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Introduction: Biliary tract cancers (BTCs) are a rare and heterogenous group with an increasing incidence and high
mortality rate. The estimated new cases and deaths of BTC worldwide are increasing, but the incidence and
mortality rates in South East Asia are the highest worldwide, representing a real public health problem in these
regions. BTC has a poor prognosis with a median overall survival <12 months. Thus, an urgent unmet clinical need
for BTC patients exists and must be addressed.
Results: The backbone treatment of these malignancies is chemotherapy in first- and second-line setting, but in the last
decade a rich molecular landscape has been discovered, expanding conceivable treatment options. Some druggable
molecular aberrations can be treated with new targeted therapies and have already demonstrated efficacy in
patients with BTC, improving clinical outcomes, such as the FGFR2 or IDH1 inhibitors. Many other molecular
alterations are being discovered and the treatment of BTC will change in the near future from our current clinical
practice.
Conclusions: In this review we discuss the epidemiology, molecular characteristics, present treatment approaches,
review the recent therapeutic advances, and explore future directions for patients with BTC. Due to the rich
molecular landscape of BTC, molecular profiling should be carried out early. Ongoing research will bring new
targeted treatments and immunotherapy in the near future.
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INTRODUCTION

Biliary tract cancers (BTCs) are a rare and heterogenous
group comprising various aggressive malignancies
emerging in the biliary tree. BTC includes intrahepatic
cholangiocarcinoma (iCCA), extrahepatic CCA (eCCA),
comprised of perihilar CCA (pCCA) and distal CCA (dCCA),
ampullary cancer (AC), and gallbladder cancer (GBC).1 CCA
represents w15% of primary intrahepatic tumors, and
after hepatocellular carcinoma, is the most frequent
diagnosis of primary liver cancer.2 CCAs are typically ad-
enocarcinomas, more frequent in males, and multiple risk
factors explain the variable incidence of CCAs, such as
alcohol consumption, tobacco smoking, bile duct
morphological anomalies, primary sclerosing cholangitis,
Lynch syndrome, Opisthorchis viverrini, Clonorchis sinensis,
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obesity, or diabetes. Major liver diseases such as hepatitis
B and hepatitis C virus infections, alcohol and non-
alcoholic fatty liver have a stronger association with
iCCA than eCCA.2-4 GBC are more frequent in women and
the more common risk factors are: gallstones, gallbladder
polyps, chronic infections, drugs (methyldopa), obesity,
and diabetes.5

The estimated new cases of and deaths from BTCs in the
USA by the end of 2021 are 11 980 and 4310, respectively,
and they are expected to increase in the next decades. The
incidence and mortality rates are highest in South East Asia,
representing a real public health problem in these regions
(Figure 1).6,7

BTCs have a poor prognosis with a median overall sur-
vival (OS) <12 months. More specifically, the 5-year rela-
tive survival rate ranges from 9% to 25% for iCCA, 10% to
15% for eCCAs, and 15% to 35% for GBC, conditional to
stage.8-11 Cisplatin plus gemcitabine (CisGem) is the cur-
rent approved first-line therapy for unresectable or
advanced BTC, and second-line FOLFOX, but there is no
strong evidence about what to do in following lines as
chemotherapy regimens have poor survival outcomes.12,13

There is an urgent unmet clinical need for BTC patients and
https://doi.org/10.1016/j.esmoop.2022.100503 1
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Figure 1. Mortality of cholangiocarcinoma worldwide. Age-standardized annual mortality rates for CCA in deaths per 100 000 person-year in the age group 45-64,
according to country. Data from the time periods 2005-2009 (2007), 2010-2014 (2012). Dark red indicates countries with high mortality (>6 deaths per 1 000 000
people), red indicates high mortality (>4 deaths per 100 000 people), orange indicates countries with mortality between 2 and 4 deaths per 100 000 people, and
yellow indicates countries with low mortality (<2 deaths per 100 000 people). Figure adapted from Bertuccio et al., 2019.7 CCA incidence is shown for Asian countries,
where mortality has not yet been reported.
CCA, cholangiocarcinoma.
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here we review the recent therapeutic advance
approaches.

ANATOMIC CLASSIFICATION

BTC can be classified based on the anatomical origin of the
primary tumor. BTCs arising from the bile ductules to the
second-order ducts are classified as iCCA, those arising
between second-order ducts and the beginning of the cystic
duct are pCCA, and those that originated after the insertion
of the cystic duct are dCCA. The concept eCCA compiles
both pCCA and dCCA. AC comprises those tumors that
originated at the end of the bile duct, GBCs arise from the
cystic duct or the gallbladder itself (Figure 2).14,15 Three
growth patterns have been described for iCCA: (i) mass-
forming, the most common growth pattern, (ii) periductal-
infiltrating, which infiltrates along the lumen wall, and (iii)
intraductal growing, the least common subtype.14,16

MOLECULAR CHARACTERISTICS

CCAs are particularly molecularly rich, especially iCCA which
has the highest genetic alterations per tumor frequency of
all BTCs. A study published by Nakamura et al.,17 which
analyzed 260 BTCs by whole-exome sequencing, described a
2 https://doi.org/10.1016/j.esmoop.2022.100503
median number of non-silent somatic mutations in iCCA,
eCCA, and GBC of 39, 35, and 64, respectively. Both iCCA
and eCCA presented significant differences on the number
of non-silent somatic mutations compared with GBC, but
not between iCCA and eCCA. Overall, this analysis detected
targetable genetic alterations in 39% of BTC cases, being the
most frequent molecular alteration in the kinase-RAS
domain (52%). Another study published by Javle et al.,18

which analyzed 412 BTCs by hybrid capture-based
comprehensive genomic profiling, detected non-significant
genetic alterations differences between the three tumor
subtypes. Detailed molecular alterations by BTC location
can be found in Table 1.

TREATMENT

Surgery and adjuvant treatment

BTC management and prognosis depends on the resect-
ability of the tumor. The expected outcomes for patients
who undergo surgery and adjuvant chemotherapy for 6
months are: a median OS of 51.1 months, a median relapse-
free survival (RFS) of 24.4 months, and a relapse rate of
60%.24-27 The established adjuvant treatment after surgery
for BTCs is fluoropyrimidine-based, being preferred after
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Figure 2. Anatomical classification of cholangiocarcinoma. Cholangiocarcinoma (CCA) is further subclassified into intrahepatic CCA (iCCA), extrahepatic CCA (eCCA),
comprised of perihilar CCA (pCCA) and distal CCA (dCCA). Three growth patterns have been described for iCCA: mass-forming, periductal-infiltrating, and intraductal
growing. Most common molecular alterations are detailed for iCCA and eCCA.
Figure are subject to copyright (OMMS©). Send email to omirallas@vhebron.net to request access.

Table 1. Molecular alterations and frequencies by biliary tract cancer
subtype (in bold the most frequent alteration)17-23

iCCA (%) eCCA (%) GBC (%)

TP53 mutations 18-35 40-48 50-59
KRAS mutations 20-25 12-42 0-8
IDH1 mutations 16-29 0-7 0-2
CDKN2A/B mutations 6-26 6-17 4-19
ARID1A mutations 15-21 7-19 4-20
BAP1 mutations 15 0-6 2
FGFR2 fusions 5-14 3 1
FGFR1 mutations 7 0 0
FGFR2 mutations 8 0 0
FGFR3 mutations 5 3 0
SMAD4 mutations 10-12 21-24 4
PIK3CA mutations 8 0-4 7-14
MET amplification 2-7 0 1
BRAF mutations 4.4 5.4 4.9
IDH2 mutations 4 0 0-1
HER2 amplification 2.5-3 8-11 7-16
ARID1B mutations 2-3 3-7 4-6
MYC amplification 2.5 5.4 3.9
TET 1-3 mutations 1.9 5.4 1
NTRK 1-3 mutations 1.3 2.7 5.5
PTEN loss 1 1 1-7
RET mutations 0 2.7 0
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the positive results in RFS and OS of the BILCAP trial. This
was a randomized, controlled, multicenter, phase III trial
across specialized centers in the UK, including patients with
macroscopically resected CCA or muscle-invasive GBC and
Eastern Cooperative Oncology Group (ECOG) performance
status (PS) of 0 or 1. Participants were randomized 1 : 1 to
observation or capecitabine (1250 mg/m2 twice a day on
days 1-14 of a 21-day cycle for eight cycles) within 16 weeks
of surgery. The primary outcome was OS. Notably, RFS was
statistically significant in both the intention-to-treat analysis
and in the per-protocol analysis [hazard ratio (HR) ¼ 0.75,
95% confidence interval (CI) 0.58-0.98; P ¼ 0.033, and HR ¼
0.70, 95% CI 0.54-0.92; P ¼ 0.009, respectively]. Median OS
difference, however, was statistically significant in the per-
protocol analysis (HR ¼ 0.75, P ¼ 0.028), but not in the
intent-to-treat analysis; the OS HR was 0.81 (P ¼ 0.010).27

Negative results have been reported in two randomized
phase III trials. In the phase III PRODIGE 12-ACCORD, pa-
tients were randomized to gemcitabine and oxaliplatin
(gemcitabine 1000 mg/m2 on day 1 and oxaliplatin 85 mg/
m2 infused on day 2 of a 2-week cycle for 12 cycles) or
observation alone, and no statistically significant differences
https://doi.org/10.1016/j.esmoop.2022.100503 3
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in OS or RFS were found between the study arms.28 In the
phase III BCAT trial from Japan evaluating the efficacy of
gemcitabine in monotherapy (1000 mg/m2, administered
on days 1, 8, and 15 every 4 weeks for six cycles) compared
with observation in 226 patients with eCCA, no statistically
significant differences in RFS or OS were found either.29

Despite the fact that gemcitabine-based chemotherapy
can also be considered according to the clinical National
Comprehensive Cancer Network (NCCN) guidelines,30 it has
not demonstrated efficacy in the adjuvant setting and it is
not recommended according to the European Society for
Medical Oncology (ESMO) guidelines.31 More data will be
gathered after the results of the ongoing phase III ACTICCA-
1 trial evaluating the role of gemcitabine and cisplatin
compared with standard of care (SOC) capecitabine.32 S-1 is
an oral fluoropyrimidine combination consisting of tegafur,
gimeracil, and oteracil.33,34 In the phase III ASCOT trial from
Japan evaluating the efficacy of S-1 (four cycles of 40 mg/m2

if BSA was <1.25 m2, 50 mg if BSA was 1.25 to 1.5 m2 and
60 mg if BSA was >1.50 m2 twice daily for 4 weeks, fol-
lowed by 2 weeks of rest) compared with observation in
440 patients with eCCA, iCCA, GBC, or AC, statistically sig-
nificant differences in OS and RFS were reported. Adjuvant
S-1 may be considered as a valid option in the Asian
population.35
First-line setting

In patients with unresectable or metastatic disease, curative
treatment is no longer an option and systemic treatment is
recommended. ABC-02 phase III clinical trial randomly
assigned 410 untreated patients with locally advanced or
metastatic BTCs, including iCCA, eCCA, GBC and AC, to
receive either cisplatin and gemcitabine (Cisplatin 25 mg/
m2 and gemcitabine 1000 mg/m2 on days 1 and 8 every 21
days cycle for eight cycles) or gemcitabine alone (1000 mg/
m2 on days 1, 8, and 15, every 4 weeks for six cycles) as
first-line treatment. The median OS was 11.7 months in the
CisGem group and 8.1 months in the gemcitabine group
(HR ¼ 0.64, P < 0.001). The median progression-free sur-
vival (PFS) was 8.0 in the experimental group and 5.0
months in the gemcitabine group (HR ¼ 0.63, P < 0.001)12

(Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2022.100503). In Japan, another phase III
trial named BT22 evaluated the same treatment as ABC-02,
which gave the approval of this regime for Japanese pa-
tients after its positive results.36 A difference between both
trials was that CisGem was continued for up to 16 cycles
and gemcitabine up to 12 cycles. Despite the fact that
gemcitabine is maintained after eight cycles in routine
clinical practice, a cross-trial comparison did not show a
median PFS or OS improvement of prolonging the treat-
ment beyond 6 months. Although the increased dosage of
gemcitabine did not show a clear benefit, the KEYNOTE-966
study uses this approach as opposed to TOPAZ-1, which
used a maximum of eight cycles.37,38 Thus, the recom-
mended treatment of unresectable BTCs is CisGem after
these positive results and is the preferred regime in Europe
4 https://doi.org/10.1016/j.esmoop.2022.100503
and the United States for fit patients with PS �1. The
mechanism of action by which this combination is active is
the halt of DNA replication by gemcitabine and DNA breaks
done by cisplatin bonds to DNA39 (Figure 3). Gemcitabine
monotherapy may be considered for PS 2 patients, since a
meta-analysis of ABC-02 and BT22 showed no benefit of
CisGem in this subgroup of patients.40 Platinum-based
chemotherapy strategies have shown efficacy in CCA.
Recently, a French group compared FOLFIRINOX with the
SOC. The PRODIGE38-AMEBICA phase III clinical trial
randomly assigned 191 patients with locally advanced or
metastatic BTCs to receive either oxaliplatin, irinotecan, and
infusional 5-fluorouracil (5-FU) without bolus [modified
FOLFIRINOX (mFOLFIRINOX)], or CisGem for a maximum of
6 months. The study did not meet the primary endpoint for
OS, obtaining a median OS of 11.7 months for mFOFLIRINOX
versus 13.8 months in the CisGem arm, remaining the SOC
in the first-line setting.41 In this line, the development of S-1
combined with platinum is active in BTC. S-1 has been
tested in the FUGA-BT study, a phase III randomized trial in
Japan including 354 chemotherapy-naive patients with
recurrent or unresectable BTC with ECOG of 0 or 1. FUGA-
BT is a non-inferiority study comparing gemcitabine plus S-1
(S-1 30 mg/m2 orally twice a day on days 1-14 and gemci-
tabine 1000 mg/m2 on days 1 and 8, every 3 weeks) versus
CisGem (same schedule as ABC-02), with OS as the primary
outcome. Gemcitabine combined with S-1 was non-inferior
to CisGem-based chemotherapy in Japanese patients. The
median OS of patients assigned to the CisGem group was
13.4 months, and 15.1 months in the S1-gemcitabine group.
The combination of S-1 and gemcitabine was non-inferior to
CisGem (HR 0.945; one-sided P for non-inferiority ¼ 0.046).
The proportion of adverse effects did not differ significantly
between treatment arms and were globally well tolerated42

(Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2022.100503). The authors concluded that
this new combination approach should be considered as a
new option for SOC and has the advantage that it does not
require hydration. While both regimes can be used in Asian
patients, CisGem remains the SOC for the first-line treat-
ment of good-PS patients with advanced BTC, regardless of
ethnicity, as showed in a meta-analysis carried out by Valle
et al in 2014.40
Second-line setting and beyond

In the second-line setting, combination regimens
including fluoropyrimidines, platinum salts, and other
chemotherapies have been tested. Results from a ran-
domized phase III trial in second line have been recently
reported. The ABC-06 clinical trial, an open-label, phase
III trial included a UK population with locally advanced or
metastatic BTC (including CCA, GBC, and AC) after pro-
gression to first-line CisGem chemotherapy, with an ECOG
0-1. A total of 162 participants were randomized 1 : 1 to
receive active symptom control plus FOLFOX or active
symptom control alone. FOLFOX chemotherapy consisted
of oxaliplatin (85 mg/m2) as a 2-h infusion on day 1 and a
Volume 7 - Issue 3 - 2022
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2-h infusion of leucovorin (LV) (175 mg/m2/day) followed
by a 5-FU bolus [400 mg/m2/day] and 46-h infusion of 5-
FU (2400 mg/m2) every 2 weeks. The primary outcome
was OS in the intention-to-treat population. FOLFOX
modestly improved median OS with 6.2 months versus
5.3 months in the control arm (HR ¼ 0.69, P ¼ 0.031).
Grade 3/4 toxicities, such as fatigue and neutropenia,
were reported in 59% of patients in the experimental
arm versus 39% in the control arm. In the subgroup
analysis, all subtypes of BTC tumors benefited similarly
from FOLFOX.13 Despite the modest absolute median OS
difference between the two arms, there was a clinically
meaningful increase in OS rates at 6 and 12 months in
patients who received second-line treatment with
Volume 7 - Issue 3 - 2022
FOLFOX and the trial has provided clinical evidence for
the first time in this setting.

Other novel chemotherapy combinations are being
tested in the second-line setting for advanced BTCs. A phase
II trial randomized 120 patients to mFOLFOX (oxaliplatin 100
mg/m2 over 2 h, LV 100 mg/m2 over 2 h, 5-fluorouracil 2400
mg/m2 over 46 h, every 2 weeks) or mFOLFIRI (irinotecan
150 mg/m2 over 2 h, LV 100 mg/m2 over 2 h, 5-fluorouracil
2400 mg/m2 over 46 h). The mFOLFOX group reported a
superior overall response rate (ORR) (5.9%), median PFS
(2.8 months), and median OS (6.6 months).43 FOLFOX
should be offered as the new SOC for second-line therapy
for BTC patients, especially those patients with no driver
mutations.
https://doi.org/10.1016/j.esmoop.2022.100503 5
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Another regimen, platinum-free, liposomal irinotecan (nal-
IRI) combined with 5-FU/LV has been tested in second-line
BTC and the results were recently reported. In a random-
ized, open-label, phase IIb trial (NIFTY), 174 patients from
Korea were randomized 1 : 1 to nal-IRI (70 mg/m2 plus
intravenous (i.v.) LV 400 mg/m2 and i.v. fluorouracil at 2400
mg/m2 for 46 h) or 5-FU/LV both every 2 weeks after pro-
gression to CisGem. The nal-IRI plus 5-FU/LV significantly
improved PFS andOS comparedwith 5-FU/LV.The nal-IRI plus
5-FU/LV group reported a median PFS of 3.9 months and a
median OS of 8.6 months versus a median PFS of 5.5 months
versus 1.4 months in the 5-FU/LV group. Despite being a
phase IIb clinical trial, the patient number does not differ
from that in the only phase III trial available to date (ABC-06).
Grade�3 adverse events, such as neutropenia and asthenia,
were reported in 77% patients in the nal-IRI plus 5-FU/LV
group versus 31% of patients in the 5-FU/LV group. These
results are promising, but they will need to be tested in in-
ternational phase III clinical trials.44 Other irinotecan-based
regimens have been studied after progression to SOC. A
phase II trial carried out in China randomized 64 patients to
either irinotecan 180mg/m2 on day 1 plus capecitabine 1000
mg/m2 twice daily on days 1-10 versus irinotecan 180mg/m2

on day 1, with both treatments on a 14 days cycle. The
combination resulted in superior median OS (10.1months for
the combination versus 7.3 months for the single agent) and
disease control rate (DCR).45

Targeted therapies

In the metastatic and unresectable setting, additional mo-
lecular testing and inclusion into a clinical trial is highly
encouraged. In the MOSCATO-01 trial, out of 1013 patients
screened for molecular aberrations, 199 patients could
receive a matched treatment (19%), but only 7% of those
successfully screened benefited from the targeted ther-
apy.46 If the 43 BTC patients included in the trial are
analyzed, however, 23 (50%) had druggable molecular ab-
errations and 18 patients (42%) could receive a matched
therapy. Among these patients, the DCR was 88% and the
median OS was 17 months compared with 5 months for
those who did not receive a targeted therapy (HR ¼ 0.29,
P ¼ 0.008).47 Thus, molecular screening is highly recom-
mended in patients affected by BTC, allowing personalized
and effective targeted therapy to be offered.

Fibroblast growth factor receptors fusions. Genomic alter-
ations, including fibroblast growth factor receptors (FGFR1,
FGFR2, FGFR3, FGFR4, or FGFR19) activate the FGFR
pathway in w20% of iCCAs.48 Chromosomal fusions of
FGFR2 exons 1 to 17 are the most common alterations,
found in 10%-16% of iCCAs.49,50 The resulting chimeric
FGFR2 proteins constitutively activate the pathway and
promote proliferation (Figure 4). FGFR2 can also present
point mutations and amplification or overexpression.57

First-generation FGFR inhibitors target multiple receptors,
lacking a profound anti-FGFR inhibition and presenting
multiple deleterious adverse events.58 Thus, numerous new
inhibitors of FGFR isoforms 1-3 have demonstrated benefit
6 https://doi.org/10.1016/j.esmoop.2022.100503
in advanced CCAs harboring FGFR2 gene fusions, including
various ATP-competitive, reversible inhibitors (erdafitinib,
infigratinib, pemigatinib, and derazantinib) and the
non-ATP-competitive, covalent inhibitor, futibatinib, also
called TAS-120. Mechanisms of FGFR tyrosine kinase in-
hibitor (TKI) resistance are acquired by the tumor cell, such
as FGFR kinase mutations, being more frequent than gate-
keeper mutations.59 These new agents have shown high
response rates in early data from phase I and II clinical
trials. Reversible inhibitors reported an ORR of 15%-35%,
with a median PFS of 5.7-6.9 months.60-63 The covalent
inhibitor, futibatinib, reported an ORR of 41.7% and median
PFS of 9 months, and can also overcome acquired resistance
to ATP-competitive inhibitors.57,64 Infigratinib or BGJ398, a
reversible inhibitor, was tested in a multicenter, open-label,
phase II study which included CCA containing FGFR2 fu-
sions, mutations, or amplifications and its primary objective
was ORR by investigator assessment. The ORR was 14.8%
and estimated PFS was 5.8 months. The final analysis re-
ported an ORR of 23%, including one complete response
and 24 partial responses (PRs). The most common adverse
events included hyperphosphatemia (77% any grade), sto-
matitis in 55%, and fatigue in 40% of patients. Grade �3
adverse events occurred in 41% of patients.61,65,66 Pemi-
gatinib, another reversible inhibitor, was tested in a multi-
center, open-label, single-arm, phase II study (FIGHT-202),
which included three cohorts: FGFR2 fusions or rearrange-
ments, patients with other FGFR alterations, or patients
with no FGFR alterations. The primary endpoint was ORR
among those with FGFR2 fusions or rearrangements who
received at least one dose of pemigatinib. Around 35% of
patients with FGFR2 fusions or rearrangements achieved an
ORR; 3 of them included a complete response. Adverse
events resembled those reported for infigratinib, with
hyperphosphatemia being the most common adverse event
(60% of patients).62 Pemigatinib has been approved by both
the Food and Drug Administration (FDA) and the European
Medicines Agency, and infigratinib has FDA approval. After
these promising results, FGFR2 inhibitors are being tested in
patients harboring FGFR2 rearrangements as first-line
setting in the phase III FIGHT-302 and PROOF trials, in
which both drugs are compared with CisGem.67,68

The most common adverse event is characteristically
hyperphosphatemia, with w55%-81% of patients devel-
oping it. Hyperphosphatemia can be treated by reducing
doses of the FGFR2 inhibitor or by adding phosphate-
lowering therapy using phosphate binding agents, and a
low phosphate diet should also be considered.69 Other
common adverse events are fatigue, stomatitis, alopecia,
and palmar-plantar erythrodysesthesia. Grade 3/4 adverse
events occur in >60% of patients, requiring a dose delay or
dose reduction on many occasions, but with a low discon-
tinuation rate of w4%-6%.60-64

Isocitrate dehydrogenase 1 and 2 mutations. Isocitrate
dehydrogenase 1 (IDH1) mutations are only found in gli-
omas and acute myeloid leukemias, but are rarely found in
other tumors.70 IDH1 mutations are present in 9%-25% of
Volume 7 - Issue 3 - 2022
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Figure 4. FGFR structure, signaling, and its alterations in cancer. FGFR is a transmembrane receptor tyrosine kinase, activating downstream signaling through three
different pathways: via intracellular receptor substrates STAT, FRS2, and phospholipase C-g1 (PLC-g), leading ultimately to up-regulation of the RAS-dependent MAPK
and Ras-independent PI3K-Akt signaling pathways (Adapted from Brooks et al., 2012).51 Trk receptors, ALK and ROS fusions; signaling pathway. TrkA, B, and C upon
neurotrophin binding, activate downstream signaling cascades of the MAPK, PI3K, and PLC-g pathways. ALK and ROS fusions, through the activation of the intracellular
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activation of cyclin D, and inhibition of p27, and ultimately leading to cell survival (Adapted from Pollock and Grandis, 201555 and LV et al., 201656).
AKT, protein kinase B; ALK,anaplastic lymphoma kinase; BRAF, v-raf murine sarcoma viral oncogene homolog B1; DAG, diacylglycerol; ERK, extracellular signal-regulated
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patients with CCA, varying depending on the location,
more commonly found in iCCA and on the cohort
analyzed.71-73 IDH1 (R132H) and IDH2 (R172, R140) mu-
tations within the isocitrate binding site result in a
decreased enzymatic activity for oxidative decarboxylation
of isocitrate to a-ketoglutarate.71,73 As a result of this
molecular alteration, tumors gain the ability to catalyze
the reduction of alpha-ketoglutarate to R(-)-2-
hydroxyglutarate (2HG) (Supplementary Figure S1, avail-
able at https://doi.org/10.1016/j.esmoop.2022.100503).
The accumulation of 2HG is almost pathognomonic of the
presence of a tumor with IDH mutation, and the
Volume 7 - Issue 3 - 2022
measurement of the circulating oncometabolite in a
cohort of iCCAs correlated to tumor burden and may be
an indicator of response to IDH inhibitors.72,74,75 Ivoside-
nib (AG-120) is an oral targeted inhibitor of IDH1 which
showed activity in early clinical trials. The pivotal trial that
led to the approval of ivosidenib was the ClarIDHy phase
III trial, a multicenter, randomized, double-blind, placebo-
controlled trial which included patients with advanced,
IDH1-mutant CCA who had progressed on up to two
previous treatment regimens. A total of 780 patients were
prescreened for IDH1 mutations and 187 were randomized
2 : 1 to 500 mg ivosidenib once a day or placebo. Most of
https://doi.org/10.1016/j.esmoop.2022.100503 7
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them had iCCA and presented metastatic disease at
randomization. There was a statistically significant
improvement in median PFS of 2.7 months in the ivosi-
denib group versus 1.4 months in the placebo group
(HR ¼ 0.37; P < 0.0001). Median OS was 10.3 months for
ivosidenib and 7.5 months in the placebo group (HR ¼
0.79; P ¼ 0.093). The non-significant difference in OS
could be explained by the 57% crossover from placebo to
ivosidenib, which was permitted on radiological progres-
sion. Common adverse events were nausea in 41%, diar-
rhea in 35%, and fatigue in 31% of patients.76 Ivosidenib
was well tolerated and resulted in an improved PFS and a
trend towards favorable OS despite crossover, demon-
strating clinical benefit. Patients with advanced IDH1-
mutated CCA benefit from this treatment and it has been
recently approved by the FDA. Enasidenib, a selective
IDH2 inhibitor, has been recently approved by the FDA for
acute myeloid leukemia and is currently under investiga-
tion for CCA (NCT02273739).77

Neurotrophic tyrosine receptor kinase fusions. The neu-
rotrophic tyrosine receptor kinase genes (NTRK1-3), which
occur in w0.3%-1% of all solid tumors and are extremely
rare in BTC (0.67%), encode three membrane-bound re-
ceptors called tropomyosin receptor kinases (TrkA, B, and
C).78-80 Neurotrophin binding triggers activation of the
cytoplasmic kinase, activating downstream signaling cas-
cades of the RAS/RAF/MEK/ERK mitogen-activated protein
kinase (MAPK), phosphatidylinositol 3-kinase (PI3K), and
phospholipase C-g1 pathways (Figure 4).81 Oncogenic fu-
sions occur when one of the three NTRK genes fuses with a
wide variety of partners and constitutively activates the Trk
pathway, driving tumorigenesis.82 Two highly selective small
molecules, larotrectinib and entrectinib, inhibitors of all
three TRK proteins, have been developed and showed ac-
tivity in early clinical trials.79,83 An analysis of the first 55
patients included into a phase I clinical trial of larotrectinib
(LOXO-101) showed an ORR of 75% and the median PFS was
not reached at 9.9 months. Only two patients with CCA
were included; one patient had a progressive disease and
the other showed a PR of �80%.83 A grouped analysis of
the three ongoing phase I or II clinical trials of entrectinib
(STARTRK-1, STARTRK-2, and ALKA-372-001) was carried
out. All trials together included 54 patients with 10 different
NTRK fusion-positive tumor types, demonstrating a median
PFS of 12.9 months and an ORR of 57%. Only one patient
with CCA was included, who showed a PR with a reduction
of 40%.79 The most common grade �3 adverse events in
patients treated with larotrectinib were anemia (11%),
increased body weight (7%), and increased alanine amino-
transferase or aspartate aminotransferase levels (7%).83 The
most common grade �3 adverse events in patients treated
with entrectinib were anemia (12%), increased body weight
(10%), and fatigue (7%).79 An ongoing trial in China, called
VISIONARY, is evaluating targeted therapies with FGFR2,
IDH1, NTRK, and BRAF inhibitors in refractory gastrointes-
tinal tumors, which also includes patients with BTC
(NCT04584008).
8 https://doi.org/10.1016/j.esmoop.2022.100503
BRAF mutations. Mutation of the BRAF gene is one
mechanism of constitutive activation of the MAPK pathway,
which regulates cellular proliferation, migration, and is
aberrantly activated in many human cancers including
melanoma, non-small-cell lung cancer, and papillary thyroid
carcinoma.84 The most common BRAF mutation is the single
amino acid change of valine to glutamic acid at residue 600
(V600E). The frequency of BRAF V600E in BTC is very low,
w1%-4%, and most commonly found in iCCA.85 Vemur-
afenib was the first BRAF V600E inhibitor tested in eight
patients with CCA in a phase II basket study. One PR and
five SDs were reported in the CCA cohort.86 Subbiah et al.87

carried out the Rare Oncology Agnostic Research (ROAR)
trial, a phase II, open-label, single-arm trial evaluating the
efficacy and safety of dabrafenib and trametinib. A total of
43 patients were included, 91% had iCCA, 2% pCCA, 2%
GBC, and 2% were of unknown origin. An ORR of 47% was
reported by independent assessment, a median PFS of
9 months, and a median OS of 14 months. These results
suggested that BRAF inhibition is canonical in BTC, at vari-
ance from metastatic colorectal cancer in which epidermal
growth factor receptor (EGFR) inhibition is mandatory. The
most common grade 3 or 4 adverse events in patients
treated with dabrafenib and trametinib were increased
gamma-glutamyl transferase (12%), decreased white blood
cell count (7%), and hypertension (7%).87 We encourage the
development of phase III trials, but the low proportion of
BRAF-mutated patients impairs solid research of BRAF in-
hibitors in BTC.

Human EGFR 2. Human EGFR2 (HER2) is an oncogenic
growth factor receptor. There are four members of the
same family which are named as EGFR, HER1 (ERBB1), HER2
(ERBB2), HER3 (ERBB3), and HER4 (ERBB4)88 (Figure 4).
These transmembrane growth factor receptors, upon
phosphorylation of their intracellular domains, activate
downstream secondary messengers, leading to diverse
biological effects. The HER2 activation leads to tumorigen-
esis through the activation of MAPK and PI3K pathways, loss
of cell polarity and cell adhesion, and deregulated cell cycle
through the activation of cyclin D and inhibition of p27.
HER2 has the strongest catalytic kinase activity, especially
when partnering with HER3.88 Overexpression of the HER2
protein has been reported in 25%-30% of breast and
ovarian cancers, but has also recently been reported in
w13% of GBCs and up to 18% of eCCAs.89,90 HER2 over-
expression has been associated with worse prognosis and
increased propensity to metastasize, but also has increased
sensitivity to cytotoxic and targeted agents. In a retro-
spective review published by Javle et al.,90 eight patients
with advanced GBC and five patients with CCA with HER2/
neu gene overexpression or amplification were treated with
HER2/neu-directed therapy. In the GBC group treated with
trastuzumab, four patients had a PR, one had a complete
response, and three presented SD. No responses, however,
were seen in five patients with CCA who received trastu-
zumab. The phase II SUMMIT trial, which analyzed the ef-
ficacy of neratinib in HER2-mutant all-solid malignancies,
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included 25 patients with BTC. In this specific population, an
ORR of 12%, a median PFS of 2.8 months, and a median OS
of 5.4 months were reported.91 The MyPathway trial, a
phase II trial, multicenter, open-label, which included 39
patients with HER2-positive BTC evaluating the combination
of trastuzumab and pertuzumab, has recently been pub-
lished. Authors reported an ORR of 23% (95% CI 11% to
39%), a PFS of 4 months (95% CI 1.8-5.7 months), and an OS
of 10.9 months (95% CI 5.2-15.6 months).92 There are
currently multiple clinical trials testing HER2/neu-directed
therapy for solid tumors, such as the MATCH trial
(NCT02465060), which tests multiples TKIs matched to the
tumor’s molecular alteration, including trastuzumab alone
or in combination with pembrolizumab in HER2-positive
tumors. The TAPUR trial (NCT02693535) is also testing
multiple TKIs with the same approach, including trastuzu-
mab and pembrolizumab or the new molecule PESGHO,
composed of pertuzumab, trastuzumab, and recombinant
human hyaluronidase, in HER2-positive tumors.

Immunotherapy. The mismatch repair (MMR) system rec-
ognizes and repairs erroneous insertions or deletions that
arise during DNA replication. Cancers deficient in the MMR
(dMMR) system contain many somatic mutations, and make
them especially sensitive to immune checkpoint inhibitors
(ICIs), such as anti-programmed cell death protein 1 anti-
bodies.93 More than 5% of adenocarcinomas of the
gastrointestinal tract, endometrium, cervix, and liver are
dMMR. They are more commonly found in localized stages
(8%) than in metastatic stages (4%).93 In BTC, dMMR ac-
counts for 2%-18% of tumors, depending on the location
and series published, being more common in iCCA (10%)
and AC (6%-20%) than in eCCA or GBC (5%-8%).94-96

The phase II KEYNOTE-158 study evaluated the antitumor
activity of pembrolizumab against non-colorectal dMMR
cancer.97 A total of 233 patients were included, 22 (9.4%) of
whom had BTC. An ORR of 41%, median PFS of 4.2 months,
and a median OS of 24.3 months were reported for patients
with CCA tumors. Overall, 14.6% reported any grade 3 or 4
adverse event, the most common adverse events being
severe skin reactions (1.3%), pneumonitis (1.3%), colitis
(0.9%), and hepatitis (0.9%).97

Regardless of the MMR status, many clinical trials tested
ICIs for BTC all-comers. A phase II study tested nivolumab
240 mg i.v. every 2 weeks for 16 weeks and then 480 mg i.v.
every 4 weeks, until disease progression or unacceptable
toxicity, in 54 patients with refractory BTC. The study re-
ports an ORR of 11% by central review with a DCR of 50%, a
median PFS of 3.7 months, and a median OS of 14 months.
When patients were stratified by anti-programmed death-
ligand 1 (PD-L1) expression status (�1% cut-off), both me-
dian PFS and OS improved compared with patients with PD-
L1-negative expression.98 The TOPAZ-1 phase III clinical trial
evaluated the combination of CisGem with 1500 mg every 3
weeks durvalumab versus CisGem. After 685 patients were
randomized, the experimental arm showed an improvement
of median OS and PFS (HR 0.80 and 0.75, respectively, both
P < 0.05). These new data may bring a new first-line
Volume 7 - Issue 3 - 2022
treatment to clinical practice.38 The LEAP-005 phase II
clinical trial evaluated the efficacy and safety of the com-
bination of lenvatinib and pembrolizumab for pretreated
tumors that are not microsatellite instability-high or dMMR.
Out of 187 patients enrolled, 31 (16.5%) were patients with
BTC, in whom an ORR of 9.7% with a DCR of 68% was re-
ported. In this subset of patients, the duration of response
was 5.3 months, and grade 3 or higher adverse events were
reported in 48% of patients.99,100 Pembrolizumab was
tested at a second-line setting or beyond in a single Chinese
center, single-arm study, which recruited 40 patients, 50%
with iCCA. An ORR of 10% with four PRs and 15 SDs, and
a median duration of response of 2.1 months were re-
ported.101 The role of bintrafusp alfa, a novel anti-PD-L1/
transforming growth factor-b receptor II fusion protein, in
combination with CisGem, was being tested in the first-line
setting (NCT04066491) until 2021, when the trial was dis-
continued due to inefficacy after an analysis by the inde-
pendent monitoring committee. Another phase III trial,
KEYNOTE-966,37 is testing the efficacy of pembrolizumab in
combination with CisGem in the first-line setting in a
worldwide population and an extension with only
Chinese adults with advanced BTC (NCT04003636 and
NCT04924062, respectively).
FUTURE PERSPECTIVES AND CONCLUSIONS

Many patients with BTC are diagnosed at an advanced
stage, making the disease incurable in most cases. Surgery
of the primary tumor detected in early stages of selected
patients is the best available potentially curative treatment,
but the field of advanced disease is open.

The current understanding of the biology is opening
doors for new strategies, as BTCs have multiple molecular
targetable alterations. Thus, it is highly recommended that
all patients with BTC have a comprehensive molecular panel
before the initiation of systemic treatment, since many
genetic alterations may be encountered and will change the
outcome of our patients. There are currently multiple clin-
ical trials ongoing testing the efficacy and safety of many
drugs in the first- and second-line setting with different
strategies summarized in Supplementary Table S2, available
at https://doi.org/10.1016/j.esmoop.2022.100503.

The first-line approved treatment remains cisplatin and
gemcitabine after the positive results of the phase III
ABC-02 which demonstrated an increase of median OS
compared with gemcitabine alone. However, there is a new
direction to push forward on patients who do not harbor
driver mutations set by the TOPAZ-1 clinical trial, showing
for the first time in years an improvement in OS, PFS,
and ORR with immunotherapy in combination with
chemotherapy.

In the second-line setting, FOLFOX has shown a modest
but statistically significant benefit in median OS compared
with active symptom control. As shown before, targeted
therapies such as FGFR2, IDH1, and BRAF inhibitors have
shown promising results in clinical trials for BTC patients
with specific molecular alterations. Other strategies in
https://doi.org/10.1016/j.esmoop.2022.100503 9
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development are targeted therapies, chemotherapy com-
binations, immunotherapy, and antiobdy-drug conjugates
which will impact the future of BTC treatment.
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