
ORIGINAL RESEARCH
published: 17 May 2022

doi: 10.3389/fmicb.2022.872671

Frontiers in Microbiology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 872671

Edited by:

Hein M. Tun,

The University of Hong Kong,

Hong Kong SAR, China

Reviewed by:

Qin Liu,

The Chinese University of Hong Kong,

China

Saisai Zhang,

The University of Hong Kong,

Hong Kong SAR, China

*Correspondence:

Jose Liñares-Blanco

jose.linares@genyo.es

Specialty section:

This article was submitted to

Systems Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 09 February 2022

Accepted: 26 April 2022

Published: 17 May 2022

Citation:

Liñares-Blanco J,

Fernandez-Lozano C, Seoane JA and

López-Campos G (2022) Machine

Learning Based Microbiome Signature

to Predict Inflammatory Bowel

Disease Subtypes.

Front. Microbiol. 13:872671.

doi: 10.3389/fmicb.2022.872671

Machine Learning Based Microbiome
Signature to Predict Inflammatory
Bowel Disease Subtypes
Jose Liñares-Blanco 1,2,3*, Carlos Fernandez-Lozano 1, Jose A. Seoane 4 and

Guillermo López-Campos 5

1Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC, University of A

Coruña, A Coruña, Spain, 2GENYO, Centre for Genomics and Oncological Research, Pfizer/University of

Granada/Andalusian Regional Government PTS Granada, Granada, Spain, 3Department of Statistics and Operational

Research, University of Granada, Granada, Spain, 4 Vall d’Hebron Institute of Oncology, Barcelona, Spain,
5Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom

Inflammatory bowel disease (IBD) is a chronic disease with unknown pathophysiological

mechanisms. There is evidence of the role of microorganims in this disease development.

Thanks to the open access to multiple omics data, it is possible to develop predictive

models that are able to prognosticate the course and development of the disease.

The interpretability of these models, and the study of the variables used, allows the

identification of biological aspects of great importance in the development of the disease.

In this work we generated a metagenomic signature with predictive capacity to identify

IBD from fecal samples. Different Machine Learning models were trained, obtaining high

performance measures. The predictive capacity of the identified signature was validated

in two external cohorts. More precisely a cohort containing samples from patients

suffering Ulcerative Colitis and another from patients suffering Crohn’s Disease, the two

major subtypes of IBD. The results obtained in this validation (AUC 0.74 and AUC =

0.76, respectively) show that our signature presents a generalization capacity in both

subtypes. The study of the variables within the model, and a correlation study based on

text mining, identified different genera that play an important and common role in the

development of these two subtypes.

Keywords: machine learning, feature selection, inflammatory bowel disease, microbiome, Crohn’s disease,

ulcerative colitis

1. INTRODUCTION

The microbiota consists of about 100 trillion commensal microorganisms with main roles in
metabolic processes in the host. Therefore, decoding the impact of the microbiota on human health
and disease is currently one of the greatest challenges in biomedicine.

A substantial body of evidence supports a relevant role of the microbiota in inflammatory
bowel disease (IBD) (Franzosa et al., 2019; Lloyd-Price et al., 2019; Amoroso et al., 2020;
Ananthakrishnan, 2020; DeMusis et al., 2020; Glassner et al., 2020; Haifer et al., 2020; Aldars-García
et al., 2021), including ulcerative colitis (Guo et al., 2020) and Crohn’s disease (Scanlan et al., 2006).
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Inflammatory bowel disease (IBD) is a chronic complex disease of
the gastrointestinal tract. Patients with IBD can experience a wide
range of symptoms, but the pathophysiological mechanisms that
cause these individual differences in clinical presentation remain
largely unknown. Therefore, great emphasis has been placed on
the effect of specific taxa and their metabolites to explain the
microbial influence on IBD development as well as to identify
clinical targets for innovative treatments (Nishida et al., 2018).

Great efforts have been made at the international level to
provide the scientific community with metagenomic datasets in
very large populations. The main example was the emergence
of the Human Microbiome Project (Huttenhower et al., 2012;
Methé et al., 2012), with the aim of characterizing the human
microbiome and analyzing its role in human health and disease.
Moreover, in 2012 the AGP (McDonald et al., 2018) was launched
as a collaboration between the Earth Microbiome Project (EMP)
and the Human Food Project (HFP) focused on characterizing
global microbial taxonomic and functional diversity as well as
understanding microbial diversity across human populations.

Nowadays, thanks to these and other initiatives, numerous
works have reported different techniques to identify relevant
metagenomic genera and/or species for stratification and
classification of patients according to their disease (Bai et al.,
2019; Boolchandani et al., 2019; Aryal et al., 2020; Bezek et al.,
2020; Fernández-Edreira et al., 2021).

However, more complex diseases without a clear
etiopathology have yet to be further explored. In the case
of IBD, there are few papers that have hosted Machine Learning-
based (ML) analysis for the identification of new genera that may
play a key role in the development of the disease. In addition,
due to the characteristics of metagenomic data, high sparsity and
high dimensionality, a robust methodology must be used for
processing and training algorithms.

In this paper we focused in the application of different ML
algorithms and we present the results obtained after analyzing
and training them with metagenomic data downloaded from
the AGP. The models were trained for the classification of
samples according to their IBD diagnosis, without specifying
the type of disease. Different feature selection procedures were
used to identify those genera presenting significant differences.
Finally, the best model was taken to external validation in two
publicly available cohorts, for the identification of Crohn’s disease
and ulcerative colitis. The best model achieved at this stage
performances higher than AUC= 0.7 in both datasets, showing a
high generalization of the model.

2. MATERIALS AND METHODS

2.1. Training Dataset
The data used in this work was downloaded from the American
Gut Project (AGP). We have created a public repository where
we indicate all the steps to proceed for the data download:
https://github.com/jlinaresb/IBDpred. Raw data of Operational
Taxonomic Unit (OTUs) counts from AGP were downloaded.
Annotation of taxonomic data and other aspects related with data
generation can be consulted in original paper (McDonald et al.,
2018).

2.2. Preprocessing Pipeline
Since some patients had multiple samples, a single sample from
each patient was selected first. The selection was made according
to the sampling date, selecting the most recent one. For those
patients in whom it was not possible to make the selection in this
way, the selection was made randomly.

Phyloseq R package (McMurdie and Holmes, 2013) was
used to manage this data. Phyloseq class was created from
biom, tree and clinical files. Only fecal samples were selected
to further analysis. We obtained a total of 36.405 OTUs from
12.189 individuals. The first step was agglomerate all OTUs at
the taxonomic rank of Genus. After this step, the dataset was
simplified to 2.082 OTUs. Those OTUs that had an unknown
genus (labeled as “g__”) were eliminated. Finally, the dataset
was reduced to 1,322 variables. Then, it was carried out an
analysis of outliers using the Isolation Forest technique (Liu
et al., 2008) from H20 R package (LeDell et al., 2020). With
this technique we were able to eliminate a total of 1.219
individuals. The remaining individuals were labeled according
IBD diagnosis. The dataset was labeled and balanced to the
positive class. For our analyses we focused in patients with IBD
diagnosis, regardless of the subtype of the disease. The final
dataset presented 642 individuals. Control samples were selected
randomly between those without the disease. Then, OTU’s counts
were log2 normalized before feature selection and machine
learning analysis.

After preprocessing, whole dataset was splitted into 85%
train and 15% test set. Train set was the input to feature
selection algorithm.

Characteristics of both train and test data are showed in
Table 1. P-values were calculated in order to compare different
subgroups of patients according the confounders.

2.3. Feature Selection
In order to select the best features to discriminate samples
according IBD diagnosis, several feature selection processes
were applied to reduce the dimensionality of the problems
and remove noisy features, present in several biological
problems. Since there is no standard for the selection of
features on metagenomic data, which are characterized by
being extremely sparse, a search was performed using several

TABLE 1 | Summary descriptives table by groups of “cohort.”

Test Train p.overall

N = 97 N = 545

Age 46.7 (17.8) 45.1 (17.0) 0.413

Sex 0.267

Female 50 (51.5%) 286 (52.5%)

Male 45 (46.4%) 251 (46.1%)

Unknown 1 (1.03%) 8 (1.47%)

Unspecified 1 (1.03%) 0 (0.00%)

IBD 0.270

Control 54 (55.7%) 267 (49.0%)

IBD 43 (44.3%) 278 (51.0%)
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feature selection techniques. Each of the techniques used is
discussed below.

2.3.1. Kruskal-Wallis Tests

In this case, we have used a filter approach to obtain a
score that measures the relevance of the features against the
class vector by observing only the intrinsic properties of the
data without taking any assumptions from the classifiers. This
approach is computationally simple and fast. For the calculation
of the relevance of the variables, a kruskal-wallis test was
used. Because characteristics of the dataset, a non-parametric
univariate statistical tests was used. According to the significance
of this test, we ranked the features and explored the sizes of
different subsets (5, 10, 20, and 40).

2.3.2. Fast Correlation Based Filter for Feature

Selection (FCBF)

Also, a predominant correlation analyisis (Yu and Liu, 2003) was
used to evaluate features correlation train dataset and to filter
out the most informative features, reducing the dimensionality
of the analysis. This approach is basically a multivariate filtering
method, which uses the measure of entropy (H) and the
Information Gain (IG) for the search of the subgroup of
dominant features for a specific condition. The action of these
two measures is encapsulated in the Symmetrical Uncertainty
(SU) (Press et al., 2007).

Initially, the SU value was calculated for each feature,
keeping relevant features based on a threshold (0.0025) and
sorting them in descending order according to this value.
Secondly, features providing redundant information were
removed. For a better understanding of this methodology, see
Yu and Liu (2003). Thus, we selected features in a model-
independent manner, selecting features with high correlation
with patient country origin, but little correlation with other
non-informative features (predominant correlation). In our
study, this approach was run on the entire set of features,
after preprocessing, with more than 1.000 different features.
Out of these, the algorithm extracted 37 that satisfied the
defined requirements.

2.3.3. Linear Decomposition Model (LDM)

Linear decomposition model (Hu et al., 2021) was used
to investigate association of the metagenomic profile with
IBD diagnosis. LDM provides both global test of any effect
of the microbiome and tests of the effects of individual
OTUs with false discovery rate (FDR)-based correction for
multiple testing. Taxa with differential abundance across sample
groups were detected by LDM with FDR correction (FDR
nominal = 0.01) using the Benjamini-Hochberg method.
We have paid attention to which OTUs had significant
differences in abundance between IBD and non-IBD samples.
After applying the model, we found out three OTU’s with
significant difference.

The model was carried out establishing a maximum of 10,000
permutations as stopping criteria and the Bray Curtis method
was used to calculate the distance matrix.

2.3.4. Differential Abundance

For this approach carried out a differential analysis using
the (Robinson et al., 2010) package. This package was first
implemented to model gene expression data, such as RNASeq.
In this work, we have used the adaptation of edgeR for
metagenomic data (McMurdie and Holmes, 2014), implemented
in the phyloseq package (McMurdie and Holmes, 2013). To
estimate differential expressed OTU’s we used a Fisher exact
test. Finally, through this approach, we select a total of 14
significant OTU’s.

2.4. Machine Learning
Machine Learning helps to explain and extract specific knowledge
from a set of data that humans would not be able to achieve. In
this work, we used two different implementations of the following
of Machine Learning algorithms: random forest (RF) (Breiman,
2001) and generalized linear model (glmnet) (Friedman et al.,
2010).

The critical part of any Machine Learning algorithm is its
training. Each algorithm has a set of hyperparameters that must
be tuned to fit the training data. Themethodology used for model
validation will be explained in detail later.

Random forest (RF) was developed by Breiman (2001) and
consists of an ensemble of independent decision trees based on
random resampling of the variables for the construction of each
tree. A majority vote of the trees in classification is taken as the
prediction. Thus, RF adds an additional layer of randomness to a
conventional bagging approach.

A search was made of the appropriate values for the
parameters mtry (number of variables randomly sampled in
each division of the data) and nodesize (minimal size of the
terminal nodes). The range for the number of variables was
established between 1 and, as the upper limit, the square root
of the number of variables with the largest dataset. The minimal
size of the terminal nodes ranged between 1 and 3. Low values
for this parameter provide great growth and depth of each tree,
improving the accuracy of predictions. In addition, the number
of trees was 1,000. A large number of trees ensures that each
observation is predicted at least several times.

Logistic regression is a popular classification algorithm in
machine learning problems when the response variable is
categorical. The logistic regression algorithm represents the
class-conditional probabilities through a linear function of the
predictors. In this study, we use a fast regularization algorithm
that fits a generalized linear model with elastic-net penalties,
called glmnet. The algorithm was developed by Friedman et al.
(2010). The elastic-net penalty can tend toward the lasso penalty
(Tibshirani, 1996) to the ridge penalty (Saunders et al., 1998). The
ridge penalty is known to shrink the coefficients of correlated
predictors toward each other, while the lasso tends to pick one
of them and discard the others. Therefore, the elastic-net penalty
mixes these two.

The grids of alpha and lambda for tuning are (0.0001, 0.001,
0.01, 0.1, and 1) and (0, 0.15, 0.25, 0.35, 0.5, 0.65, 0.75, 0.85, and
1), respectively. Alpha controls the elastic-net penalty, from lasso
(α = 1) to ridge (α = 0). The lambda parameter controls the total
force of the penalty.
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2.5. Experimental Design
The experimental design focused on the search for metagenomic
variables for the stratification of patients according to IBD
diagnosis. The AGP dataset was used for this purpose. The AGP
comprises the largest dataset in terms of metagenomics research.
It consists of more than 16,000 samples from individuals from
all over the world, although with the highest density from the
USA, Canada and the United Kingdom. This dataset, due to its
diversity, offers the possibility of generating predictive models
capable of generalization to a large scale. In this case, the limiting
factor of the study was based on the number of samples that have
been diagnosed with IBD. Once these samples were identified,
the negative class of our classifier was chosen randomly from all
other samples in the data set. In order for the model to be robust,
a balanced number of samples was chosen.

The dataset was divided into a train set and a test set. The
train set was subsequently used for variable search and algorithm
training. For the variable search, OTUs were agglomerated at
the genus level. In addition, counts were log2 normalized before
running the Feature Selection algorithms.

Four different strategies were used for feature selection, all
of them independent of the Machine Learning models. The
features selected by each of the FS strategies were the inputs
for the two selected ML algorithms. The goal of this process
was to select a subset of features, without altering the original
representation of the data. Therefore, redundant and noisy
variables were removed from the dataset. By selecting strategies
independent of the classification algorithms, a comparison can
be made in the performance of the algorithms, for further
biological interpretation.

A nested resampling was used for the training of the
models. The characteristic of this process is the presence of an
independent internal cross-validation (2/3 for training and 1/3
for validation) for the selection of the best hyperparameters of
each algorithm and an independent external cross-validation
(5 repetitions of a 10-fold-CV) to evaluate the model in a
general way. For each 10-fold-CV experiment, the samples were
randomly divided into ten sets. Nine sets were used for training
the model, and the remaining set was used for testing. The
process was then repeated ten times such that each set was
used once as a test set. The average performance of all 10
sets was reported as the final performance of the method. We
repeated this process 5 times for each ML algorithm, and we
presented the mean average of the 5 runs in the figures of
the paper.

The performance of the different experiments was
determined through the package "mlr" (Bischl et al., 2016).
This package facilitates the design of machine-learning-
based experiments, reducing the amount of scripting
needed and providing a simpler and more manageable
platform for development while facilitating reproducibility
and replicability. Moreover, this package ensures that the
execution of the machine learning algorithms follows the
experimental design under the same conditions, thus allowing
the comparison under equality of conditions. For the evaluation
of the models, we used accuracy (to compare our findings
with the state of the art) and the area under the receiver

operating characteristic curve (AUC) to control for type I and
II errors.

2.6. External Validation
The variability of metagenomic data, both biologically due to
differences in population demographics and technicaly due to
aspects such as sequencing platforms and sequencing depths,
severely complicates the validation of predictive models in
external databases. In this case, and in order to validate our
models, as well as the variables found by the different FS
strategies, two independent external datasets were downloaded
fromMorgan et al. (2012) and Gevers et al. (2014).

These datasets were chosen because they present two subtypes
of IBD, Crohn’s Disease (CD) and Ulcerative Colitis (UC). In this
way, our models, without prior IBD subtype information, can be
validated in two different subtypes.

As discussed above, due to the variability of the datasets,
there are some genus in the training dataset that are not
available in our validation cohorts. Therefore, in order to validate
the information present in the variables identified by the FS
algorithms, it was necessary to perform a retraining of the models
from the variables available in those cohorts.

For model re-training, the features identified by each of
the FS algorithms were selected. Subsequently, these features
were intersected with the variables available in the validation
cohorts. Only two subgroups of variables, those obtained by the
FCBF techniques and those obtained by the kruskal wallis (K40)
techniques, were taken to external validation. The main reason
was the number of initial features (37 and 40, respectively). In this
way, it is expected that the elimination of certain features will not
notably influence the performance of the models.

Of the K40 subgroup, the cohort of Morgan et al. contained 21
characteristics, and Gevers et al. 22. As for the FCBF subgroup,
Morgan et al. contained 9 and Gevers et al. 12.

3. RESULTS

3.1. Presence of IBD Can Be Predicted by a
Small Subgroup of Genus
We used four different strategies to identify distinctive features
between the two different sample groups (IBD-positive and IBD-
negative diagnosis). All feature selection methods used searched
within the 1,322 different features, corresponding to genus level.
The Figure 1A shows data ratios in both train and test sets.

We used Kruskal test as univariate method to rank genus
according to their correlation with disease status. Different
subgroups of genus were selected (5, 10, 20, and 40). The
FCBF method was chosen as the multivariate filter method. This
method identified 37 genus with low correlation between them
and a high correlation with the target variable. On the other
hand, 14 genus showed a differential expression between the
two subgroups of samples. Finally, LDM-based feature selection
identified three genus with significant differences. Figure 1B
shows the features shared by each method. Kruskal (n = 40)
and FCBF, which were the methods that identified the most
features, have six genus shared only between them, while the
vast majority were identified only by each method. On the
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FIGURE 1 | Signature identification. (A) Training and test data available from the American Gut Project for IBD samples. (B) Upset plot indicating the common features

selected by each FS method. (C) Variable importance of the winning model measured after cross-validation. In this case, the 40 genera selected by the Kruskal Wallis

method are shown. The bars represent the importance of the variables within the glmnet model. This was done by summing the betas of each variable over all

iterations of the CV. (D) Comparison of the performance of the models in train and test. Note that the train value is the result of the arithmetic mean of the five

iterations of the CV, while the test result is a single measure. The results of the glmnet and RF models are shown in AUC value.
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other hand, differential abundance analysis identified 13 unique
characteristics, while LDM shares two of its three characteristics
with Kruskal. The genus Streptococcus is the only characteristic
common to all four FS methods.

We used the output of each FS as input in ML-based
classification models. Two types of supervised models were
selected for classification analysis. Both models have been widely
used in the field of omics analysis since are simple, fast and
explainable. Figure 1D shows the performances achieved in both
the train and test sets. The train results is the average of the
performances of the 50 generated models (in purple), while test
results (in yellow) shows the prediction of the 15% of samples
excluded during data split.

Features identified by differential abundance and LDM do not
show satisfactory performance during training, as it is shown in
Figure 1D. On the other hand, both FCBF and Kruskal seem
to identify features capable of adequately classifying patients
according to their IBD diagnosis. Regarding kruskal, it seems
that as features are added, glmnet model performs better. The
same is not true for the RF algorithm, which experiences a drop
on its performance after increasing from 20 to 40 features. We
hypothesize that models with a higher number of genus such
as FCBF and K40 perform better in both types of models and
in both data subsets. Due to the heterogeneity and phenotypic
complexity of IBD patients, it is necessary to include a large
number of variables. This fact also leads to a higher risk of
overfitting of the models, so validation with external cohorts
is necessary.

In general, we observed test results achieving better
performances than train results. This fact is easily explainable
because the train performance is the mean of 50 results, while test
performances corresponding only to a unique value. Therefore,
lower values in some folds in CV experiments decrease the mean
of the distribution. In that sense, it was considered appropriate
to validate the models on a test subset.

We performed a normality analysis using the Shapiro-Wilk
test with the null hypothesis that the data follow a normal
distribution. The null hypothesis was rejected with values W =

0.9913 and p < 0.0003852 therefore it could be considered that
our results did not follow a normal distribution. We performed
a Bartlett test with the null hypothesis that our results were
heteroscedastic. The null hypothesis was not rejected with a value
for Barlett’s K squared measure of 16.981 with 13 degrees of
freedom and p < 0.2002. In this case, one of three conditions
required for a parametric test does not hold and thus, consistent
with both tests, we performed a non-parametric Friedman test
with the Iman-Davenport extension assuming the null hypothesis
that all models have the same performance.

The average rankings of the techniques compared are shown
in the following table with Iman and Davenport statistic
(distributed according to the F-distribution with 13 and 637
degrees of freedom: 43.26 and p < 9.88 10–79). Hence,
glmnet model with 40 features selected by kruskal test is the
control model.

After the test for choose the significantly better model, a
Finner post-hoc procedure must be used in order to correct and
adjust the p-values. Finner’s procedure rejects hypothesis with

a value ≤ 0.046, which means that the rest of the models but
glmnet model trained with 37 features from FCBF are satistically
significantly worse than the control model.

Figure 1C shows the variable importance of best model
in the training set. This model corresponds to a glmnet
model trained with 40 genus from kruskal-wallis test. Variable
importance shows the sum of the betas over the 50 repetitions.
The genera shown on the vertical axis correspond to the
Greengenes taxonomic annotation performed by the American
Gut Project. HTCC2188 and Parvimonas genus present the
highest value of importance. Genera such as Rhodoplanes,
Streptococcus, Xenorhabdus, Janthinobacterium, Propionivibrio
or Limnohabitans also stand out. On the other hand, the genera
Anaerostipes, Ruminocococcus, Coprococcus, Limnobacter,
Christensenella, Dehalobacterium, and Roseburia are not
important in the model.

Figure 1 also shows the phyla distribution through identified
genus. We noted that Proteobacteria is the most representative
phylum, with an abundance of 42.5%. In second place is the
phylum Firmicutes with 40.5%, followed by Bacteroidetes with
12.5%, while Cetobacterium and Verrucomicrobia only present a
single genus each.

Based on the sum of betas through the 50-fold CV
experiment, we focused on the ranking of importance for
each genus. We observe that Firmicutes and Proteobacteria
occupy the top positions. It should also be noted that
most of the genera belonging to the phylum Proteobacteria
have a significant importance in the model, while eight of
the 16 genera belonging to the phylum Firmicutes have
an importance near zero. As for the phylum Fusobacteria
and the phylum Verrucomicrobia, both are in positions of
great significance.

The results observed throughout Figure 1 indicate that the
metagenomic profile presents sufficient information for the
classification of the samples according to their IBD diagnosis.
It should be noted that no further information was included
in the models, in the form of covariates, so the training
of the models was performed only with information from
16S sequencing.

In addition, a correlation analysis was performed between
the predictions of the selected models (in train and test)
and certain cofounders that could affect the disease.
Specifically, patient age, gender, alcohol consumption,
BMI, antibiotic and probiotic intake and appendix
removal were included in the analysis. The results of
the correlation study in train and test are shown in
Supplementary Figures S1, S2, respectively. In the train
set, the variables corresponding to alcohol consuptiom (p
= 0.038), antibiotic and probiotic intake (p = 1.6e-06) and
appendix removal (p = 0.0014) presents significative values.
In test subset, only alcohol consumption variable (p = 0.043)
achieved significance.

Due to the variability and heterogeneity of the data generated
by omics technology, it is necessary to validate the models in
external cohorts. In the following section we show a validation
in two external cohorts differentiating the samples according to
its disease subtype.
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3.2. Ulcerative Colitis and Crohn’s Disease
Shared Common Patterns at Genus Level
We carried out an external validation to interrogate if the
identified genus has an informative value. In addition, we
hypothesize that the identified subgroup is capable of identifying
affected samples both in Ulcerative Colitis (UC) and Crohn’s
Disease (CD). In order to validate this hypothesis we selected
two different cohorts to analyse the predictive value of our
genus subgroup.

Although the type of IBD diagnosis was not specified in the
AGP cohort, data from two external cohorts with two different
subtypes of IBD were chosen. Gevers cohort (Gevers et al., 2014)
includes samples of patients diagnosed with Crohn’s Disease
(CD), while Morgan cohort (Morgan et al., 2012) includes
Ulcerative Colitis (UC) samples.

Based on the results in train and test sets, FCBF and K40
selected features were validated in external cohorts. Due to
heterogeneity of sequencing platforms, not all genus are present
in the external validation cohorts. In order to validate the general
information in each genus subgroup, the intersect with available
genus in both cohorts were made. Unfortunately, only twelve

and nine genus of FCBF subgroup were present in Gevers and
Morgan cohorts, respectively. Therefore, due to the significant
loss of features, FCBF subgroup was not considered for external
validation. In contrast, the subset found by K40 had 22 and
21 features in the Gevers and Morgan cohorts, respectively.
Although the loss is also large in several metagenomic subsets,
it was still considered appropriate to perform external validation
bases on our hypothesis that shared features present sufficient
information to obtain significant results in external cohorts.

Due the loss of genus, glmnet and RF models were re-
trained in AGP cohort with the available genus. Figure 2A shows

performances of both models in each cohort. Gevers andMorgan

cohorts presents 300 and 66 samples respectively to validate

the models. The used genus in external cohorts are shown in
Figure 2C. On one hand, glmnet has low performance for both
cohorts (0.5478 of AUC in Gevers; 0.5532 of AUC in Morgan)
whereas RF model achieve better results in both (0.7588 of AUC
in Gevers; 0.7391 of AUC inMorgan). ROC curves for RFmodels
are shown in Figure 2B.

In order to infer microbiome distribution in the external
cohorts, we plotted heatmaps in both cohorts (see Figure 3).

FIGURE 2 | External validation results. (A) Results obtained in each of the external validation datasets, measured in AUC. (B) ROC curve of the RF model in the two

external validation datasets. (C) Genes available in each external validation cohort, with which the models were re-trained.
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FIGURE 3 | Heatmaps of the signature in external cohorts. Abundance of genera used for retraining in the cohort of (A) Gevers et al. and (B) Morgan et al. In both

figures, genera are ordered according to model importance.

Genus are sorted by model importance, while samples are
sorted by disease status. Moreover, we included the prediction
label for each sample from our model. Firstly, it can be
seen that there is very little presence of some genera, mainly
due to the heterogeneity of the sequencing platforms and
their depth. Figure 3A shows how Parabacteroides, which
is the most important genus in the model, is not present
in the CD cohort. As for Akkermansia, there is a clear
pattern of the presence of this genus in undiagnosed patients.
Other two genera, such as Butyricicoccus and Acidovarax
also exhibit a stratified distribution in the two subsets of
patients. In terms of model predictions, a higher accuracy in

predicting patients diagnosed with CD is observed. Despite
the heterogeneity of the cohort, the model performance is
considerably high.

As for the UC cohort, as shown in Figure 3B, the presence of
the genera Parabacteroides, Coprococcus and Ruminocococcus
seems to be more present in patients with the disease, while
Parvimonas and Butyricicoccus seems to be more abundant in
disease-free patients. As in the CD cohort, there is a very large
heterogeneity between the training and validation cohort, with
several important genera missing from the model. Even so, it
appears that the model is able to accurately predict the presence
of disease.
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These results show the predictive capacity of our genus
subgroup and the ML model to predict diverse subtypes
of IBD. Although patients with IBD presents a wide
range of symptoms, is clear that these subtypes share some
metagenomic profiles.

4. DISCUSSION

The results obtained in this work show the strong relationship
between intestinal microbiome and IBD. Using FS and ML
techniques, a relationship between different genus and the
presence of the disease has been established. Furthermore,
without the inclusion of any cofounder, high performance in
predictions is observed, both in the set of train, test and
external validation.

In the external validation, the glmnet model decreases its
performance considerably, while RF obtains much better results.
These results seem to indicate that the model obtained with
glmnet in the training process presents a degree of overfitting.
In addition, there could be non-linear relationships in the data,
identified by the RF model and not by the glmnet model.

One aspect to consider is the use of genus as the taxonomic
level to perform the search. Unlike the taxonomic level of
species, which is more specific when it comes to establishing
a diagnosis, the genus offers more robustness in the analyses.
In addition, heterogeneity in sequencing platforms makes it
difficult to standardize data across different cohorts. This is
multiplied as we move down the taxonomic scale. Therefore, in
our case, when training in a cohort such as the AGP cohort,
where the sequencing depth is much greater than the validation
cohorts, we consider that the use of genus as the taxonomic level
is appropriate.

On the other hand, it has been observed that two subtypes
of IBD such as UC and CD present common profiles in the
microbiome. This is very interesting, because it makes it possible
to search for common treatments in both subtypes. In CD, the
pattern of genus Akkermansia suggest a clear protective action,
which coincides with the results of the Magro et al. (2019). In
general, there is no clear distribution of genus in the validation
cohorts, which makes the use of ML techniques more valuable,
as they are able to find complex non-linear patterns in order to
obtain a high yield in previously unanalysed samples.

Motivated by these results, and in order to check which
genus are related with each subtype, we performed an automatic
analysis of the literature. We ran a script involving the use of
Pubtator (Wei et al., 2013) annotations. This analysis allowed us
to retrieve 162,674 documents in Pubmed associated with the
organisms (including species and subspecies) discussed in this
manuscript of which 140,646 (86%) also included at least one
disease related MeSH term (a total of 8,164 different MeSH terms
were identified). We subsequently focused on the identification
of the co-citation of the bacteria of interest and the conditions
of interest, Inflammatory Bowel disease (IBD), Crohn’s Disease
(CD) or Ulcerative Colitis (UC), using their MeSH associated
terms (D015212, D003424, and D003093, respectively). We were
able to identify a total of 21,544 (13%) documents co-citing these

diseases and the identifiedmicroorganisms. IBDwas themost co-
cited term appearing in 10,611 papers (being the 26thmost highly
co-cited disease associated with this set of microbes), followed by
CD and UC with 6,160 and 4,773 documents, respectively.

Finally, it is important to note a number of limitations of
this study. Firstly, in metagenomics studies there is increased
heterogeneity between cohorts. As mentioned above, due to the
different sequencing platforms, there is a lot of difference in the
available cohorts. Being able to validate the results is extremely
difficult under these conditions. This fact adds value to the results
obtained in this work. Even so, it is noted that a standardization
of the cohorts would enable a better performance of the model.
Moreover, the need to re-train the model due to the absence of
different genders greatly limits the predictive capacity. On the
other hand, the AGP cohort was used as a training set, which,
although it has a large sample size, is not properly labeled, so it
is possible that patients with very different degrees of the disease
were labeled in the same way.

5. CONCLUSIONS

Here we have demonstrated how microbiome data can be
used to predict IBD diagnosis through ML models. After
microbiome signature search in IBD datasets, without subtype
specifications, our model is able to predict IBD subtypes. These
results says that the two subtypes of IBD such as Ulcerative
Colitis and Cronh Disease have similar microbial patterns.
Commons drugs and/or probiotics treatments can be works in
both subtypes.

Ongoing efforts to investigate the roles of these microbes
in IBD will be enable substantial improvements in early
diagnosis and personalized treatments. Moreover, deeper
examination of meta-cohort analyisis must be addressed
in metagenomic field, in order to build most robust
ML models.
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