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Simple Summary: Immune checkpoint inhibitors can be effective drugs to treat cancer. However,
only a minority of patients derive benefits. An important determinant of treatment success is the
abundance of CD8-expressing tumour-infiltrating lymphocytes (CD8+ TILs) in target tumours. The
measurement of CD8+ TIL density in the clinical setting relies on tissue sampling. Radiomics, the
process of extracting a large number of features from radiological images, may offer a non-invasive
alternative. The premise of radiomics is that features on medical images are linked to the underlying
molecular, physiological, and structural properties of the tumour. In this systematic review, we
address available evidence linking imaging features of tumours with levels of CD8+ TILs.

Abstract: The tumour immune microenvironment influences the efficacy of immune checkpoint
inhibitors. Within this microenvironment are CD8-expressing tumour-infiltrating lymphocytes (CD8+

TILs), which are an important mediator and marker of anti-tumour response. In practice, the
assessment of CD8+ TILs via tissue sampling involves logistical challenges. Radiomics, the high-
throughput extraction of features from medical images, may offer a novel and non-invasive alternative.
We performed a systematic review of the available literature reporting radiomic signatures associated
with CD8+ TILs. We also aimed to evaluate the methodological quality of the identified studies
using the Radiomics Quality Score (RQS) tool, and the risk of bias and applicability with the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Articles were searched from inception
until 31 December 2021, in three electronic databases, and screened against eligibility criteria. Twenty-
seven articles were included. A wide variety of cancers have been studied. The reported radiomic
signatures were heterogeneous, with very limited reproducibility between studies of the same cancer
group. The overall quality of studies was found to be less than desirable (mean RQS = 33.3%),
indicating a need for technical maturation. Some potential avenues for further investigation are
also discussed.

Keywords: radiomics; cancer; systematic review; immunotherapy; immune cells; lymphocytes

1. Introduction

Immune checkpoint inhibitors (ICIs) leverage the high specificity of the immune
system to selectively attack tumour cells. They can be highly effective [1]. However,
only a small proportion of patients meaningfully benefit from treatment, with typical
response rates of under 15% for most eligible cancer types [2–4]. Therefore, markers that
can distinguish between responsive and non-responsive patients are necessary.

The efficacy of ICIs is biologically governed by cancer–immune system interactions
in the tumour immune microenvironment (TIME) [5,6]. Important within this microen-
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vironment are the CD8 glycoprotein-expressing (CD8+) tumour-infiltrating lymphocytes
(TILs), which play a key role in destroying cancer cells [7]. Given this role after the admin-
istration of ICIs (Figure 1), it follows that the presence of CD8+ TILs may predict treatment
response. Studies have shown that lesions with higher numbers of CD8+ TILs tend to
be more sensitive to ICIs [8,9], and there is mounting evidence supporting the clinical
utility of CD8+ TILs as a biomarker in various cancers [10–15]. Circulating CD8+ T cells in
peripheral blood have been used to predict ICI response [16], but it remains elusive whether
systemic measurements accurately reflect the local tumour microenvironment [9]. The gold
standard for CD8+ TIL quantification is the assessment of biopsy specimens via immunohis-
tochemistry [17]; this approach, however, is limited by its invasiveness, unrepeatability, and
inability to reflect intra- and intertumoural heterogeneity. These shortcomings demonstrate
a need for innovation in the form of dynamic and less invasive biomarkers.
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tinct radiomic phenotypes have been postulated to be representative of different tumour 
microenvironments [18,19] and various TIL gene expression patterns [20]. Tumours man-
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Figure 1. Immune checkpoint inhibitors induce tumour cell death by activating pre-existing CD8+

TILs. CD8+ TILs express T cell receptors (TCRs) that recognise antigens presented by major histocom-
patibility complexes (MHCs) on either tumour cells or antigen-presenting cells (APCs). TCR–antigen–
MHC interactions prime and activate CD8+ TILs to induce apoptosis. This interaction, however, is
downregulated by the activation of immune checkpoints, for example, the binding of cell surface
receptor proteins PD-L1 (programmed death-ligand 1) with PD-1 (programmed death-1), and CTLA-4
(cytotoxic T lymphocyte-associated antigen-4) with B7 proteins. The blockade of these axes, via ICIs,
allows CD8+ TILs to circumvent these inhibitory signals.

The emerging field of radiomics centres on the premise that quantitative features
observed in medical images may have biological underpinnings. Tumour regions with
distinct radiomic phenotypes have been postulated to be representative of different tu-
mour microenvironments [18,19] and various TIL gene expression patterns [20]. Tumours
manifesting shape and texture irregularities have also been reported to show better ICI
response [21]. The identification of a constellation of imaging features (“radiomic signa-
ture”) linked to CD8+ TILs is desirable: it could create a novel way of evaluating treatment
outcomes in a manner that is non-invasive and complementary to routine patient manage-
ment, as the collection of imaging data is undertaken as part of existing standards of care.
Furthermore, radiomics-based biomarkers can be computed repeatedly, and permit the
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3D evaluation of the entire investigated tumour lesion. While promising, it is also worth
highlighting that radiomics research is characterised by substantial methodological hetero-
geneity [22]. Many have called for the adoption of rigorous, transparent, and standardised
workflows to ensure the reproducibility of radiomic signatures [23–27].

Based on the ever-increasing advances in computational power and the recent clinical
adoption of ICIs [28], we hypothesised that several radiomics studies involving CD8+ TILs
have likely materialised. Moreover, little is known about the methodological robustness of
these studies. In this systematic review, our objectives were three-fold: (i) to provide an
overview of the general characteristics of radiomics studies involving CD8+ TILs, (ii) to
collate radiomic signatures associated with CD8+ TILs reported so far, and (iii) to evaluate
the methodological quality of these studies. We also discuss avenues for future investiga-
tion. The scope of this review includes radiomics studies from three diagnostic imaging
modalities: computed tomography (CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET).

2. Materials and Methods

This review was conducted in adherence to Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) 2020 guidelines [29] (Supplementary Table S1). The
protocol for this review is registered with PROSPERO (CRD42021284332).

2.1. Literature Search

We developed our search strategy following a preliminary literature review. Identified
common terms were truncated or expanded, where necessary, to account for derivational
affixes and abbreviations; these were then organised into a Boolean search (Figure 2).
Peer-reviewed journal articles were searched from inception until 31 December 2021,
and collected from three electronic databases: Ovid MEDLINE, Embase, and Web of
Science. We also included articles beyond our search that were retrieved manually, i.e.,
articles cited within examined literature, referred to us by experts, or encountered during
previous reading.
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2.2. Literature Selection

The shortlisted articles were initially evaluated for duplicates; the remaining were
screened against eligibility criteria designed around the PICOS (Population, Intervention,
Comparison, Outcomes, and Study) framework (Table 1). In summary, we sought to include
only primary sources that investigated both imaging/radiomics features and CD8 data
on human tumour lesions. To this end, articles were evaluated systematically at the title-,
abstract-, and full-text levels, and reasons for exclusions were documented. To minimise
subjectivity, screens were completed independently by two reviewers (S.R. and D.H.), and
discrepancies in relevance assessment were resolved via consensus or adjudicated by a
third independent reviewer (K.B.).

Table 1. Study eligibility criteria.

Inclusion Criteria Exclusion Criteria

Participant(s)
• Human participants
• Cancer cohort

• Non-human models
• Non-cancer studies

Intervention(s)
• Imaging features investigated (conventional radiomics,

semi-quantitative, or semantic features)
• Performed on radiological images (CT, MRI, and PET)

• Studies not focusing on imaging features or
radiomics

• Not performed on radiological datasets

Comparator(s)

• CD8 marker interrogated in isolation or in
combination with other markers

• CD8 expression measured, at least, within the tumour
(e.g., via immunohistochemistry)

• CD8 marker not explicitly interrogated
• CD8 expression not assessed within the

tumour

Outcome(s)

• Potential association of one or more imaging features
(radiomic signatures) with CD8+ TILs

• Correlation, discrimination, or performance statistics
reported (e.g., area under the curve (AUC) values)

• Clinically-measurable end point (e.g., survival or ICI
response)

• Technical studies not focused on deriving
radiomic signatures

Study design • Primary sources

• Review articles and other secondary
sources

• Conference abstracts and proceedings
• Inaccessible studies
• Articles not written in the English language

2.3. Literature Analysis

To address review objectives (i) and (ii), we carried out data extraction on all selected
records. Relevant study parameters (e.g., disease, cohort size, and imaging modality) and
reported radiomic signatures were tabulated (Supplementary Table S2). Extraction forms
were first piloted on three studies chosen at random, then completed for all records by
one reviewer (S.R.) and validated by a second reviewer (K.B.) to ensure a level of accuracy.
Qualitative summaries of the general study characteristics were presented. We found no a
priori reason to believe CD8+ TIL-associated radiomic signatures for one disease site will be
similar for others. Thus, in meeting objective (ii), publications were first grouped according
to the organ (or organ system) where the investigated cancer originated. Within groups,
relationships between signatures were explored where possible.

To address review objective (iii), articles were assessed using the Quality Assessment
of Diagnostic Accuracy Studies version 2 (QUADAS-2) [30] and Radiomics Quality Score
(RQS) [25] tools. In accordance with QUADAS-2 scoring design, we evaluated potential
risks of bias and/or the applicability of the included studies in four domains: patient
selection, index test, reference standard, and flow and timing. On the other hand, the RQS
assigns an overall score that is reflective of the methodological quality of a radiomics study.
This score, which can range from −8 to 36, is derived from the summation of ratings for
16 dimensions. Each dimension represents a key component in the radiomics pipeline (e.g.,
imaging protocol quality). Both tools have their own strengths: the QUADAS-2 tool is
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more well-established in systematic reviews, while the RQS is more specific to radiomics.
We used both tools to ensure a spectrum.

Quality assessments were completed by two reviewers (S.R. and D.H.) and the inter-
rater agreement was assessed. For every QUADAS-2 domain, the percentage of absolute
agreement of ratings between the two reviewers was measured. The inter-rater agreement
of the overall RQS was calculated using an intraclass correlation coefficient (ICC) estimate
based on a mean-rating, absolute agreement, two-way, mixed-effects model [31]. For each
of the RQS dimensions, the agreement of ratings between reviewers was assessed by means
of a linearly weighted Gwet’s AC2 statistic for ordinal data [32]. This inter-rater reliability
measure was chosen to circumvent known paradoxical behaviours associated with the
more commonly used Kappa statistics [33,34]. Results were then arbitrated between
reviewers. Analysis was performed using the “irr” and “irrCAC” packages in R software
(R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/)
(accessed on 16 June 2022) (v4.0.5).

3. Findings
3.1. Literature Selection

The study selection process is presented in Figure 3. Our search yielded 1044 articles,
of which 2 were manually retrieved from other sources; 297 articles were initially removed
on the basis of duplication, and 611 were excluded upon evaluation at the title level, 70
at the abstract level, and 39 at the full-text level, culminating into a final 27 publications
for analysis in this review. The results from our literature search and individual screens
are available in Supplementary Tables S3 and S4. The majority of the selected studies were
published in the last two years, confirming our initial hypothesis that radiomics involving
CD8+ TILs is a new research avenue.

3.2. General Characteristics of Included Studies

The main characteristics of the included articles are presented in Table 2 and a typical
study workflow has been illustrated in Figure 4. Technical radiomics terminology used in
this review has been defined in Supplementary Table S5.

Studies have so far focused on cancers of the lung (7/27), hepatobiliary system (6/27),
brain (4/27), gastrointestinal tract (3/27), and head and neck (2/27). Two articles inves-
tigated multiple cancers (2/27). Single studies were found on breast cancer, melanoma,
and undifferentiated pleomorphic sarcoma (UPS). The median total number of patients
investigated was 105 (range: 14–1778). No studies declared the use of prospectively ac-
quired datasets; datasets tend to be sourced locally from a single institution (18/27) and/or
downloaded from public repositories (such as The Cancer Genome Atlas/The Cancer
Imaging Archive [35]) (6/27).

To assess the CD8 marker on tumour samples, immunohistochemistry (IHC) was
performed more commonly than RNA sequencing (RNA-seq) (17/27 vs. 5/27). CD8+

TILs were enumerated via fluorescence-activated cell sorting (FACS) in two papers [36,37].
Three articles estimated CD8+ TILs via cell type quantification tools on bulk tumour
transcriptome data [38–40]. One article used a chemokine gene expression signature as
a surrogate marker for CD8+ TILs [41]. We highlight six studies that did not investigate
CD8+ cells as an exclusive biological correlate; these articles instead interlaced CD8+ TILs
with other immune variables to perform joint analyses (e.g., with CD3 [42–44], CD4 [36],
PD-L1 [45,46] markers).

Studies analysing MRI and CT images were represented almost equally (11/27 vs.
10/27). Contrast-enhanced images predominated both modalities (9/11 and 8/10). The
remaining six studies analysed PET images with fluorine-18-labelled fluorodeoxyglucose
([18F]-FDG) tracers ([18F]-FDG-PET) [45–50]. To extract intratumoural imaging features,
lesion boundaries were annotated mainly via manual (15/27) or semi-automatic (10/27)
means. In addition, we located three studies where the tumour periphery was considered
a separate entity and the extraction of peritumoural features was carried out [43,44,51].

https://www.R-project.org/
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The software platform for radiomic feature computations was inconsistent, with at least
eight different packages identified. PyRadiomics was the most commonly used software
platform (8/27).
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There was remarkable diversity in the types of imaging features extracted. We distin-
guished them into three classes. The first of these classes represents conventional radiomic
features, where studies extracted the following feature families: size- or shape-based
(21/27), first-order (25/27), second-order (22/27), and higher-order (9/27). Broadly, second-
order families have been calculated from various matrices that describe how homogeneous
or heterogeneous an image is. These matrices include the grey-level co-occurrence ma-
trix (GLCM) (22/27), grey-level run-length matrix (GLRLM) (21/27), grey-level size zone
matrix (GLSZM) (20/27), neighbouring grey-tone difference matrix (NGTDM) (16/27),
grey-level dependence matrix (GLDM) (12/27), and neighbouring grey-level dependence
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matrix (NGLDM) (2/27). Higher-order families refer to the extraction of features from
images pre-processed with various mathematical filters.
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data were sourced from institutions and/or public repositories, before being subjected to further
processing. To develop radiomic signatures, Pipeline A describes the main approach taken in the
reviewed studies. Here, radiomic features were directly analysed for their association with CD8+

TILs. Features associated with CD8+ TILs were retained for radiomic signature derivation, model
construction, and further evaluation. Pipeline B describes an alternate pathway where radiomic
signatures were first developed by assessing the association of features with clinical variables, e.g.,
objective response. Signatures were then evaluated for their association with CD8+ TILs to explain,
at least partially, the biological basis of the radiomic signatures. Acronyms: TCIA/TCGA = The
Cancer Imaging Archive/The Cancer Genome Atlas, IHC = immunohistochemistry, RNA-seq = RNA
sequencing.

The second feature class corresponds to semi-quantitative features, examined in eight
articles. These features differ from conventional radiomics in their calculation and are more
directly interpretable (e.g., total lesion glycolysis calculated from PET image intensities).
The final feature class describes semantic features, studied in nine articles. These are
features perceived qualitatively by radiologists (e.g., tumour location). Brief descriptions of
each feature class, family, texture, and their hierarchy are provided in Supplementary Table S5.

Radiomic signatures associated with CD8+ TILs were determined in one of two ways,
as illustrated in Figure 4. In the predominant approach (Pipeline A), imaging features
were subjected to association analysis with different CD8+ TIL levels, in order to single out
features that are statistically different between lesions exhibiting distinct CD8+ TIL levels.
Alternatively, radiomic signatures could also be developed by assessing the association
of features with clinical variables, before being evaluated for their biological significance,
i.e., link to CD8+ TILs (Pipeline B). Regardless of which approach was taken, most studies
also employed a further feature selection step to remove features that were redundant
and/or sensitive to other parameters in the radiomics workflow (23/27). Details of derived
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radiomics signatures have been summarised in Table 2 and discussed in the sections that
follow; a more detailed list is also available in Supplementary Table S6.

Statistical tests and threshold values were marked by heterogeneity and were highly
dependent on individual study context, objectives, and end points. Study end points
include using radiomic signatures to build models that could predict high or low CD8+

TIL levels in lesions, TIME phenotypes, survival (overall, disease-free, metastasis-free, or
progression-free), and/or treatment response (Table 2). In approximately two-thirds of the
papers, the predictive capacity of radiomics signatures was validated (19/27). Validation
patient cohorts were mainly sourced internally, i.e., using a portion of the same patient
cohort (set aside at the beginning of the study) for testing (15/19). In this case, the mean
proportion of patients between training and validation was found to be 5:2. In contrast, only
four articles performed external validation with datasets originating outside the researching
institution [44,51–53].

3.3. Radiomic Signatures
3.3.1. Lung Cancers

In lung cancer, all seven studies examined non-small cell lung carcinoma (NSCLC).
The earliest two papers hypothesised [18F]-FDG-PET features could reveal a link between
metabolic activity and the presence of CD8+ TILs in neoplastic tissue [47,48]. The authors
demonstrated that semi-quantitative [18F]-FDG-PET features (maximum and mean stan-
dardised uptake values) and a first-order feature (entropy) were associated with CD8+ TIL
expression. Later studies, however, showed indefinite or weaker correlations [45,46,49].
The association between [18F]-FDG-PET features and CD8+ TILs, therefore, remains poorly
defined.

In CT, a study reported that CD8+ TILs were significantly correlated with measures of
texture heterogeneity (NGLDM contrast) [46]. In another paper, TIL levels co-expressing
the CD8 and CD103 marker could be predicted by measures of homogeneity and high
grey-level values (validation AUC = 0.753, 95% CI: NA) [37]. Higher-order CT radiomic
features, generally describing the distribution of grey-level voxels (grey-level range, high
emphasis, long run lengths), were significantly correlated with TIME parameters estimated
from relative levels of CD8+, CD3+, and PD-1+ TILs [42]. Across the studies, no features
were reproducible.

3.3.2. Hepatobiliary Cancers

A series of pancreatic ductal adenocarcinoma (PDAC) studies published by Bian, Y.
and colleagues analysed images acquired via contrast-enhanced CT [54], contrast-enhanced
MRI [55], and non-contrast MRI [56]. All three studies were aimed at predicting lesion CD8+

TIL levels. Validation AUCs were similar at 0.705–0.790. Notably, a higher-order feature
(wavelet-filtered first-order median) was associated with CD8+ TILs in both T2-weighted
and contrast-enhanced T1-weighted MR images. This remains the only reproducible feature
that we could identify in the entirety of this review.

Two teams of investigators examined hepatocellular carcinoma (HCC) in different
imaging contexts (MRI vs. CT) [43,57]. In both studies, GLCM and GLRLM textures appear
to be important constituents of derived radiomic signatures. High grey-level values on
CT (short and long run lengths) were good determinants of CD8+ TIL levels (validation
AUC = 0.705, 95% CI 0.547–0.863) [57]. Measures of fine textures (short and irregular run
lengths) with deep texture grooves (contrast/inertia) on MRI could predict the density of
CD8+ and CD3+ TILs in the tumour centre and invasive margins [43]. Notably, predictive
performance improved when peritumoural features were added into models (validation
AUC = 0.899 vs. 0.640).
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Table 2. Details of included studies.

Disease Study
[Ref]

Total
Cohort # Validation CD8

Evaluation
Joint

Analysis
Imaging
Modality

Radiomics
Software

Features
Extracted Tumour

Region

Relevant Radiomic
Signatures Modelling End Point

R S SQ # Features

Lung

NSCLC Lopci et al.
[47] 55 N IHC N PET ([18F]-FDG) NA N N Y Intratumoural 2 SQ: SUVmean, SUVmax

Cox
regression DFS

NSCLC Castello
et al. [48] 44 N IHC N PET ([18F]-FDG) LIFEx Y N Y Intratumoural 5

R: First-order
SQ: SUVmax, SUVpeak, SUVmean,

MTV

Cox
regression DFS

NSCLC Mazzaschi
et al. [42] 100 Y IHC

Y
(CD3,
PD-1)

CT SlicerRadiomics Y Y N Intratumoural 11

R: First-order, GLCM, GLRLM,
GLDM

S: Texture, effect (parenchyma
reaction), margins

Cox
regression OS, DFS

NSCLC Mitchell
et al. [49] 59 N IHC N PET ([18F]-FDG) NA N N Y Intratumoural 0 None significant Cox

regression OS, DFS

NSCLC Zhou et al.
[45] 91 N IHC

Y
(PD-
L1)

PET ([18F]-FDG) NA N N Y Intratumoural 5 SQ: SUVmax, SUVmean, TLG Logistic
regression

Tumour immuno-
phenotype

NSCLC Min et al.
[37] 97 Y FACS N CT PyRadiomics Y Y N Intratumoural 4

R: GLCM, GLDM
S: Boundary type, lymphatic

metastasis

Neural
network-

based

High/low CD8
levels

NSCLC Zhou et al.
[46] 103 Y IHC

Y
(PD-
L1)

PET/CT
([18F]-FDG) LIFEx Y N Y Intratumoural 1 R: NGLDM Logistic

regression
Tumour immuno-

phenotype

Hepatobiliary

PDAC Li et al.
[54] 184 Y IHC N CE-CT PyRadiomics Y Y N Intratumoural 11 R: First-order, GLSZM

S: Tumour size

Logistic
regression,
XGBoost

High/low CD8
levels

PDAC Bian et al.
[55] 156 Y IHC N

MRI (T1W, T2W,
post-contrast [AP

PPP, PVP])
PyRadiomics Y Y N Intratumoural 14

R: First-order, GLCM, GLRLM,
GLSZM, NGTDM

S: Lesion location, tumour size

Linear
regression,
XGBoost

High/low CD8
levels

PDAC Bian et al.
[56] 144 Y IHC N MRI (T1W, T2W) PyRadiomics Y Y N Intratumoural 13 R: First-order, GLCM, GLRLM,

GLSZM
LDA

classifier
High/low CD8

levels

HCC Chen et al.
[43] 207 Y IHC Y

(CD3) MRI (CE)
Analysis Kit

(GE
Healthcare)

Y N N

Intratumoural,
peritu-
moural,

combined

70 R: Shape, GLCM, GLRLM,
GLSZM

Extra-
Trees,

logistic
regression

Immunoscore
prediction

HCC Liao et al.
[57] 142 Y IHC N CE-CT

Analysis Kit
(GE

Healthcare)
Y N N Intratumoural 7 R: GLCM, GLRLM Elastic-net OS, DFS

ICC Zhang
et al. [58] 78 N IHC N

MRI (T1W, T2W,
post-contrast [AP,

PVP], DW)
PyRadiomics Y N N Intratumoural 4 R: Shape, first-order, GLSZM

Logistic
regression,

Cox
regression

Tumour immuno-
phenotype,

OS
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Table 2. Cont.

Disease Study
[Ref]

Total
Cohort # Validation CD8

Evaluation
Joint

Analysis
Imaging
Modality

Radiomics
Software

Features
Extracted Tumour

Region

Relevant Radiomic
Signatures Modelling End Point

R S SQ # Features

Brain

LGG Zhang
et al. [38] 107 Y TIMER N MRI (T1W, T1CE,

T2W, T2-FLAIR) CaPTK Y N Y Multiple
subregions 3 R: Shape, GLRLM Cox

regression OS

GBM Hsu et al.
[59] 116 Y RNA-seq N MRI (T1CE, DW) ND Y N N Intratumoural 15 R: First-order, GLRLM Logistic

regression
High/low CD8

levels

HGG Kim et al.
[36] 51 N FACS Y

(CD4)

MRI (T1W, T1CE,
T2W, T2-FLAIR,

DW, DSC)
PyRadiomics Y N N Intratumoural 5 R: GLCM, GLRLM, GLSZM,

GLDM sPLS-DA OS

Glioma Chaddad
et al. [40] 151 Y CIBERSORT N MRI (T1W, T1CE,

FLAIR, T2W) MATLAB Y Y N Intratumoural 3 R: GLSZM
Neural

network-
based

High/low CD8
levels

Gastrointestinal

Gastric
cancer

Jiang et al.
[44] 1778 Y IHC

Y
(CD3,
CD45RO,
CD66b)

CE-CT MATLAB Y N N
Intratumoural,

peritu-
moural

13 R: Shape, GLCM, GLRLM,
GLSZM, NGTDM

Logistic
regression,

Cox
regression

Immunoscore
prediction, DFS,

OS

ESCC Wen et al.
[60] 220 Y IHC N CE-CT IBEX Y N N Intratumoural 8 R: First-order, GLCM, GLRLM Logistic

regression
High/low CD8

levels

Rectal
cancer

Jeon et al.
[61] 113 Y IHC N MRI (T2W) MATLAB Y N N Intratumoural 6 R: First-order, GLCM, GLRLM,

GLSZM
Linear

regression

Chemoradiotherapy-
induced
changes

Head and neck

HNSCC Katsoulakis
et al. [52] 160 Y RNA-seq N CE-CT

Radiomics
Toolbox in

CERR
Y N N Intratumoural 67 R: First-order, GLCM, GLRLM,

GLSZM, NGTDM, NGLDM
Random

forest
High/low CD8

levels

HNSCC Wang et al.
[41] 71 Y

Chemokine
gene

expression
N CE-CT SlicerRadiomics Y N N Intratumoural 8 R: GLCM, GLSZM, GLDM,

NGTDM
Logistic

regression
Tumour immuno-

phenotype

Multiple

Multiple Sun et al.
[51] 491 Y RNA-seq N CE-CT LIFEx Y Y N

Intratumoural,
peritu-
moural

8

R: First-order, GLRLM
S: Lesion location (adenopathy;
head and neck), CT parameters

(kVp)

Elastic-net Objective response,
OS

Multiple Ligero
et al. [53] 198 Y IHC N CE-CT PyRadiomics Y Y N Intratumoural 16

R: Shape, first-order, GLCM,
GLDM

S: Lesion location (liver; other)

Elastic-net,
Cox

regression

Objective response,
OS
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Table 2. Cont.

Disease Study
[Ref]

Total
Cohort # Validation CD8

Evaluation
Joint

Analysis
Imaging
Modality

Radiomics
Software

Features
Extracted Tumour

Region

Relevant Radiomic
Signatures Modelling End Point

R S SQ # Features

Others

Breast
cancer

Arefan
et al. [39] 73 Y MCP-

Counter N MRI (DCE) PyRadiomics Y N Y Intratumoural 2
R: Shape

SQ: Tumour mean peak
enhancement

XGBoost High/low CD8
levels

UPS Toulmonde
et al. [62] 14 N IHC;

RNA-seq N MRI (T1CE) OleaSphere®
Software Y N N Intratumoural 9 R: First-order, GLRLM Cox

regression OS, MFS

Melanoma Aoude
et al. [50] 52 N

RNA-seq;
mIF;

Histomor-
phometry

N PET/CT
([18F]-FDG) NA Y N Y Intratumoural 1 R: First-order Cox

regression OS, PFS

Acronyms: AP = arterial phase; CaPTK = cancer imaging phenomics toolkit; CE = contrast-enhanced; CE-CT = contrast-enhanced CT; CERR = computational environment for radiological research; CIBERSORT = cell-type
identification by estimating relative subsets of RNA transcript; DCE = dynamic contrast-enhanced; DFS = disease-free survival; DSC = dynamic susceptibility contrast-enhanced; ESCC = esophageal squamous cell
carcinoma; Extra-Trees = extremely randomized tree algorithm; FACS = fluorescence-activated cell sorting; GBM = glioblastoma; HCC = hepatocellular cancer; HGG = high-grade glioma; HNSCC = head and neck
squamous cell carcinoma; ICC = intrahepatic cholangiocarcinoma; IHC = immunohistochemistry; kVp = peak kilovoltage; LDA = linear discriminant analysis; LGG = lower-grade glioma; MCP-counter = microenvironment
cell populations-counter; MFS = metastasis-free survival; mIF = multiplex immunofluorescence; N = no; NA = not available/applicable; ND = not declared; NSCLC = non-small cell lung cancer; OS = overall survival;
PDAC = pancreatic ductal adenocarcinoma; PFS = progression-free survival; PPP = pancreatic parenchymal phase; PVP = portal venous phase; R = radiomic features; RNA-seq = RNA sequencing; S = semantic features;
sPLS-DA = sparse partial least squares discriminant analysis; SQ = semi-quantitative features; SSF = spatial scaling factor; T1-FLAIR = T1-weighted fluid attenuated inversion recovery; T1CE = T1-weighted contrast-enhanced;
T1W = T1-weighted; T2-FLAIR = T2-weighted fluid attenuated inversion recovery; T2W = T2-weighted; TIMER = tumour immune estimation resource; UPS = undifferentiated pleomorphic sarcoma; XGBoost = binary
logistic extreme gradient boosting framework; Y = yes.
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In the context of intrahepatic cholangiocarcinoma (ICC), tumour flatness and higher-
order radiomic families (variability of size zone volumes and first-order medians) in
preoperative MR images could predict CD8+ TILs [58]. The AUC was 0.919 but a validation
study was not performed.

3.3.3. Brain Cancers

The standard of care modality for the radiographic evaluation of neurologic diseases is
MRI. Accordingly, all four studies on brain cancer analysed MR images. In two of these pa-
pers, high-grade gliomas (HGGs) were investigated in apparent diffusion coefficient (ADC)
maps obtained from diffusion-weighted MRI. In this context, radiomic signatures between
studies were dissimilar: first- and second-order GLRLM features (short runs) were good
predictors of different cytotoxic TIL levels in glioblastoma (AUC = 0.710; 95% CI: NA) [59],
while second-order GLSZM features (variance of grey-levels within size zone volumes)
could determine CD8+ TIL-dominant HGG lesions [36].

Two HGG studies interrogated contrast-enhanced MR images and produced radiomic
signatures that were also discordant: only first-order features were correlated with CD8+

TILs in one study [59] and second-order features in the other [36]. When considering only
lower-grade gliomas (LGGs), second-order features (GLRLM long grey-level runs) and
volume-based features have been reported to predict CD8+ TILs [38]. However, when
LGGs and HGGs were pooled together, no features from contrast-enhanced MRI were
significantly different between low and high groups of CD8+ TILs (p > 0.05) [40]. Here,
authors instead demonstrated that fine textures and large size zones with high grey-levels
were significant predictors of CD8+ TILs in non-contrast MR images.

3.3.4. Gastrointestinal Cancers

The study focusing on esophageal squamous cell carcinoma (ESCC) revealed that first-,
second-, and higher-order features describing grey-level distribution (e.g., interquartile
range, entropy, cluster prominence) and fine textures (short runs) could predict CD8+ TILs
(validation AUC = 0.728, 95% CI: 0.562−0.894) [60].

Jiang et al. analysed the utility of intratumoural and peritumoural radiomic features
to predict tumour and/or invasive margin levels of CD8+, CD3+, CD45RO+, and CD66b+

immune cells in gastric cancer (validation AUC = 0.766, 95% CI: 0.669–0.863) [44]. The
radiomic signature was mainly composed of heterogeneity measures (from second- and
higher-order radiomic families).

Distinct from all the other articles we reviewed, Jeon et al. performed a delta-
radiomics [25] MRI study on rectal cancer to predict chemoradiotherapy (CRT)-induced
changes in CD8+ TILs (AUC = 0.824, 95% CI: 0.674–0.974) [61]. The radiomic signature
was in part defined by homogeneity measures (large areas with low grey-levels and short
runs with high grey-levels). The net change in radiomic feature values between pre-CRT
and post-CRT datasets was correlated with a higher longitudinal fold change in CD8+ TIL
density (p = 0.001).

3.3.5. Head and Neck Cancers

Radiomic signatures from contrast-enhanced CT images could only moderately predict
levels of CD8+ TILs in head and neck squamous cell carcinoma (HNSCC) [41,52]. Second-
order features describing texture heterogeneity (contrast, coarseness, small grey-level
dependence) had a modest validation AUC of 0.643 (95% CI: 0.340–0.946) in one study [41],
while a radiomic cluster of 67 features could only classify lesion CD8+ TIL levels with an
accuracy of 65.7% [52].

3.3.6. Multiple Cancers

Both Sun et al. and Ligero et al. used contrast-enhanced CT images to predict ICI
response in datasets composed of a mixture of advanced solid tumours [51,53]. Prediction
performances using derived radiomic signatures were similar, achieving good validation
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AUCs of 0.67–0.76. Both signatures contained lesion location (semantic feature) to account
for the heterogeneity in the cancer type or organ region analysed. Additionally, in both
studies, tumour homogeneity measures were associated with high CD8+ TIL levels or
responses to ICIs. However, the included parameters were calculated from different
second-order matrices (GLRLM vs. GLCM and GLDM). There was little overlap in other
respects; no features were reproducible between studies, while Sun et al. accounted for and
retained peritumoural features.

3.3.7. Other Cancers

In the remaining evidence, a contrast-enhanced MRI study with fourteen UPS patients
reported that first-order features and fine textures (abundance of short runs, especially
with high grey-levels) could predict lesion CD8+ TIL densities (accuracy = 93%) [62]. In
a [18F]-FDG-PET/CT study on melanoma, only a CT first-order feature (mean value of
positive pixels) could significantly identify lesion groups with distinct CD8+ TIL expressions
(p = 0.017) [50]. The last study, by Arefan et al., identified that semi-quantitative features
(tumour volume, mean peak enhancement of the tumour) from dynamic contrast-enhanced
MRI could only moderately predict CD8+ TILs (validation AUC = 0.62, 95% CI: NA) [39].

3.4. Study Quality of Included Articles

The results from our arbitrated QUADAS-2 assessments are summarised in Figure 5A.
Most papers had low risk of bias in the index test and reference standard domains due to
the adequate reporting of radiomics procedures and how the CD8 marker was interrogated.
That said, the risk of bias for patient selection was high, which we attribute to the intrinsic
selection biases of retrospectively acquired data in the included publications. Similarly,
applicability concerns for the radiomics signatures were mainly high or unclear due to the
absence of a validation step or the reliance on internal validation cohorts, respectively. In
the patient flow and timing domain, the majority of studies failed to report the temporal
delay between imaging and pathology.

Studies reached a mean ± standard deviation RQS of 11.81 ± 6.69 and a percentage
RQS of 33.3 ± 17.5% (scores of −8 to 0 were treated as 0% and 36 treated as 100%). The
RQS ranged from −2 to 22 (or 0% to 61.1%). The distribution of total scores is reflected in
Figure 5B. Average ratings for each item of the RQS can be seen in Figure 5C. In summary,
given that the CD8 assessment formed a criteria for literature selection, the vast majority
of studies performed well in the following dimensions: multivariable analysis with non-
radiomic features (27/27); discussing the potential clinical utility of findings (26/27);
comparison to other or gold standard approaches (23/27), such as by assessing the added
value of radiomics in clinical data-only models; performing cut-off analyses (23/27), such as
by dichotomising samples into high or low CD8+ TIL groups based on a measured median;
and discussing detected biological correlates (20/27). Most studies performed a feature
selection or robustness step in the analysis (23/27). In contrast, less than half of the studies
documented a comprehensive imaging protocol (11/27) (e.g., unknown voxel sizes, vendor
names, tube current, and field strength). Only one study assessed the temporal variability
of features by means of scanning at multiple time points [45]. Finally, we observed no
phantom calibration, cost-effectiveness analysis, or provision of complete open access data
(e.g., scripts, volumes of interest (VOIs), and images) in all publications reviewed.

Full quality assessments from each reviewer are available in Supplementary Figures S1
and S2. The absolute agreement between reviewers was above 70% for most of the
QUADAS-2 domains (Supplementary Table S7). Poor rating agreement was only seen for
the risk of bias in flow and timing (37.0%) and applicability of the index test (40.7%). The
ICC for the total RQS score was 0.969 (95% CI: 0.932–0.986), reflecting high agreement
between reviewers. The inter-rater agreement for the dimensions of the RQS was generally
good, with AC2 values of above 0.7 for 13 out of the 16 domains (Supplementary Table S7).
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4. Discussion

CD8+ TILs are an important biomarker of ICI response. However, their assessment
necessitates tumour biopsies, which are invasive and prone to sampling bias. Radiomics
promises to overcome these challenges. The basic assumption of radiomics is that medical
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imaging features that are otherwise invisible to the naked eye could reveal underlying
tumour biology. Such an assumption prompted us to systematically review and analyse
studies investigating radiomic signatures associated with CD8+ TILs.

We found that most studies on this topic were only published in the last two years. Still,
we identified a variety of investigated tumours, many of which are established indications
for ICI therapy [63]. The most studied malignancy was NSCLC [37,42,45–49], which was as
expected given that ICIs have shifted treatment paradigms for these cancers [64]. Other
cancers eligible for ICI treatment, herein, were melanoma [50], ESCC [60], gastric [44], and
breast [39] cancer; yet, we have only been able to locate single papers for these to date.
Some avenues currently unexplored include renal and ovarian lesions, where nomograms
associated with CD8+ TILs have been developed in a non-radiomics context [65,66].

Our systematic review indicated radiomic signatures associated with CD8+ TILs are
predominantly heterogeneous, despite some degree of overlap at the feature family level.
Even between studies of the same cancer group, the reproducibility of radiomic features was
limited. The only exception to this was a higher-order radiomic feature (wavelet-filtered
first-order median), which appeared to be reproducible between two PDAC studies using
different MRI protocols [55,56]. However, we highlight that both studies originated from
the same institution. It would therefore be desirable to explore whether this reproducibility
holds with broader datasets obtained using scanners of varying manufacturers and across
multiple institutions. To complicate things further, the power of radiomic signatures in
predicting CD8+ TILs was variable, with reported validation AUCs ranging between 0.643
and 0.899. In some papers, there does not seem to be a consensus on the association of
[18F]-FDG-PET imaging features with CD8+ TILs [45,46,49].

We believe the lack of reproducible or definitive radiomic signatures could, at least in
part, be explained by insufficiently developed and heterogeneous study methodologies.
Using RQS scoring criteria, our quality assessments of included studies indicate that the
study methodologies were overall less than desirable (mean RQS = 33.3%). This builds
upon findings of other published radiomics systematic reviews utilising the RQS tool,
wherein it was determined that radiomics research has not yet matured technically [67–70].
However, we emphasise that the low RQS scores do not necessarily devalue the impact
of the reviewed articles, and merely indicate a need for more methodologically rigorous
research in the future. In our review, the major reasons for the observed low scores were the
use of retrospectively acquired data and the lack of results validated on external datasets.
We believe these may have introduced selection biases, which was also reflected in our
QUADAS-2 appraisals. To mitigate this bias and improve the generalisability of radiomic
signatures, future researchers should ideally focus on validating results in large-sample,
multi-institutional, and prospective settings.

Our review has revealed a remarkable diversity as regards the methods used in the
included studies. This could also be evidenced by the heterogeneity of RQS scores, which
range from 0% to 61.1%. Indeed, radiomic pipelines should be more harmonised to allow
the better comparability of radiomic signatures between studies, and for us to reach more
meaningful conclusions. A prime example illustrating the methodological variation be-
tween studies is the wide selection of software platforms used for radiomic computations.
Recently, it has been reported that different software platforms could yield non-identical
radiomic feature calculations and, thus, variable radiomic signatures [71–73]. Fortunately,
community-wide efforts are ongoing to standardise feature calculations through the Imag-
ing Biomarker Standardisation Initiative (IBSI) [26], and prospective investigators should
therefore aim to use IBSI-compliant software.

Deriving reproducible radiomic signatures is recognised as one of the major challenges
to the translation of radiomics into the clinic [74,75]. Image acquisition and post-processing
standardisation strategies to improve the reproducibility and clinical translatability of
radiomic features have been discussed extensively in review articles by Park et al. and
Vallières et al. [76,77]. For instance, the batch effect correction method “ComBat” has re-
cently been demonstrated to substantially reduce inter-scanner biases [78,79], thus allowing
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for the large-scale harmonisation and pooling of inhomogeneous cohorts [80]. Furthermore,
efforts to simplify radiomics workflows, in particular by automating lesion segmentation
and feature processing steps via deep learning, promise to minimise the effect of variable
clinical practices on radiomic signatures [81,82]. Ultimately, we again highlight the im-
portance of high-powered prospective studies, with the expectation that a large enough
sample size could overcome the inherent heterogeneities in clinical imaging [83]. There-
fore, wide-reaching collaborations in the form of multi-institutional and/or multi-national
consortia that offer federated imaging platforms and curated data (e.g., the EuCanImage
project [84] and UK National Cancer Imaging Translational Accelerator network [85]) are
also critical to facilitate the translation of imaging biomarkers into clinical practice [83].

In the following paragraphs, we describe some supplemental lines of inquiry that
could be addressed by future investigators, as also illustrated in Figure 6.
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First, a limited number of papers analysed features from the tumour periphery. Signa-
tures from peritumoural regions appear to be important, or have made a positive impact on
predictive modelling in the cases we reviewed [43,44,51]. Elsewhere, a growing number of
studies have reported the utility of peritumoural features in their radiomics analyses [86–89].
It is also known that the response to ICI is partly dependent on the degree and localisation
of CD8+ T-cells in the tumour margins [8,90,91]. All of this evidence, taken together, creates
a strong rationale for prospective investigators to carry out radiomic interrogations of the
peritumoural regions.

Second, only a single report has so far compared features between pre- and post-
treatment scans [61]. If data from multiple time points are available, prospective investi-
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gators could explore how radiomic features evolve with an underlying marked change in
lesion CD8+ TIL density.

Third, in the reviewed studies, associations between radiomic features and CD8+

TILs often completely disregard intratumoural spatial heterogeneity. A standard radiomics
extraction pipeline computes a single average value for a given feature type, and relies
on the assumption that this value is representative of the phenotype of the entire inves-
tigated lesion. Similarly, histological assessments of CD8+ TILs are carried out on tissue
samples, which ultimately capture only a snippet of lesion biology. Fortunately, ways
to address the loss of information on intratumoural spatial heterogeneity are emerging.
New radiomic extraction methods can generate spatial radiomic maps that identify tumour
regions presenting distinct or similar radiomic features (radiomic “habitats”) [83,92–94].
Meanwhile, other studies have investigated the possibility of aligning in vivo images and
ex vivo samples to biologically validate radiomic signatures in space [95–97].

Novel molecular imaging tools with CD8-targeted PET imaging agents are currently
being investigated [98], and may permit the non-invasive and specific imaging of CD8+

cells. These tools allow the spatiotemporal characterisation of CD8+ cell-rich tumour tissues
vis-à-vis voxels in the PET images. These images could be used to study relationships
between radiomic habitats and CD8+ TIL expression patterns in vivo. Such a relationship
then opens up the possibility of developing surrogate radiomic markers of CD8+ TIL
distribution using more conventional imaging methods. This could be especially useful for
centres where next-generation imaging tools are not widely available.

Our review carries some limitations. First, the broad utility of CD8 as a marker across
cancer types has led to heterogeneity in the included articles. This has ultimately precluded
us from pooling data and completing a formal meta-analysis. Second, the CD8 marker is
widely reputed to be a hallmark of cytotoxic T lymphocytes; this was assumed to be true in
this present review, and by the authors of many of the included studies. However, CD8 can
be expressed in other cell populations (e.g., natural killer cells [99]), and subsets of mature
CD8+ TILs that do not exhibit the cytotoxic function also exist (e.g., regulatory or suppressor
T cells [100–102]). How these populations influence the generalisability of findings remains
to be elucidated. Third, because of the relatively small number of reviewed papers, deeper
or more meaningful comparisons could not be drawn in every instance. Finally, we chose
not to exclude studies with low-quality scores from our review given the limited number
of papers, the emerging nature of this field, and in the interest of completeness. Thus, not
all results from the publications we reviewed are free from uncertainty.

5. Conclusions

In conclusion, studies deriving radiomic signatures associated with CD8+ TILs have
recently materialised for several cancers. Observations from the reviewed studies have so
far indicated that radiomic features are heterogeneous, with very limited reproducibility
between studies. High-level evidence, in the form of more methodologically sound and
harmonised studies, is urgently needed to generate definitive radiomic signatures and to
allow the translation of radiomics into clinical practice.
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