsis biomarkers is evolving as one of the most promising deve-lopments in precision 
medicine. Identifying additional reliable biomarkers in sepsis will significantly improve our 
understanding of this heterogeneous disease and help the medical community refine clinical 
assessments. Likewise, comprehensive clinical assessments should be the starting point for developing 
and studying clinically accurate biomarkers in sepsis[56,57].

Recent progress in several biomarker research areas, including the development of point-of-care 
testing technologies[58], will extend their application for diagnosis, risk stratification, molecular 
phenotyping, and monitoring therapeutic responses, leading to more personalized medicine at the 
bedside. Further clinical validation of current biomarkers should be sought in certain patients [e.g., renal 
dysfunction, receiving continuous renal replacement therapy (i.e. CRRT), trauma]. Point-of-care sepsis 
biomarkers have the potential to be a game-changer as their implementation becomes widely available.

ENDOTYPES AND SPECIFIC POTENTIAL TREATMENTS
Immunoglobulins 
The pathogenesis of sepsis is associated with dysregulation of the innate and adaptive immune systems. 
The adaptive immune system’s underlying altered mechanism is the function of antibodies and 
immunoglobulins (Igs)[59]. Still, the SSC guidelines[4] make a weak recommendation for using Igs as a 
potential treatment in sepsis patients, given the low certainty of evidence derived from the main studies 
and a meta-analysis[60,61]. Although the previous studies have not assessed Igs’ baseline status as an 
inclusion criterion, it is reasonable to think that patients with hypogammaglobulinemia could benefit 
from Ig treatment.
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The underlying mechanisms causing decreased levels of Igs in sepsis are not entirely clear. Still, 
impaired Ig production, vascular leakage secondary to endothelial dysfunction, an imbalance between 
IgG production and its utilization by the complement system, excessive catabolism, or reduced plasma 
cell Ig secretion may be involved. Also, patients with sepsis frequently have lymphopenia and 
quantitative or functional abnormalities within T cell and B cell populations[62].

Several studies have shown higher mortality in sepsis patients with hypogammaglobulinemia. 
Although the definition of hypogammaglobulinemia is variable, low levels of gammaglobulins can be 
defined as IgG below 500 mg/dL in individuals older than 5 years or 2 standard deviations below 
reference values for age[63-67]. Low plasma levels of IgG (hypo-IgG) is the most common deficiency, 
with a prevalence as high as 70%[68]. Hypo-IgG is associated with an increased risk of severe illness 
[higher acute physiology and chronic health evaluation II (i.e. APACHE II) score], a greater incidence of 
acute respiratory distress syndrome, and a longer duration of shock[69], especially on the day of 
diagnosis and the following 48 h[70]. Also, a synergistic role of IgG, IgM, and IgA in sepsis and septic 
shock has been described[66,71]. The combined presence of low levels of endogenous IgG, IgM, and IgA 
in plasma is associated with reduced survival in patients with sepsis or septic shock[72].

Some studies have reported that immunoglobulin formulations containing IgG did not improve 
mortality rates in patients with sepsis[60]. Conversely, Welte et al[73] demonstrated a clinically 
significant reduction of mortality risk in patients with pneumonia treated with intravenous Ig (IVIg). 
That study identified a population with a very high risk of mortality, namely patients with high levels 
of C-reactive protein and PCT, and hypo-IgM.

Polyvalent intravenous Igs represent a promising approach to modulate both the pro-and anti-inflam-
matory responses[74]. In adults, the use of IgM-enriched IVIg has shown favorable results[60,61,73-79]. 
IgM-IgA-enriched IVIg preparations are associated with a reduction in mortality[61,73,75,76]. A recent 
meta-analysis of 19 trials and > 1500 patients showed a significant reduction in mortality when using 
IgM- and IgA-enriched IVIg compared to human albumin solution or no treatment[80,81]. However, the 
eligibility criteria for receiving polyvalent IVIg and the best treatment strategy should be well defined
[77]. The administration of a single dose of polyclonal gammaglobulin of 1 or 2 g/kg is widely accepted 
(level of evidence 2C)[82]. Other strategies propose IgM and IgA-enriched polyclonal IVIg dose of 250 
mg/kg/d by a 10-h infusion, for 3 consecutive days[83], or an infusion of 42 mg/kg body weight of 
IgM-enriched polyclonal IVIg once daily for 5 consecutive days[73]. In a retrospective study, 129 adult 
patients benefited from receiving IgM-IgA enriched IVIg, when the administration was performed 
within the first 23 h from admission[78].

The routine administration of IVIg in sepsis patients is not recommended, as stated in the 2016 SSC. 
However, patients with hypogammaglobulinemia could benefit from this treatment. Further studies are 
needed to clinically validate the most appropriate dose and administration regimen of IVIg in sepsis 
patients with hypogammaglobulinemia.

Endotoxin hemoadsorption
Endotoxin is a lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria and 
is one of the best examples of pathogen-associated molecular patterns (i.e. PAMPs). Its presence, 
together with that damage-associated molecular patterns (i.e. DAMPs) released by host injured cells, 
results in the elevation of pro-inflammatory and anti-inflammatory cytokines[84], activating the anti-
infectious innate immune response and mediating the clinical syndrome of sepsis. LPS elicits its actions 
through a transmembrane protein, the TLR4, a type of pattern recognizing receptor expressed on innate 
immune system cells, in a process in which many important molecules are involved. In this process, the 
LPS-binding protein (i.e. LBP) transports circulating endotoxin and facilitates its recognition by the cell 
through receptor CD14. CD14 directs the LPS-LBP complex to TLR4, and the accessory protein myeloid 
differentiation 2 (MD2) associated with TLR4 on the cell surface is involved in the LPS-TLR4 union. 
Recognition of the LPS-LBP complex by these receptors transduces the endotoxin signal to the cell 
nucleus, leading to the expression of a complex network of inflammatory mediators. The presence of 
endotoxin activates changes in the expression of more than 300 genes, leading to the activation of 
macrophages, endothelial cells, neutrophils, and the coagulation cascade. It also triggers the release of a 
complex cascade of host-derived inflammatory mediators[85,86].

Endotoxin activity has emerged as a valuable marker of disease severity. The lipid-A domain of 
endotoxin induces most of the toxicity associated with LPS, characterized by fever, diarrhea, 
hemodynamic instability, multiple organ failure, and, ultimately, death[87]. A previous study 
highlighted the clinical relevance of circulating levels of LPS, showing a significant correlation between 
endotoxin levels and severity of septic shock, organ dysfunction, and mortality[86]. The prevalence of 
endotoxemia in patients with septic shock was high, and up to 82% of patients showing intermediate or 
high endotoxin activity[88]. Patients with endotoxemia also presented significantly higher lactate 
concentration and inotropic score.

In human illness, the measurement of endotoxin is notoriously difficult. The chromogenic limulus 
amebocyte lysate assay was the first diagnostic test developed. It was based on endotoxin’s ability to 
induce coagulation of proteins in the hemolymph of the horseshoe crab, Limulus polyphemus[89]. Since 
other microbial products, especially from fungi, can activate the limulus reaction, the assay is not 
specific for endotoxin. Since 2004, the endotoxemia measurement in humans has been made through the 
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Endotoxin Activity Assay (EAA), a chemiluminescent rapid (30-min) assay described by Romaschin in 
1998[90]. That test is based on the ability of an antibody to form an antibody-antigen complex in whole 
blood. This antibody targets the highly conserved lipid A epitope of endotoxin. It has a very high 
binding affinity, leading to very high sensitivity. In addition, the antibody does not cross-react with 
Gram-positive or fungal components, allowing for very high specificity. The results are expressed in 
EAA units, where < 0.39 is considered low, 0.40-0.59 intermediate, and ≥ 0.60 high. As this assay uses 
patient’s neutrophils as a readout system, it is impossible to store specimens for later assaying, and 
measurements must be performed within 3 h of obtaining the sample. The EAA is the only assay that is 
approved by the United States’ Food and Drug Administration for measuring endotoxin activity in 
whole blood.

Endotoxin has been considered as one of the therapeutic targets for the treatment of sepsis and septic 
shock. The possibility of eliminating endotoxin through blood purification techniques and, specifically, 
by hemoadsorption has been raised. Adsorption with a fiber column immobilized with polymyxin B 
(PMX) (Toraymyxin®; Toray, Tokyo, Japan), is one of the best-known endotoxin elimination therapies. 
Another possibility is the oXiris® hemofilter (Baxter, Meyzieu, France).

Four clinical trials have evaluated the efficacy of endotoxin hemoadsorption in septic shock. In a 
multicenter, open-label, pilot, randomized, controlled study conducted in Europe, 36 postsurgical 
patients with severe sepsis or septic shock secondary to intraabdominal infection were randomized to 
receive PMX treatment over 2 h (n = 17) or standard therapy (n = 19)[91]. There were no statistically 
significant differences in endotoxin levels from baseline to 6, 8 or 24 h after treatment between the two 
groups. Five of the eighteen (28%) patients in the control group and five of the seventeen (29%) patients 
in the PMX group died during the study period. The survival analysis showed no statistical significance 
between the two groups. There was also no statistically significant difference in the mean duration of 
ICU stay nor the number of ICU-free days between the two groups. However, patients treated with 
PMX demonstrated substantial increases in cardiac index and oxygen delivery index, and the need for 
CRRT after study entry was reduced. PMX was well tolerated and showed no significant side effects. 
Thus, that study showed the PMX cartridge to be safe and to have the potential to improve cardiac and 
renal dysfunction due to sepsis or septic shock. The early use of polymyxin B hemoperfusion in 
abdominal septic shock (i.e. EUPHAS) trial[92] evaluated hemoperfusion with PMX in a small sample of 
64 patients with intraabdominal infection-related severe sepsis and septic shock. The design was 
oriented to assess hemodynamic improvement. The recovery of mean arterial pressure allowed for the 
reduction of vasoactive drugs in the PMX group. SOFA scores improved in the PMX group. 
Furthermore, a significant reduction in 28-d mortality was observed in the intervention group (32%) 
compared to the conventional treatment group (53%). The ABDOMIX trial[93] studied 243 patients with 
septic shock within 12 h after emergency surgery for secondary peritonitis due to organ perforation. The 
PMX hemoperfusion (i.e. PMX-HP) group (n = 119) received conventional therapy plus two sessions of 
PMX-HP. There were no significant differences in the SOFA score nor the 28-d mortality rate between 
PMX-HP and control groups (27.7% vs 19.5%). The severity of the disease and mortality were moderate. 
Among the 220 sessions performed, a premature interruption was observed in 25 cases (11%), mainly 
during the first session and primarily due to circuit clotting. A total of two PMX-HP sessions were 
completed in only 81 of 119 patients (69.8%). Of note, plasma EAA levels were not measured in any 
RCTs previously discussed.

The Euphrates trial[94] is one of the RCTs with the largest sample of patients and features the highest 
scientific rigor. Among its main characteristics is the use of EAA as a predictive biomarker. This trial 
studied 450 critically ill patients with septic shock and an EAA level of 0.6 or higher. The intervention 
consisted of two PMX-HP treatments (90-120 min) plus standard therapy, completed within 24 h of 
enrollment (n = 224) or sham hemoperfusion plus standard therapy (n = 226). PMX-HP was not 
associated with a significant difference in 28-d mortality. However, Klein et al[95] performed a post-hoc 
analysis of 194 patients with EAA between 0.6-0.89. A survival benefit was observed in patients who 
received therapy with PMX hemofilters. Monti et al[96] published the first study describing the use of 
PMX-HP as rescue therapy, involving 52 patients with refractory septic shock unresponsive to conven-
tional therapy. The SOFA score was 10 (8-14) points and serum lactate level was 5.89 ± 4.04 mmol/L. All 
patients were on mechanical ventilation, and 90% were treated with corticosteroids. Rapid and early 
reversal of circulatory dysfunction and other organ failures were obtained. The overall 30-d mortality 
was lower (29%) than expected by the SAPS II score (47%).

Consequently, it seems reasonable that patients with refractory septic shock and severe multiorgan 
dysfunction, with adequate control of the focus and EAA 0.6-0.9 could be candidates for endotoxin 
hemoadsorption. The TIGRIS study[97] is ongoing, recruiting patients with SOFA score > 9 and EAA 
levels between 0.60 and 0.89. The results of that study will provide more information on the possible 
benefits of endotoxin hemoadsorption in patients with septic shock, high requirement for vasopressor 
support, and severe multiorgan dysfunction.

Cytokine hemoadsorption
Sepsis appears when the initially appropriate host response to infection becomes amplified and 
subsequently dysregulated, leading to an imbalance between pro-inflammatory and anti-inflammatory 
responses[98]. An excess of pro-inflammatory cytokines can lead to endothelial injury and SIRS. Severe 
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cases can progress to disseminated intravascular coagulation and multiple organ failure that eventually 
leads to death[99].

A tightly regulated balance in the cytokine network is crucial for eliminating invading pathogens on 
the one hand and restricting excessive, tissue-damaging inflammation on the other. This network 
comprises pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), IL-1, IL-6, IL-12, 
interferon-gamma (IFN-γ) and macrophage migration inhibitory factor (MIF)], anti-inflammatory 
cytokines [IL-10, transforming growth factor-beta (TGF-β), and IL-4], and soluble inhibitors of pro-
inflammatory cytokines[100], such as soluble TNF receptor (TNFR), IL-1 receptor antagonist (IL-1Ra), 
and IL-2 receptor antagonist (IL-1R2)[101,102]. In endothelial cells, TNF-α enhances the expression of 
adhesion molecules and increases integrin adhesiveness in neutrophils, promoting their extravasation 
into tissues[103,104]. TNF-α and IL-1 are the main mediators of inflammation-induced activation of 
coagulation[105]. In addition, TNF-α and IL-1 amplify inflammatory cascades in an autocrine and 
paracrine manner by activating macrophages to secrete other pro-inflammatory cytokines, lipid 
mediators, and reactive oxygen and nitrogen species, leading to sepsis-induced organ dysfunction[98,
106]. A key function of IL-6 is the induction of fever[107] and the mediation of the acute phase response
[108,109]. The high concentration of IL-6 binds to the soluble form of the IL-6 receptor. This complex 
combines with the signal-transducing component glycoprotein 130 on the cells, including endothelial 
cells, to elicit IL-6 signal activation. Despite its pro-inflammatory properties, IL-6 also has been shown to 
promote anti-inflammatory responses. IL-6 inhibits the release of TNF-α and IL-1[110] and enhances the 
circulation levels of anti-inflammatory mediators[111-113]. IL-10 and TGF-β suppress the production of 
pro-inflammatory mediators in immune cells and stimulate the production of IL-1Ra and sTNFRs[114,
115].

Several studies have suggested an association of IL-6 hypercytokinemia with organ dysfunction, 
response to treatment, and prognosis in sepsis. Kellum et al[116] found that 82% of patients with 
community-acquired pneumonia had a systemic elevation of cytokine levels. Furthermore, patients with 
higher levels of IL-6 and IL-10 had associated severe organ dysfunction[117,118] and higher mortality
[116,118]. The association between high levels of IL-6 and IL-10 with organ dysfunction and mortality 
has been confirmed in other studies[117-120]. Patients who survive sepsis show a rapid decrease in IL-6 
Levels, in contrast to the non-decreasing values or a slowly progressive decrease in non-survivors[119,
120]. Thus, the reduction of IL-6 Levels is associated with a better prognosis[121], and IL-10 overpro-
duction is the main predictor of severity and mortality[122,123].

Given the central role of increased systemic inflammation in the pathophysiology of sepsis-induced 
organ dysfunction, the development of therapies aimed at dampening the cytokine storm could help 
improve immune homeostasis. Extracorporeal blood purification therapies have been proposed as a 
strategy to improve the outcome of septic patients, attenuating the systemic expression of pro-inflam-
matory and anti-inflammatory mediators and restoring immune homeostasis[116]. These include 
different cytokine hemoadsorption techniques. Currently, we have several devices for assessing 
cytokine adsorption; these include Cytosorb® (CytoSorbents Corporation, Monmouth Junction, NJ, 
United States), oXyris (Baxter, Meyzieu, France), Alteco LPS Adsorber (Alteco Medical AB, Lund, 
Sweden), HA 330 and 380 (Jafron Biomedical Co., Zhuhai, GuangDong, China).

CytoSorb® is the most widely used cartridge, and our experience is greatest with it. It has been 
evaluated for various clinical conditions, such as SIRS after cardiopulmonary bypass, liver failure, and 
rhabdomyolysis-associated myoglobinemia[118-120]. In it, cytokines are adsorbed by polymer beads 
within a perfused cartridge, through extracorporeal circulation[117]. Cytosorb® can attenuate both the 
pro-inflammatory and anti-inflammatory responses, achieving a recovery of balance much earlier.

Several observational studies have suggested the clinical benefits of using Cytosorb® in septic shock 
to reduce vasopressor support and even achieve a mortality reduction. Friesecke et al[124] studied 20 
consecutive patients with refractory septic shock after 6 h of standard treatment and hypercytokinemia. 
Refractory septic shock was defined as a progressive shock despite full-standard therapy and lactate ≥ 
2.9 mmol/L (or increased compared to baseline), and high noradrenaline requirements (> 0.3 mcg/ 
kg/min). The mean IL-6 Levels were 25.523 ng/mL (range: 1052-491260 ng/mL). In that study, 
Cytosorb® application was found to be associated with a significant decrease in noradrenaline 
requirements and an increase in lactate clearance, which resulted in shock resolution in 13 patients. In 
another case series of 45 patients with septic shock treated with hemoadsorption, Paul et al[125] 
described a significant vasopressor dose reduction (i.e., norepinephrine by 51.4%, epinephrine by 69.4%, 
and vasopressin by 13.9%). Besides, a reduction in IL-6 Levels (by 52.3%) and lactate levels (by 39.4%) 
was observed in the survivors. A survival rate of 75% was reported in patients who received treatment 
within 24 h of admission to the ICU. Patients who received treatment within 24-48 h after admission to 
the ICU had a survival rate of 68%. In a retrospective study conducted by Brouwer et al[126], Cytosorb® 
was associated with decreased 28-d all-cause mortality in patients with septic shock.

The scientific evidence on the clinical benefits of cytokine elimination derived from RCTs is scarce. 
Hawchar et al[127] performed a proof of concept, prospective, randomized pilot trial on the application 
of Cytosorb® in 20 patients with early-onset septic shock. A significant reduction in the need for 
vasopressor support was observed. In the control group, this change was not achieved with therapy. 
Rugg et al[128] compared patients with septic shock who received CytoSorb® in addition to CRRT (n = 
42) vs matched controls (n = 42). Median catecholamine requirements approximately halved within 24 h 
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after the initiation of Cytosorb®. In-hospital mortality was significantly lower in the CytoSorb® group 
(35.7% vs 61.9%; P = 0.015). Derived from our current knowledge, we can attribute the benefits of 
cytokine hemoadsorption only to the elimination of cytokines in the subgroup of patients with very 
high hypercytokinemia and associated refractory septic shock. Further studies are needed to define the 
influence of hemadsorption in the elimination of other substances.

Cytokine hemoadsorption may have a role as rescue therapy in a particular subgroup of patients with 
refractory septic shock, hyperlactatemia, multiorgan failure, and very high hypercytokinemia. As such, 
appropriate and well-designed RCTs should be performed in patients with this clinical profile, to 
validate its benefits.

Immunoparalysis 
More than 20 years ago, it was hypothesized that the early hyperinflammatory phase in sepsis was 
followed by a compensatory anti-inflammatory response to limit tissue damage[129]. In recent years, the 
therapeutic advances incorporated in sepsis treatment have facilitated a reduction in sepsis mortality, 
especially in early mortality derived from septic shock and severe multiorgan dysfunction. Some of the 
patients surviving the first few days evolve to a situation of chronic multiorgan dysfunction, dependent 
on mechanical ventilation and vasopressor therapy. This stage, known as sepsis-associated immunopa-
ralysis, resembles the normal aging process of the immune system (immunosenescence), characterized 
by a general dysregulation of innate and adaptive immune responses. Monocytes and macrophages 
play a critical role in critically ill patients with severe infections. These cells are the front-line of the 
innate cellular response that initiates and promotes the adaptive immune response.

The human leukocyte antigen (HLA)-DR isotype is a major histocompatibility complex class II cell 
surface receptor encoded by the HLA complex and constitutively expressed on antigen-presenting cells 
(e.g., monocytes/macrophages, dendritic cells, and B lymphocytes). It is also inducible on T 
lymphocytes[130]. Decreased HLA-DR expression has been demonstrated in septic patients, at both the 
protein- and RNA- levels. There is also a relationship between circulating HLA-DR mRNA and HLA-
DR expression in vivo[131]. Various studies in vitro have shown that constitutive and IFN-γ inducible 
HLA-DR expression is predominantly regulated at the transcriptional level. The observed loss of HLA-
DR expression in monocytes of septic patients implies a transcriptional regulation via a decrease of its 
transactivator, specifically the class II transactivator (i.e., CIITA)[130].

Although no association has been found between the kinetics of monocytic (m)HLA-DR expression 
and primary infection sites or causative pathogens, it has been associated with severity. Patients with 
high SOFA scores have an associated low expression of mHLA-DR. The prognosis of patients with low 
mHLA-DR expression is poor compared to patients with a rapid increase in mHLA-DR expression, 
primarily because of the higher incidence of secondary infections and mortality rate[132]. The most 
reliable marker for monitoring the immune alterations in critically ill patients is the decreased mHLA-
DR expression, measured by flow cytometry[133].

Immunoparalysis can be identified by studying the expression of HLA-DR in monocytes. Multiple 
studies have linked the low expression of mHLA-DR with the presence of more significant adverse 
effects and higher short and long-term mortality rates (at 7 d and 28 d) in sepsis and septic shock[134,
135]. Measures of mHLA-DR levels can not only be used as a marker of monocyte functionality and 
severity of the disease but also to guide innovative clinical therapies based on restoring the immune 
system[135,136].

In patients with immunoparalysis, several immuno-adjuvant agents are under investigation. GM-
CSF, IFN-g, anti-programmed death-ligand 1 (i.e., anti PDL-1), or IL-7 could have a role in treating 
sepsis-associated immunoparalysis. For instance, decreased mHLA-DR has been used to stratify 
patients for GM-CSF administration in a clinical trial, including a small sample of sepsis patients. This 
biomarker-guided GM-CSF therapy was found to be safe and effective in restoring monocyte immuno-
competence, shortening mechanical ventilation duration, and reducing ICU/hospital stay[135]. Another 
clinical trial tested the hypothesis that GM-CSF improves neutrophil phagocytosis in critically ill 
patients. They previously measured the neutrophil phagocytic capacity and included the subgroup of 
patients in whom phagocytosis was known to be impaired (to < 50%). The study showed that GM-CSF 
did not improve mean neutrophil phagocytosis but was safe and appeared to increase the proportion of 
patients with adequate phagocytosis[137]. Novel therapies targeting the restoration of monocyte 
immunocompetence are promising for improving outcomes in later stages of sepsis.

CONCLUSION
The heterogeneity of sepsis is a complex and engaging feature of the disease that elicits novel strategies 
for improved patient classification. Thus, precision medicine creates an individualized approach on a 
case-by-case basis by identifying subgroups of sepsis patients with a high risk of adverse outcomes who 
may benefit from specific treatments or rescue therapies according to their particular characteristics (e.g., 
genotypes or phenotypes). Of note, we urge the implementation of predictive-enrichment strategies for 
the design and development of future clinical trials to improve the certainty of scientific assessments.
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Although some clinical tools are still being evaluated in the early stages of research, such as the omics 
technologies, precision medicine is becoming a reality that improves our clinical approaches when 
currently available tools are implemented in patients with sepsis, septic shock, and organic dysfunction. 
Further scientific contributions in this field will be essential to identify specific endotypes responding to 
targeted therapies and translate individualized treatments to the bedside.
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