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Abstract
Objectives In the Cancer Core Europe Consortium (CCE), standardized biomarkers are required for therapy monitoring onco-
logic multicenter clinical trials. Multiparametric functional MRI and particularly diffusion-weighted MRI offer evident advan-
tages for noninvasive characterization of tumor viability compared to CT and RECIST. A quantification of the inter- and
intraindividual variation occurring in this setting using different hardware is missing. In this study, the MRI protocol including
DWI was standardized and the residual variability of measurement parameters quantified.
Methods Phantom and volunteer measurements (single-shot T2w and DW-EPI) were performed at the seven CCE sites using the
MR hardware produced by three different vendors. Repeated measurements were performed at the sites and across the sites
including a traveling volunteer, comparing qualitative and quantitative ROI-based results including an explorative radiomics
analysis.
Results For DWI/ADC phantom measurements using a central post-processing algorithm, the maximum deviation could be
decreased to 2%. However, there is no significant difference compared to a decentralized ADC value calculation at the respective
MRI devices. In volunteers, the measurement variation in 2 repeated scans did not exceed 11% for ADC and is below 20% for
single-shot T2w in systematic liver ROIs. The measurement variation between sites amounted to 20% for ADC and < 25% for
single-shot T2w. Explorative radiomics classification experiments yield better results for ADC than for single-shot T2w.
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Conclusion Harmonization of MR acquisition and post-processing parameters results in acceptable standard deviations for MR/
DW imaging. MRI could be the tool in oncologic multicenter trials to overcome the limitations of RECIST-based response
evaluation.
Key Points
• Harmonizing acquisition parameters and post-processing homogenization, standardized protocols result in acceptable stan-
dard deviations for multicenter MR–DWI studies.

• Total measurement variation does not to exceed 11% for ADC in repeated measurements in repeated MR acquisitions, and
below 20% for an identical volunteer travelling between sites.

• Radiomic classification experiments were able to identify stable features allowing for reliable discrimination of different
physiological tissue samples, even when using heterogeneous imaging data.

Keywords Magnetic resonance imaging . Diffusion-weighted MRI . Radiomics . Multicenter, oncologic studies, Measurement
Variability

Abbreviations
ADC Apparent diffusion coefficient
CCE Cancer Core Europe Consortium
CT Computed tomography
DCE Dynamic contrast-enhanced MRI
DWI/DW-EPI Diffusion-weighted imaging
HASTE Half-Fourier Acquisition Single-shot

Turbo spin Echo imaging
ORR Objective tumor response rate
PFS Progression-free survival
PVP Polyvinylpyrrolidone
RECIST Response Evaluation Criteria In Solid

Tumors
SS-TSE Single-shot turbo spin echo
SS-FSE Single-shot fast spin echo

Introduction

MRI is widely accepted as the imaging modality of choice for
noninvasive tumor characterization due to excellent soft tissue
contrast resolution. Additionally, the value of functional/
physiological imaging in multiparametric MRI is well estab-
lished, particularly for diffusion-weighted imaging (DWI).
DWI is increasingly being used in routine MRI examina-
tions for diagnosis, for staging, and also for therapy re-
sponse evaluation in cancer patients [1–3]. DWI offers
the opportunity to quantify water movement in the tissue
microstructure; however, the lack of standardization of
DWI acquisition parameters (particularly the “b-values”)
[4] leads to inadequate comparability between institutions,
which is of particular importance in multicenter clinical
trials.

Despite the advantages of multiparametric MRI, CT and
size-based response evaluation (Response Evaluation Criteria
In Solid Tumors/RECIST/RECIST 1.1) [5] remains the ac-
cepted outcome measure in oncologic trials despite its inher-
ent limitations [6, 7]. MRI is capable of depicting not only

changes in size, but physiological processes such as early
changes in tumor cellularity and microenvironment which
could complement size criteria.

A response evaluation including such microstructural in-
formation would be particularly helpful as many new onco-
logic therapies, e.g., tyrosine kinase inhibitors [8] and immune
checkpoint inhibitors, may not show their efficacy through
size reduction alone.

Therefore, an ideal image-based treatment response evalu-
ation method should have the potential to accurately assess
and stratify responding and non-responding patients. DWI
has shown outstanding performance in the detection of metas-
tases, including in organs considered challenging with stan-
dard imaging such as malignant bonemarrow [9] or peritoneal
infiltration [10]. Changes in tumor cellularity occur earlier
than changes in tumor size [11, 12]; therefore, DWI may im-
prove patient care by providing new criteria of response for
cancer patients with a noninvasive, radiation-free method to
accelerate drug development by allowing earlier readouts of
response.

The Cancer Core Europe Consortium (CCE) was estab-
lished to harmonize cancer research between large European
cancer research centers in order to conduct cutting-edge clin-
ical oncologic research. It comprises seven centers. The CCE
concept is to form a multi-site virtual cancer institute, which
will accelerate the development of new treatments. In this
setting, the use of standardized imaging is essential in order
to produce harmonized data.

Radiomics is an emerging medical category of image post-
processing methods that extracts multiple features from radio-
graphic medical images using data characterization algorithms
[13]. These imaging features are considered to be useful for
predicting prognosis and therapeutic response, for example, in
personalized therapy. Homogeneous imaging data are consid-
ered to be a prerequisite for successful application of
radiomics [14]; thus, we considered a radiomic evaluation of
the data to be a maker for image quality. In turn, stable and yet
discriminative radiomics features, even when using
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heterogeneous imaging data, could be the key to future
radiomics studies.

As opposed to previous efforts to standardize acquisition
parameters, such as in the German Cancer Consortium
(DKTK), in the CCE setting the MR hardware used was pro-
duced by various vendors [15, 16].

The aim of this study is to assess and quantify the current
variability of MRI parameters (including structural and phys-
iological imaging) in the CCE centers and to quantify the
residual variability of a CCE-wide harmonized common
MRI protocol aiming to yield (vendor-independent) homoge-
neous MR imaging results.

Materials and methods

Data were acquired at the 7 radiology departments participating
in the CCE (Cancer Research UK Cambridge Centre, German
Cancer Research Center &National Center for Tumor Diseases
Heidelberg, Gustave Roussy, Istituto Nazionale dei Tumori,
Karolinska Institutet, The Netherlands Cancer Institute, and
Vall d’Hebron Institute of Oncology). At all sites, both phan-
tom and volunteer MRI measurements were performed in the
scanners planned to be used in CCE studies (Table 1). For all
scanners, a core protocol including a single-shot T2-weighted
sequence (single-shot T2w) (vendor-specific names: HASTE
(Half-Fourier Acquisition Single-shot Turbo spin Echo imag-
ing)/SS-FSE (single-shot fast spin echo)/SS-TSE (single-shot
turbo spin echo)) and a DW-EPI sequence including b-values
100, 500, and 900 s/mm2was implemented keeping parameters
as similar as possible (see Appendix for details).

Two volunteer data sets were acquired:

a. “Test-Retest”: A volunteer was positioned in the scanner
and underwent the core CCE protocol. After initial imag-
ing, the coils were disconnected and reconnected and the
volunteer was re-positioned (< 15 min apart) in the scan-
ner and the full procedure was repeated. These volunteers
were different between the centers.

b. “Volunteer in all scanner”: One of the volunteers under-
going the test-retest design traveled to the other 6

participating centers and there underwent the core CCE
protocol.

Each measurement consisted of an unenhanced upper ab-
dominal scan. The volunteer traveling to all centers was iden-
tical to the test-retest volunteer of center F, in order to have a
reference for the relative comparisons.

A total of 14 + 7 data records (DWI and single-shot T2w)
were thus included to investigate the variability of MR mea-
surements in the multicenter setting.

Hardware

Phantom and volunteer measurements were performed at the
seven CCE sites (“A”–“G”). MRI manufacturers are the fol-
lowing: A: GE Optima MR450w, B: GE Discovery MR450,
C: Philips Achieva dStream, D: Siemens Avanto, E: Siemens
Avanto Fit, F: Siemens Aera, G: Philips Ingenia. The field
strength was 1.5 T, except for site C, where a 3-T machine
was used. The spine and the body array imaging coils were
used.

MRI acquisition parameters

DWI and single-shot T2w sequences were standardized
among the centers. The focus was placed on the quantitative
evaluation of the DWI parameters, more precisely the evalu-
ation of the comparability of the measured apparent diffusion
coefficient (ADC).

DWI parameters were as follows: field of view (FoV):
340 mm × 293 mm; matrix: 130 × 112 (in-plane resolution
2.6 mm isotropic); slice thickness: 5 mm; TR between 7022
and 8500 ms; TE minimal between 60 and 90 ms; parallel
imaging acceleration factor 2; b-values 100, 500, and 900
s/mm2, with 1, 6, and 23 signal averages for the different b-
values; diffusion scheme: 3-dimensional diagonal with
Siemens Healthcare, 3-in-1 with GE Healthcare, and gradient
overplus with Philips Healthcare; receiver bandwidth approx-
imately 2000 Hz/px.

Single-shot T2w imaging (HASTE/SSFSE/SS-TSE):
field of view (FoV): 400 mm × 336 mm; matrix: 320 ×
256 (in-plane resolution 0.6 mm isotropic); slice thickness:
5 mm; no gap; TR 1000; TE 70; parallel imaging accelera-
tion factor: 2.

Phantom

A spherical phantom with a diameter of 20 cm filled with an
aqueous polyvinylpyrrolidone (PVP) solution and an integrat-
ed thermometer were used (HQ Imaging GmbH). The desired
ADC was adjusted by the PVP concentration (here: 1600
μm2/s at 20 °C). The temperature dependency of the ADC
was taken into account by calibration curves [17]. The

Table 1 MRI scanner
types Center MRI

A GE Optima MR450w

B GE Discovery MR450

C Philips Achieva dStream

D Siemens Avanto

E Siemens Avanto fit

F Siemens Aera

G Philips Ingenia
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correction for temperature effects was done in three steps: (1)
measure the temperature within the phantom, (2) perform the
MRI scan and ADC calculation, and (3) calculate the ADC
values at a common standard temperature (here 20 °C) via the
use of the calibration curves. In this way, it was not necessary
to wait for the phantom to be in thermal equilibrium, which
can take hours. This procedure was considered much more
practical in a clinical setting than using an ice-water bath.

The mean ADC value at the phantom, its standard devia-
tion, and the correction of temperature effects were performed
in an automatically placed ROI of fixed size (see Fig. 1a).

Volunteer image analysis

Two types of volunteer measurements were performed (see
above): in the first setting “test-retest” for an estimation of the
intra scanner variability; in the second setting “volunteer in all
machines” to test the comparability between centers.

For in vivo evaluations, manually placed circular ROIs
were used reflecting the situation in clinical studies.

For both ADC and single-shot T2w values, masks were
drawn by a board-certified radiologist in 11 anatomical po-
sitions (left and right kidney; liver segments 4, 7, and 8; 2
locations within the spleen, left and right M. Quadratus
lumborum, lumbar vertebral body 1 and 2) as illustrated
in Fig. 1b–d. The 2D circular masks had a fixed size of
250 mm2 and were placed using MITK (Fig. 1) [18].

Post-processing

ADC maps are usually calculated directly by the scanner (in-
line). However, different vendors used different algorithms.
This might decrease the comparability between different imag-
ing centers. We therefore compared the ADC values provided
directly by the scanner with ADC maps calculated centrally
with the same algorithm for all centers. In this algorithm, the
standard monoexponential model of diffusion was used, omit-
ting b 0. The logarithmic signal decay with respect to the b-
values was least-square-fitted to a linear function. The slope of
the fitted linear curve yields the ADC [19].

Fig. 1 Example of ROIs used in the phantom and volunteer measurements. aAutomatically drawn ROI (red) in the phantomADCmap and (b) manually
drawn ROIs in the liver/spleen for ADC determination. cManually drawn ROI in the liver/spleen in single-shot T2w and (d) 3D positioning of the ROIs
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Radiomics

In order to distinguish between the different organs, data were
resampled to 1 × 1 × 1 mm3. To compensate for vendor-
specific factors such as receiver coil sensitivities, patient load-
ing, and receiver gains for the single-shot T2w, we addition-
ally performed histogram matching using 3D slicer [20] with
default parameters (10 match points and 128 histogram
levels); for each data set (hat (single-shot T2w) = volunteer
in all machines, trt_hat1 = Test-retest 1, trt_hat2 = Test-retest
2), site 1 (i.e., DKFZ/center F) served as reference.

Image analysis was performed using custom python
scripts. We used PyRadiomics [21] version 2.2.0 to extract
1409 features (see Supplement) for each ROI. To automat-
ically determine a small feature subset (N = 15), we em-
ployed a two-stage feature selection process. First, we
computed the average absolute Pearson correlation for
each anatomical position across sites to identify stable fea-
tures. Features below an arbitrary threshold of 0.75 were
disregarded. Second, for the remaining features (100 for
ADC/44 for single-shot T2w), we computed the best pre-
dictors for the discrimination of the anatomical labels
using ANOVA F-value scoring as implement in scikit-
learn version 0.21.3 [22]. A list of the identified features
can be found in Supplement Tables 1 and 2.

Classification was performed using a random forest clas-
sifier with 1000 trees, a maximum depth of 10, and default
parameters as implemented in scikit-learn otherwise. We
performed two different experiments: (a) using each “vol-
unteer in all scanner” data sets, we conducted 10 runs of
leave-one-site-out cross-validation for organ prediction
based on the selected subset of radiomics features; (b) for
the test-retest experiments (ADC and single-shot T2w), we
used all sites of the initial acquisition (time point 1) to train
the classifier and then predicted the organs of the second
acquisition; average results and standard deviation of five
runs are reported.

For visualization, we performed dimensionality reduction
of the N = 15 features using tSNE with default parameters. In
addition, we computed the average ROC curves across the 10
repeated runs, the 5 organs, and the 7 investigation sites using
scikit-learn version 0.23.2 [22].

The first Wasserstein distance between all pairs of histo-
grams of the anatomical ROIs was computed using SciPy
version 1.3.1 employing default parameters [23]. The values
were normalized to be in the range between [0,1]. A value of
zero indicates identical distributions, whereas higher values
reflect dissimilarities of the histograms.

Statistics

Statistical analysis was performed by using Excel (Office
2016, Microsoft) and R statistical computing software

(version 3.0.3; http://www.r-project.org/). ADC variations in
a test-retest scenario were assessed according to the Bland-
Altman methodology [24, 25]. Mean, relative difference,
and standard deviation of the differences of two subsequent
measurements on each machine are calculated and depicted in
a Bland-Altman plot. The coefficient of variation (CoV) was
estimated as CoV = standard deviation / mean (%). A
Wilcoxon signed-rank test was performed to assess the varia-
tions in ADC values calculated at the MRI device and central-
ly. The significance level was adjusted according to the num-
ber of comparisons that were performed (Bonferroni correc-
tion, p < 0.007).

Results

Phantom: standardized ADC acquisition

The result of the ADC phantom measurements in all centers is
shown in Fig. 2. The phantom measurements reflect the ADC
measurement under ideal conditions: high SNR, no partial
volume effects, and no perfusion. The ADC value determined
from the in-line calculation on the scanner amounted to 1617
± 22 × 10−6 mm2/s (coefficient of variation: 0.0136) and under
these conditions, the maximum deviation (i.e., highest mea-
sured ADC − lowest measured ADC) in the ADC among the
centers was 4%. The comparability was increased further
when the common, central post-processing algorithm was
used for the ADC calculation. In this case, the ADC value
amounted to 1624 ± 16 × 10−6 mm2/s (coefficient of variation:
0.0099) and the maximum deviation decreased to 2%.
However, there was no significant difference in the mean or
the standard deviation between the centrally calculated ADC
values and the ADC values calculated at the scanner consoles
(p = 0.06).

Test-retest ADC

The Bland-Altman plot in Fig. 3a shows the results of the test-
retest measurements for the calculated ADC measured in 3
ROIs of the liver. The mean value of all measurements is
depicted by the blue dotted line. The red dotted lines mark
one standard deviation of the measurements of the same vol-
unteer at all centers. The deviations in the measured ADC
between the first and the second measurements are below
11%.

The comparatively large variations of the ADC (mean:
965 ± 221 × 10−6 mm2/s) within the liver ROIs reflect the
liver structure. The spongy structure of the liver leads to an
inhomogeneous ADC map (see Fig. 1). The spleen is char-
acterized by a much more homogeneous ADC map. For
other results, see Appendix. Here several results display a
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smaller standard deviation of the ADC values within an
ROI.

Noticeably, there was a large deviation for center “B”
between the “in-line” ADC value calculated on the scan-
ner and the centrally calculated ADC value. This was
due to the fact that the acquisition of b 0 s/mm2 was
mandatory with the software version of the MR device
at the time of data sampling. In contrast at the other
centers, ADC measurements contained b 100 s/mm2 as
the lowest B value. The use of b = 0 s/mm2 leads to an
increase in the ADC due to perfusion effects. In the
central calculation of the ADC values, these restrictions
were not present and the ADC for center “B” was cal-
culated on the basis of the same b-values (100, 500, 900
s/mm2) as for the other centers. This significantly re-
duces the maximum deviation and standard deviation of
the ADC among the centers (maximum deviation scanner
ADC/central calculated: 36/11%; standard deviation
scanner ADC/central calculated: 93/35 μm2/s) and was
therefore applied both in phantom and volunteer
measurements.

Test-retest single-shot T2w

The same test-retest evaluation was performed for the gray
levels detected in the single-shot T2w measurement, with
the results shown in Fig. 3b.

The variations in gray levels of the single-shot T2w mea-
surements (mean: 480 ± 123) within the liver ROIs are again
reflecting inhomogeneous liver structure.

Volunteer in all machines: ADC

The reference for the “volunteer in all scanner” comparison
was the result of the measurements of the travelling volunteer
at center “F” and the variations given the results measured at
the 6 other participating centers undergoing the core CCE
protocol at the various centers. Therefore, the result for center
“F” is always the origin “0.” The Bland-Altman plots for ADC
and T2w signal intensity are shown in Fig. 4a and b.

Tissue characterization using radiomic features

Experiment 1—identical volunteer at all sites

A subset of 15 radiomic features were identified as described
above. We performed a dimensionality reduction of those fea-
tures to qualitatively demonstrate the inherent structure within
the features characterizing the different anatomical regions.
As can be seen in Fig. 5, most of the features extracted from
the organ ROIs cluster in distinct regions.

The radiomics feature subset was also used to train a clas-
sifier. The goal was to predict the anatomical entities within
the imaging data of one site based on training with the remain-
ing sites. This was achieved with an average accuracy of 0.87
for the ADC and 0.75 for the single-shot T2w sequence, re-
spectively. Results are summarized in Table 2 for the ADC
and single-shot T2w sequences.

Receiver operating characteristic (ROC) curves and area
under the curve (AUC) measures (Supplementary Figure in
the Appendix) were generated for the classifiers trained on
the radiomic feature subset. In addition, the average ROC

Fig. 2 ADC values in the
phantom for the seven imaging
centers (“A”–“G”), determined
with the scanner ADC map and a
centrally calculated ADC map.
The error bars indicate the
standard deviation within the ROI
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curves and AUC values over all sites for the ADC and
single-shot T2w sequences were computed. A mean AUC
of 0.98 (± 0.02) for ADC and of 0.96 (± 0.04) for single-
shot T2w was obtained.

Experiment 2—test-retest

In a second experiment, we assessed the reproducibility of
training a model with features from the first time point for
predicting the anatomical entity of the retest (second) time

point. This time, the random forest classifier yielded an aver-
age accuracy of 0.87 (0.012) for the ADC sequence and of
0.61 (0.007) for the single-shot T2w sequence, respectively.

For the test-retest data, we also computed the Wasserstein
distance between the ROIs of the different anatomical regions.
This distance measures the effort it would take to transform
one histogram into another. In our experiment, we used this
metric to visualize the structure corresponding to the different
anatomical ROIs (Fig. 6). In comparison to the distances of
the single-shot T2w histograms, the distances of the test-retest

Fig. 3 a Bland-Altman plot of the
relative deviations in ADC values
within liver ROIs (averages of the
ROI in segments 4, 7, and 8) of
the variable volunteers (each liver
3 ROImeasurements) at the seven
imaging centers. ADC values
calculated centrally are depicted
(from left to right: sites
A, B, G, C, F, E, D). b Bland-
Altman plot of the gray values of
the test-retest for the single-shot
T2w within liver ROIs of the
variable volunteers for the seven
imaging centers (from left to
right: sites E, A, D, F, G, B, C)
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ADC histograms allow for a better visual delineation of the
different anatomical regions.

Discussion

Our data show that after harmonization of acquisition param-
eters and post-processing homogenization, standardized pro-
tocols result in acceptable standard deviations for ROI-based
evaluations, particularly for DWI/ADCmeasurements, paving

the way for multicenter clinical trials with large patient
cohorts.

The technical and biological variations in an MR examina-
tion, including the repeated shimming, patient placement, se-
quence measurement, and ROI selection as well as mild tem-
perature or hydration state differences of the volunteer/patient,
are reflected by the scan-rescan data. Here the total measure-
ment variation does not to exceed 11% for ADC and is below
20% for our structural imaging surrogate, the single-shot T2w
(Figs. 3 and 4). If we compare the differences in MR imaging
with consecutive ROI measurements undertaken in an

Fig. 4 a Bland-Altman plot of the
relative deviations in ADC values
within liver ROIs of an identical
volunteer for the seven imaging
centers (reference measurement at
center F = 0). ADC values calcu-
lated centrally are depicted (from
left to right: sites
C, G, D, A, E, F, B). b Bland-
Altman plot of the relative devia-
tions of the gray values for the
single-shot T2w within (each liv-
er 3 ROI measurements) of an
identical volunteer for the seven
imaging centers (reference mea-
surement at center F = 0) (from
left to right: sites E, F, C, D, B,
A, G)
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identical volunteer travelling between sites, 20% for ADC and
< 25% for single-shot T2w were not exceeded.

For phantom measurements, differences in ADC can be
reduced to values as low as 2% (coefficient of variation:
0.0136). Here variation can be reduced significantly by
omitting b-value 0 and applying standardized central post-
processing. Obviously in humans, perfusion effects can
lead to a strong dependence between the b-values used
and the resulting ADC [26, 27]. Some of the residual devi-
ations may be introduced by vendor-specific reconstruction
algorithms.

Oncologic multicenter trials mostly use the objective tumor
response rate (ORR) to treatment or progression-free survival
(PFS) to evaluate antitumor responses, which incorporate the
change in tumor burden. While size measurements according
to RECIST do not differ between MRI and CT (except for the

lung), the additional physiological and soft tissue information
using MRI in oncologic studies is largely neglected. This is
partly due to the high complexity and variability in quantita-
tive readouts that is expected.

In addressing the limitations of RECIST-based response
evaluation, it is important to quantify the discrepancies seen
in real-world clinical studies. For interobserver variability, the
detection of new lesions may be divergent between local
readers and central-blinded readers by more than 50%, while
the tumor burden measurements differed by around 18% be-
tween the readings [28]. Similar conclusions were drawn in a
meta-analysis on RECIST-based tumor burden measurements
[29], showing the relative interobserver difference in single
lesion measurements to be 20% and more.

Thus, the relative interobserver differences seen for ana-
tomic assessments in the multicenter MR measurement alone
of > 20% seem to be in keep [29]. The fact that the variances
seen in a single volunteer do exceed the ones seen in the test-
retest setting is not unexpected for readers used to look at
medical images of different vendors; however, being able to
quantify them and the restricted amount of the variance de-
tected is promising.

In the clinical setting, the lower availability of MR mea-
surement slots and the at least 3-fold longer scan times have to
be discussed against quicker scan times of CT. Here the clin-
ical benefit of MRI has explicitly to be shown particularly for
elderly patients being stable over several re-staging intervals.
However, for the initial therapeutic phase and the situation in
clinical studies, early response predictions supported by func-
tional MR data seem of great value.

Fig. 5 2D-embedding of
radiomics features using TSNE.
Arbitrary units

Table 2 Classification accuracies and standard deviations for volunteer
data training with one-site-leave-out

Site ADC Single-shot T2w

A 0.91 (1.11e−16) 0.53 (3.64e−02)
B 0.82 (1.11e−16) 0.55 (1.11e−16)
C 0.75 (4.17e−02) 0.93 (3.64e−02)
D 0.81 (2.77e−02) 0.75 (3.64e−02)
E 1 (0.0) 0.99 (2.73e−02)
F 0.82 (1.11e−16) 0.91 (1.11e−16)
G 1 (0.0) 0.62 (3.64e−02)
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In our study, the single-shot T2w was used as an example
for structural images. Objective parameters for image quality
are largely lacking, and SNR estimates might be misleading.
However, gray level variations did not relevantly exceed those
seen in DWI/ADC.

Regarding the signal variations seen for MRI in humans, it
has to be considered that measurement differences do occur
partly due to the advantage of MRI: the high soft contrast in
MRI as compared to CT. In a recent publication using man-
ually segmented ROIs in a multicenter whole-body-MRI
(3Tesla, single vendor) setting investigating healthy volun-
teers, repeatability and reproducibility were quantified [16].
Here 95% confidence intervals on repeatability and repro-
ducibility suggested ADC signal changes for the abdominal
findings above 16–45% (liver 35%) to be clinically signif-
icant. The slightly higher variances found might be partly
due to the use of whole-body protocols and the on average
higher field strength used, leading to increased artifacts
particularly at the lung/liver and lung/spleen interface.
While there was a systematic error in comparing 1.5-T
and 3-T machines with regard to ADC measurements of
the bone marrow in a recent publication [30], no such effect
was seen in our data, but there was only a single 3-T system
used in the participating centers.

In radiomics, the extraction of features is considered to
be sensitive to inhomogeneous image quality [31, 32]. In a
recent publication exploring the stability of radiomic fea-
tures from T2-weighted MRI of cervical cancer, mainly
shape features were found to be stable [33]. In our experi-
ments, lacking shape characteristics, the classification (both
experiments), and visual separation (Fig. 6) work better for
ADC than for single-shot T2w imaging. This is plausible,

since ADC is considered to be “more” quantitative.
Classical radiomics features, e.g., mean, were identified.
This is also reasonable and similar to how humans would
make distinctions when measuring and comparing ROIs.

Of course, in our study the introduction of radiomic fea-
tures was a feasibility application. We aimed at demonstrating
that, when using our harmonized acquisition techniques and
the identical volunteer across sites, the imaging data can be
used for the development of quantitative imaging biomarkers.
This is an artificial setting and we do not claim that a valid,
generalized radiomics model was obtained. For this purpose,
more samples (patients) would be necessary. Nevertheless, in
both classification experiments, we were able to identify sta-
ble features that allow for a reliable discrimination of five
different physiological tissue samples—albeit using very lim-
ited training data. Furthermore, using a test-retest scenario, we
demonstrated the similarity of our measured signals across
sites. This lays the groundwork for determining radiomics
features from pathological tissue alterations and will aid in
future assessment of multicenter oncological studies.

Conclusion

Structural oncologic endpoints are relevantly influenced by
scan variability and by the individual reading of the images.
Thus, additional variations added through multicenter designs
have to be minimized to facilitate the detection of treatment
effects. In this context, MRI could be beneficial since it adds
physiological endpoints to anatomic assessments alone. It is
mandatory to harmonize acquisitions as MRI is only a quali-
tative signal and the data quality can be expected to be even

Fig. 6 Wasserstein distance between the two test-retest measurements of the seven sites for the ROIs of the different anatomical regions for the ADC
(left) and single-shot T2w sequence (right). The smaller the distance, the more similar are the histograms of the anatomical ROIs
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worse in real-world scenarios with patients. Yet, the results of
this study seem to be encouraging for the multicenter use of
MRI for detecting signal variances comparable to the standard
readouts in oncology. From these signals, derived radiomics
features are an additional tool that support the characterization
of lesions and their response to treatment.

Further efforts in the CCE collaboration will include
contrast-enhanced images and dynamic contrast-enhanced
MRI (DCE MRI)–time series to evaluate the full range of
oncologic imaging.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08880-7.
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