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Abstract
Preclinical forms of gastrointestinal stromal tumor (GIST), small asymptomatic le-
sions, called microGIST, are detected in approximately 30% of the general popu-
lation. Gastrointestinal stromal tumor driver mutation can be already detected in 
microGISTs, even if they do not progress into malignant cancer; these mutations 
are necessary, but insufficient events to foster tumor progression. Here we pro-
filed the tissue microbiota of 60 gastrointestinal specimens in three different 
patient cohorts—micro, low-risk, and high-risk or metastatic GIST—exploring the 
compositional structure, predicted function, and microbial networks, with the aim 
of providing a complete overview of microbial ecology in GIST and its preclinical 
form. Comparing microGISTs and GISTs, both weighted and unweighted UniFrac 
and Bray–Curtis dissimilarities showed significant community-level separation 
between them and a pronounced difference in Proteobacteria, Firmicutes, and 
Bacteroidota was observed. Through the LEfSe tool, potential microbial biomarkers 
associated with a specific type of lesion were identified. In particular, GIST samples 
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1  |  INTRODUC TION

Gastrointestinal stromal tumor is a rare soft tissue sarcoma of the GI 
tract arising from the interstitial cells of Cajal, with an incidence of 
1–1.5 per 100,000. Preclinical forms of GIST, small (<1 cm) asymp-
tomatic lesions, also called microGISTs, are much more common, 
occurring in 20%–30% of the general population.1–3 The majority of 
GIST patients harbor specific driver mutations in the KIT or PDGFRA 
genes (85%–90% of cases), or, in a smaller percentage of cases, in 
other genes, including NF1, BRAF/RAS, and SDH.4 Interestingly, in 
microGISTs, driver mutations can already be detected.1,5 Therefore, 
considering that <0.1% of microGISTs progress to cancer, it is clear 
that these mutations are necessary, but insufficient events to foster 
tumor progression.1

Despite significant breakthroughs in target therapies with the 
development of “smart drugs,” such as imatinib and other tyrosine 
kinase inhibitors, drug resistance is common and remains a rele-
vant clinical issue. The hypothesis is that the microenvironment 
of solid tumors continues to confound therapeutics and, in this 
context, growing importance is being given to the surrounding en-
vironment in which the cancer itself grows. In particular, in recent 
years, studies have suggested a role of the microbiota residing 
in the GI tract (i.e., the gut microbiota) in the development and 
prognosis of GIST.6–8 Most of the available information concerns 
the luminal or fecal microbiota (usually referred to as the gut mi-
crobiota), which is well known to consistently communicate with 
the host, establishing a mutualistic relationship, whose breakdown 
can have serious repercussions on the host health.7 More recent 
evidence also underlines the relevance of the tissue microbiota 
in promoting tumor growth and influencing therapy.9,10 However, 
knowledge of complex host–microbiota interactions in cancer tis-
sue is still limited, especially for GIST, and is completely absent for 
microGISTs.7,11,12

In light of these considerations, we profiled the microbiota of GI 
tissue specimens in three different patient cohorts, microGIST, LR 
GIST, and HR or MET GIST. Specifically, we explored compositional 
structure, predicted function, and microbial networks, with the aim 
of providing a complete overview of microbial ecology in GIST and 
its preclinical form.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

The main clinical characteristics of analysed patients are sum-
marized in Table S1. Formalin-fixed, paraffin-embedded samples 
(n = 60) were collected from Caucasian patients at the Policlinico 
Universitario Fondazione Agostino Gemelli (Rome, Italy), between 
2009 and 2015. The study was approved by the institutional eth-
ics committee (Protocol n. UCSC9421/18-15338/18-ID1969). The 
investigated cases included 30 microGISTs, 15 LR, and 15 HR/
MET GISTs. MicroGISTs were identified during investigational 
procedures for common symptoms; GIST risk assessment was 
evaluated according to the AFIP criteria.13 To reduce potential 
bias related to the driver mutation, we primarily selected a ho-
mogeneous cohort of GIST patients, with a KIT primary mutation. 
However, given the rarity of microGISTs, we also included five 
lesions with a PDGFRA alteration to include a larger number of 
cases.

2.2  |  Tissue microbiota profiling: 16S rRNA gene 
sequencing, bioinformatics, and biostatistics

Total DNA was isolated from FFPE tumor samples, using the 
RecoverAll Total Nucleic Acid Isolation Kit (Thermo Fisher 
Scientific), according to the manufacturer’s protocol. Two expert 
pathologists examined tissue slides to confirm the diagnosis and to 
ensure the inclusion of cancer tissue. To check the risk of contami-
nation we also isolated DNA from the edges of the FFPE block as 
negative control (wax not containing tissue sample). The extracted 
DNA was then subjected to microbiota analysis. Briefly, the V3–
V4 hypervariable regions of the 16S rRNA gene were amplified 
by using universal primer pairs with Illumina overhang adapter 
sequences. Polymerase chain reaction products of approximately 
460 bp were purified using a magnetic bead-based clean-up sys-
tem, indexed by limited-cycle PCR using Nextera technology, and 
additionally purified using Agencourt AMPure XP magnetic beads 
(Beckman Coulter). Indexed libraries were pooled at an equimolar 

were significantly enriched in the phylum Proteobacteria compared to microGISTs. 
Several pathways involved in sugar metabolism were also highlighted in GISTs; this 
was expected as cancer usually displays high aerobic glycolysis in place of oxidative 
phosphorylation and rise of glucose flux to promote anabolic request. Our results 
highlight that specific differences do exist in the tissue microbiome community be-
tween GIST and benign lesions and that microbiome restructuration can drive the 
carcinogenesis process.
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concentration, denatured, and diluted before loading onto the 
MiSeq flow cell. Sequencing was carried out on an Illumina MiSeq 
platform using a 2 × 300 bp paired-end approach. Sequencing reads 
were deposited in the NCBI Sequence Read Archive (BioProject ID 
PRJNA748200).

Raw sequence data were first quality checked by using FastQC. 
The PCR primers were removed from raw reads by applying cut-
adapt.14 Subsequently, the retained paired-end reads were de-
noised into ASVs15 by applying DADA2 (version 1.10.1).16 Amplicon 
sequence variants were taxonomically annotated by using the 
QIIME217 classify-sklearn plugin and the release 138 NR 199 of the 
SILVA database.18 Contaminant ASVs were identified by using de-
contam19 and those assigned as chloroplast and mitochondria were 
removed from subsequent analysis. Retained ASVs were multial-
igned by applying MAFFT20 and the obtained multiple sequence 
alignment was used to build a maximum-likelihood phylogenetic 
tree in FastTree 2. The R packages phyloseq (1.26.1)21 and vegan 
(2.5-6)22 were used to measure alpha (intrasample) and beta (inter-
sample) diversity. For this purpose, ASV counts were normalized 
by using rarefaction (depth values settled to 15,000). In particu-
lar, the Shannon and Simpson indices were used as measures of 
alpha diversity, and the Bray–Curtis and weighted UniFrac23 dis-
similarity matrices were used to measure beta diversity. Statistical 
differences in alpha diversity indices were assessed using the KW 
followed by W tests.

We used PERMANOVA to infer the explained variability in beta 
diversity data. Prediction of metagenome metabolic pathways was 
carried out by using PICRUSt224 with the MetaCyc database25 as 
a reference. Associations between taxa/pathways and the tested 
conditions (i.e., microGISTs, LR, and HR/MET GISTs) were sought 
by applying LEfSe.26 To deal with the compositional nature of ASV 
counts, the data were normalized by geometric mean of pairwise 
ratios (GMPR)27 and DESeq2 was applied to compare abundances. 
Microbial networks were inferred using the NetCoMi framework.28 
In particular, ASV counts were normalized by applying the mclr 
(modified centered log-ratio transformation) procedure and the net-
work estimation was undertaken using SPRING, which transforms 
the estimated partial correlations into dissimilarities through the 
“signed” distance metric.29 The inferred similarities were used as 
edge weights.

Node clusters were inferred using the fast-greedy algorithm. 
For each estimated network, the hub node identification was 
achieved based on the degree (number of adjacent nodes), be-
tweenness (ability of the network to connect sub-networks), 
closeness (a measure of how close a node is to other nodes), and 
Eigenvector (a node is central if the connected nodes are also 
central) centrality proprieties and considering the nodes with the 
highest centrality values. Finally, the network comparison was car-
ried out in NetCoMi by using 1000 permutations. p-Values were 
corrected for multiple comparisons using the Benjamini–Hochberg 
method. A false discovery rate of 0.05 or less was considered as 
statistically significant.

3  |  RESULTS

Approximately 4.2 million paired-end reads (mean ± SD, 
70,600 ± 16,800) were generated across all samples; following the 
trimming, merging, and denoising procedures approximately 59% 
of the initial sequences were retained. Overall, 5574 ASVs were 
obtained and according to the taxonomic classification, 232 chlo-
roplast and mitochondrial sequences were identified and removed 
from further analysis. Thirty additional ASVs were identified as con-
taminants by using decontam and removed from analysis.

After stratifying for microGIST, LR GIST, and HR/MET GIST, alpha 
diversity was evaluated through the Shannon and Simpson indices, 
highlighting a significant difference across the three groups (KW 
p = 0.011 and KW p = 0.004, respectively; Figure 1A,B). For both in-
dices, post-hoc tests showed statistically relevant differences among 
microGISTs and both LR and HR/MET GISTs (Shannon index: W 
p = 0.015, both; Simpson index: W p = 0.009 and 0.005, respectively, 
Figure 1A,B). In contrast, no significant differences were observed be-
tween LR and HR/MET patients for alpha diversity. We also evaluated 
Shannon and Simpson indices in GISTs versus microGISTs, observing 
significant difference (W p  =  0.0027 and p  =  0.0009, respectively; 
Figure 1C,D). Regardless of the used alpha diversity indices, no rel-
evant differences were observed in female patients. In male patients, 
the Shannon and Simpson indices were significantly different between 
LR and microGISTs (p = 0.02) and between microGISTs and both LR 
(p  =  0.02) and HR/MET GISTs (p  =  0.03), respectively. Similarly, in 
GISTs (LR + HR/MET) versus microGISTs, the Simpson index was sig-
nificantly different in male subjects (p = 0.034) (Figure S1).

Differences in microbiota composition (beta diversity) were eval-
uated using weighted and unweighted UniFrac and Bray Curtis dis-
similarity metrics (Figure  S2). The PERMANOVA analyses showed 
that tumor groups significantly explained the observed variability in 
all three applied metrics (p < 0.05; Table S2).

3.1  |  Microbiota composition of microGISTs differs 
from GISTs

We compared the microbiota composition of microGISTs with GISTs 
(LR + HR/MET). Figure S3 summarizes the relative abundance at the 
phylum level for the two groups (Table  1). Significant differences 
were found in the relative proportion of five phyla; specifically, 
Armatimonadota (p < 0.0001), Mixococcota (p  =  0.01), Chloroflexi 
(p = 0.01), and Planctomycetota (p = 0.02) were over-represented, 
whereas Proteobacteria (p  =  0.001) was under-represented in mi-
croGISTs compared to GISTs. With regard to the family rank, 24 
taxa were statistically different. Among these, Nitrosomonadaceae, 
Sandaracinaceae, Acidobacteriae, Mycoplasmataceae, and 
Solirubrobacteraceae were more abundant in microGIST (all p = 0), 
whereas Ethanoligenenaceae, Acidithiobacillaceae, and Rikenellaceae 
were over-represented in GISTs (all p = 0). At the genus level, these 
findings were reflected in 93 genera differentially represented in 
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microGISTs compared to GISTs. Considering those most abundant, 
Ralstonia (p  =  0.02), Cloacibacterium (p  =  0.04), and Halomonas 
(p  =  0.03) were mostly observed in microGISTs, but Prevotella 
(p < 0.05) in GISTs. Data are reported in Table S3 together with the in-
formation about nondiscussed taxonomic ranks (i.e., class and order).

Based on the ASV distribution, the linear discriminant analysis 
coupled with effect size (LEfSe) tool allowed us to identify possi-
ble microbial biomarkers associated with a specific tumor subtype. 
The cladogram (Figure 2) summarizes the LEfSe association by rep-
resenting the taxonomic relationship between significant ASVs as-
sociated with each group. In particular, an enrichment of Prevotella 
was observed in GISTs, whereas Halomonas, Shewanella, Escherichia, 
Enhydrobacter, and Cloacibacterium were enriched in microGISTs.

3.1.1  |  Prediction of metabolic functional 
profile and pathways

The metagenomic functional profile, predicted with PICRUSt2, 
highlighted 13 pathways that were significantly differentially 

F I G U R E  1  (A, B) Alpha diversity 
was measured in HR/MET, LR, and 
microGISTs by Shannon (A) and Simpson 
(B) indices. (C, D) The same was done for 
a comparison of LR and HR/MET GISTs 
versus microGISTs. The obtained values 
are shown as boxplots. Nonparametric 
Kruskal–Wallis and Wilcoxon tests were 
used to compare data distribution among 
groups

TA B L E  1  Phylum-level relative mean abundance in microbial 
communities in GIST and microGIST samplesa

MicroGISTs (%) GISTs (%)

Proteobacteria 55.06 60.30
Actinobacteriota 13.26 13.36
Firmicutes 12.22 8.47
Bacteroidota 8.46 4.93
Deinococcota 7.92 11.52
Chloroflexi 0.48 0.15
Cyanobacteria 0.39 0.03
Fusobacteriota 0.29 0.46
Verrucomicrobiota 0.19 0.11
Patescibacteria 0.23 0.27
Planctomycetota 0.16 0.02
Bdellovibrionota 0.15 0.07
Gemmatimonadota 0.14 0.02
Elusimicrobiota 0.13 0.00
Acidobacteriota 0.37 0.13
Fibrobacterota 0.16 0.00

aPhyla with a relative abundance ≥1% in at least one sample are listed.
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represented among microGISTs and GISTs. Differentially abundant 
pathways identified by DESeq2 are summarized in Table S4. To iden-
tify potential functional markers of GISTs and microGISTs, LEfSe 
analysis was carried out (Figure 3A shows items with LDA score ≥3).

Additionally, to achieve insights into the relevant super-classes 
to which the pathways belonged, a Circos plot was generated 
(Figure 3B, Table S5). In particular, in the GISTs group, the pathways 
mainly belonged to biosynthesis (n = 12), even if a relevant portion 
was involved in degradation/utilization/assimilation (n = 9) and gen-
eration of precursor metabolites and energy (n = 5). In microGISTs, 
10 pathways were involved in biosynthesis, and nine in degradation/
utilization/assimilation; only one belonged to the precursor metabo-
lites and energy pathway.

3.2  |  Microbiota composition of LR GISTs differs 
from HR/MET GISTs

We compared the microbiota composition of LR GISTs with HR/MET 
GISTs; Figure S4 and Table 2 summarize the relative abundance at the 
phylum level for each group. Significant differences were found in the 
proportions of Spirochaetota (p = 0) and Fusobacteriota (p < 0.001), 
which were significantly under-represented, and Desulfobacterota 
(p  =  0.008) that was over-represented in HR GISTs compared 
to LR GISTs. Regarding the family rank, 22 taxa were statistically 
different. Among these Spirosomaceae, Peptostreptococcaceae, 
and Alicyclobacillaceae were more abundant in HR/MET GISTs 
(all p ≤ 0.0001), whereas Spirochaetaceae, Trueperaceae, and 

F I G U R E  2  Taxonomic cladogram obtained relying in the linear discriminant analysis coupled with effect size (LEfSe) proposed biomarkers 
in GISTs and microGISTs. Node shapes refer to levels in the SILVA taxonomy: pentagon, hexagon, and diamond are used for orders, families, 
and genera, respectively. Node bodies are filled if associated to one specific condition following the LEfSe analysis. Moreover, the nodes 
background is imposed if all the child nodes belong to the same macrogroup. Unannotated clades correspond to ambiguous taxa in the 
reference taxonomy (i.e., SILVA)
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Kineosporiaceae were over-represented in LR GISTs (all p ≤ 0.0001). 
At the genus level, these findings were reflected in 57 genera 
differentially represented in microGISTs compared to GISTs. 
Considering those most abundant, the Allorhizobium–Neorhizobium–
Pararhizobium–Rhizobium group (p = 0.03), Fusobacterium (p = 0.03), 
and Veillonella (p ≤ 0.0001) were mostly observed in LR GISTs, and 
Pelomonas (p = 0.03) in HR/MET GISTs. Additional data are reported 
in Table S6 together with the information about class, order, family, 
and genus.

3.2.1  |  Prediction of metabolic functional 
profile and pathways

The metagenomic functional profile, predicted with PICRUSt2, high-
lighted 22 pathways that were significantly under-represented in 
LR compared to HR/MET GISTs. Differentially abundant pathways 
identified by DEseq2 are summarized in Table S7.

3.3  |  Microbial networks estimation

We inferred microbial networks for microGIST and GIST (LR + HR/
MET) samples (Figure  4). The microGISTs network revealed the 
presence of two hub nodes (i.e., nodes with the highest centrality), 
69fe85 and f50b99, classified as belonging to the genera Deinococcus 
and Halomonas, respectively. Four hubs were identified in the GISTs 

network according to the applied setup: 1def51 (Bradyrhizobium), 
4c7b8a (Enhydrobacter), 69fe85 (Deinococcus), and f6c929 
(Lawsonella). In both inferred networks, the node 69fe85 was there-
fore identified as a hub. Finally, according to the ARI, a measure of 
clustering agreement among networks,30 a similar network cluster-
ing was observed (ARI = 0.664, p ≤ 0.0001). Details are reported in 
Tables S8 and S9.

4  |  DISCUSSION

So far, the studies on microGISTs have been limited due to their 
rarity and consequently the difficulties in collecting a reasonable 
number of these asymptomatic and very small lesions. Moreover, 
the analyses are usually aimed at characterizing a sole genetic 
landscape. A key factor contributing to therapeutic failure, drug 
resistance, and ultimately lethal outcome of cancer is intratumor 
heterogeneity. In this context, genetic and epigenetic changes, in 
combination with tumor environment, are the driving factors behind 
tumor heterogeneity.

Recently, growing attention has been paid to the environment 
where the cancer grows.7,31–33 Based on that, and in view of the in-
volvement of the GI microbiota in tumor progression (e.g., gastric 
and colorectal cancer34), here we analyzed the tissue microbial com-
munities in a cohort of 60 microGIST and GIST samples.

The microbiota analysis showed the lowest alpha diversity (i.e., 
intrasample diversity, a measure of the microbial communities’ 

F I G U R E  3  (A) Linear discriminant analysis (LDA) coupled with effect size identified the PICRUSt2-predicted Kyoto Encyclopedia of Genes 
and Genomes pathways associated with gastrointestinal stromal tumors (GISTs) and microGISTs. MicroGIST-enriched pathways are indicated 
with a negative LDA score (blue) and pathways enriched in GIST with a positive score (yellow). Only pathways meeting an LDA significant 
threshold of >3 are shown. (B) Circos plot was generated to achieve insights into the relevant super-classes to which pathways belong. Red 
and blue indicate GIST and microGIST groups, respectively; n highlights the number of pathways belonging to each super-class for GISTs 
(red) or microGISTs (blue)
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complexity relying on both the observed ASVs and their relative 
abundance) in GIST patients compared to microGISTs. This aspect 
suggests that microGISTs retain most of the healthy tissue’s charac-
teristics. Indeed, several reports show that alpha diversity is usually 
higher in normal tissues and benign lesions when compared with tu-
mor.35–38 Moreover, higher alpha diversity is often associated with 

prolonged overall survival in cancer patients39–42; however, we did 
not observe significant differences between LR and HR/MET GISTs, 
which generally show shorter overall survival.43

In our cohort of patients, Proteobacteria, Actinobacteriota, 
Firmicutes, and Bacteroidota were the most abundant phyla, re-
gardless of lesion type (i.e., benign or malignant). This finding is in 
line with reports showing that Bacteroidota and Firmicutes, fol-
lowed by Actinobacteriota and Proteobacteria, are the most abun-
dant taxa of the intestinal microbiota of a healthy adult, although 
composition and prevalence could vary in cancer patients.44–47 
Interestingly, when we compared microGISTs and GISTs, both 
weighted and unweighted UniFrac and Bray–Curtis dissimilarity 
showed significant community-level separation between them. 
With regard to metabolic prediction, LEfSe highlighted a high 
number of pathways involved in the biosynthesis and production 
of precursor metabolites and energy in GISTs (17 vs. 11 in GISTs 
and microGISTs, respectively). Interestingly, in GISTs, a number of 
pathways involved in sugar metabolism (glycolysis II, sucrose deg-
radation III, and superpathway of glycolysis) were also highlighted; 
this was expected as cancer usually displays high aerobic glycolysis 
despite oxidative phosphorylation and cancer cells raise glucose 
flux to promote anabolic request.48

Potentially relevant differences were observed when compar-
ing LR and HR GISTs at both microbial community composition and 
metabolic levels. The phyla Fusobacteriota and Desulfobacterota 
were the most abundant in LR and HR GISTs, respectively. At the 

TA B L E  2  Phylum-level relative mean abundance in microbial 
communities in LR GIST and HR/MET GIST samplesa

LR GISTs (%)
HR/MET 
GISTs (%)

Proteobacteria 72.90 47.70

Firmicutes 7.85 9.09

Deinococcota 6.70 16.34

Actinobacteriota 6.62 20.09

Bacteroidota 4.61 5.24

Fusobacteriota 0.34 0.58

Chloroflexi 0.28 0.03

Patescibacteria 0.20 0.34

Bdellovibrionota 0.12 0.03

Acidobacteriota 0.08 0.18

Planctomycetota 0.04 0.01

Gemmatimonadota 0.04 0.00

Verrucomicrobiota 0.02 0.20

aPhyla with a relative abundance ≥1% in at least one sample are listed.

F I G U R E  4  Co-abundance groups in the tissue microbiota of GIST (LR + HR/MET) and microGIST cases. Each amplicon sequence 
variant (ASV) is depicted as a node whose size is proportional to the over-abundance relative to background. Nodes are sized and colored 
according to normalized counts and cluster membership. Colors are automatically selected by the software NetCoMI. Edge color reflects 
the correlation among nodes (green and red for positive and negative correlations, respectively). In particular, cluster sharing of at least five 
nodes among the two networks were plotted using the same color. Positive and significant Kendall correlations between two or more ASVs 
are indicated with lines connecting the nodes (p < 0.05). Line thickness is proportionate to correlation strength
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genus level, these differences resulted in an overrepresentation 
of Fusobacterium in LR GISTs, which was already observed in early 
stages of colorectal cancer.49,50

Finally, we estimated the microbiome networks. Key taxa rep-
resent those playing a crucial role in the ecological structure and 
function of the community, irrespective of their overall abundance 
or prevalence. Looking at microGISTs and GISTs, the general struc-
ture of the networks was similar, however, in addition to one shared 
hub, the GISTs group had additional hubs, revealing that the changes 
driving the microbiome differences among benign lesions and cancer 
are probably due to variation of relative abundances of the commu-
nity members. In general terms, it can be speculated that the micro-
bial community is restructured during the transition from microGIST 
to GIST. This might also suggest that, even if the general microbiome 
communities in microGISTs and GISTs share many features, the con-
nections between the bacteria appear to be different.

To the best of our knowledge, this is the first study to analyze 
microbial composition in microGISTs and GISTs. The study aimed to 
undertake an exploratory analysis of the tissue microbiome and gain 
new insights into this under-characterized topic. Given the difficulty 
in collecting microGISTs, the number of this type of lesion in our 
cohort represents one of the largest collections to date. Moreover, 
when considering our study group size, rarity of GIST (1–1.5 cases 
per 100,000) should be taken into consideration. From a molecular 
point of view, the cohort was homogeneous and this allowed us to 
limit potential biases.

Regardless of the interesting results, we are aware that the study 
is preliminary, and suffers from some limitations, including its retro-
spective nature. In addition, in the HR/MET GISTs group, a higher 
heterogeneity was present at the tumor site level compared with the 
LR GISTs group. Indeed, in 13 of 15 LR GIST cases, the primary site 
was the stomach, whereas in HR/MET GISTs only 6 of 15 originated 
from the stomach. However, this is in line with the epidemiology 
of GISTs; indeed, primary tumors arising from the stomach have a 
more favorable prognosis with a metastatic rate up to 15%, whereas 
those from the small intestine present a metastatic rate higher 
than 50%.51,52 The tumor site, together with the clinical nature of 
the two patient subsets, might have contributed to the difference 
observed in relative abundance. With regard to the use of FFPE 
samples, a recent study showed that FFPE tissues provide a reliable 
source of germline and malignant human DNA53; therefore, it is ex-
pected that FFPE tissues also provide reliable bacterial DNA,54 and 
an increasing number of researchers are undertaking metagenomics 
analyses using FFPE samples.55,56

In conclusion, our exploratory analysis highlights that specific 
differences do exist in the tissue microbiome community between 
GISTs and benign lesions and that microbiome restructuring could 
drive the carcinogenesis process. This also underlines that, in ad-
dition to the well-characterized molecular alterations contributing 
to GIST evolution from benign to malignant lesions, a key player 
could be the tumor microenvironment (i.e., the microbiome). 
Further studies are needed in order to deepen and better clarify 
its role.
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