Supplemental material

Supplementary methods

Ussing chamber experiments Rectal biopsies were mounted in modified Ussing chambers (exposed area 1.76 mm²; Harvard apparatus, Holliston, MA, USA) as previously described. To ensure tissue viability, potential difference (PD) was recorded throughout the experiments²⁰ and at the end of experiments an adequate response to forskolin was monitored.² Previous studies in our laboratory validated the Ussing method for human endoscopic biopsies. A potential difference (PD) that is less negative than -0.5mV at the start of experiments is a marker of non-viability.²⁰ In addition, Forskolin was added at t120 min, to assess viability at the end of the experiments. Forskolin is a cell permeate and activates cAMP-driven, CFTR-mediated Cl⁻ secretion. In viable biopsies forskolin stimulates a visible peak in in short circuit current (Isc) and PD, indicating responsiveness of the tissue secretory machinery. Biopsies were excluded from further analysis when not demonstrating tissue viability as according to these criteria. The transcellular marker horseradish peroxidase (HRP) (type VI; Sigma Chemical Co, St Louis, Missouri, USA) and the paracellular probe ⁵¹Chromium (Cr)-EDTA (Perkin Elmer, MA, USA) were added to the mucosal sides and serosal samples were collected at 0, 10, 30, 60, 90 and 120 min. 51Cr-EDTA permeability was measured by gamma-counting (1282 Compugamma, Sweden) and is presented as apparent permeability coefficient (P_{app}) during steady state permeability (t30-t90). P_{app} is defined as the flux of compound through a membrane normalized by membrane surface area and donor concentration and was calculated from the equation $P_{app} = \frac{\Delta Q}{\Delta t} \times \frac{1}{AC_0}$ where $\Delta Q/\Delta t$ is the steady-state flux (mol/s), A is the surface area of the exposed tissue (cm²) and C_0 is the initial concentration in the donor chamber at each time interval (mol/L) and given as (10⁻⁶ cm/s).²⁰ HRP passage was analysed with QuantaBluTM Flourigenic peroxidase substrate kit (Pierce, Rockford, USA).³ Permeability to HRP is given as flux during t30-t90 (pmol/cm²/h).

Supplementary table 1a. Gene expression assay probes used for Q-RT-PCR

Gene symbol	Gene name	TaqMan assay
PCK1	Phosphoenolpyruvate carboxykinase 1	Hs01572978_g1
DUOX2	Dual oxidase 2	Hs00204187_m1
CR2	Complement component 3d receptor 2	Hs00153398_m1
MS4A1	Membrane spanning 4-domains A1	Hs00544819_m1
TCL1A	T-cell leukemia/lymphoma 1A	Hs00951350_m1
BANK1	B-cell scaffold protein with ankyrin repeats 1	Hs01009378_m1
CD22	CD22 molecule	Hs00233533_m1
FDCSP	Follicular dendritic cell secreted protein	Hs00395131_m1
CCL19	C-C motif chemokine ligand 19	Hs00171149_m1
CCL21	C-C motif chemokine ligand 21	Hs00989654_g1
CXCL13	C-X-C motif chemokine ligand 13	Hs 00757930_m1
CCR7	C-C motif chemokine receptor 7	Hs01013469_m1
CXCR5	C-X-C motif chemokine receptor 5	Hs00173527_m1
TPSB2	Tryptase beta 2	Hs02576518_gH
PPIA	Cyclophyllin A	Hs 99999904_m1

<u>Supplementary table 1b.</u> Gene expression assay probes for Q-RT-PCR of barrier-related proteins

Gene symbol	Gene name	TaqMan assay
JAM-A	Junctional Adhesion Molecule A	Hs 00375889_m1
CLDN2	Claudin 2	Hs 00252666_s1
Z 01	Zonula occludens protein 1	Hs 00268480_m1
Z03	Zonula occludens protein 3	Hs 00274276_m1

<u>Supplementary table 2</u> Background data of 16 healthy volunteers (10 female, 6 male) included in the analysis

	Median	Range	Range instrument
Age	23.5	20-29	
STAI-T	30	23-45	20-80
Current stress	48	15-65	20-80
Life event stress	65	15-145	0-1155
Rome III	0	0-8	0-37

Trait anxiety measured by the State and trait anxiety index (STAI-TTM); reference values for ages 19-39 according to the manual: 35±10. Life event stress= Stressful life events the six months preceding the experiment as measured by the Social Readjustment Rating Scale. Reference values: Low level of stress 0-150, Medium level of stress 150-299, High levels of stress >299. Current stress = Perceived level of stress the week preceding the experiment measured by a version of the Everyday life stress scale modified by Arbetshälsoinstitutet. Reference values: Low level of stress 15-30, Medium level of stress 30-50 High level of stress 50-65. M=male. F = female.

<u>Supplementary table 3.</u> Networks identified by IPA, based on focus genes interactions

ID	Top Functions	Score	Focus	Molecules in Network
			Molecules	
1	Inflammatory Response, Cell	32	15	Akt, APOH, ATP2B4, BCR, BLNK, C3, CCL19, CCL20, CCL21,
	Signaling, Cellular Function and			CCR6, CCR7, CCRL1, CD3, CD22, CD52, CR2, CXCL13, CXCR5,
	Maintenance			DEFB103A/DEFB103B, DUOX2, ERK, ERK1/2, Fc gamma
				receptor, IGHM, MS4A1, NFkB(complex), NLRP12, P38
				MAPK, Pmca, SELL, SYK/ZAP, TCL1A, TCR, TLR10, VAV
2	Cell Death, Cell-toCell Signaling and	4	2	C1q, CR1, Cyclin A, IFNG (includes EG:15978), IL2, IL10, IL27,
	Interaction, Hematological System			SH2D1A, SLAMF6
	Development and Function			
3	Cell-To-Cell Signaling and	2	1	FDCSP, CD40
	Interaction, Cell-mediated Immune			
	Response, Cellular Development			
4	Antigen Presentation, Antimicrobial	2	1	FAIM3, TLR7, TLR9
	Response, Cell-To-Cell Signaling and			
	Interaction			
5	Cell Death, Cell Morphology, Cellular	2	1	CSF2, FAM65B, IL5, SATB1
	Development			
6	GastrointestinalDisease, Hepatic	2	1	CASP3, CASP6, CASP8, CD180, STAB1
	System Disease, Cancer			
7	Connective Tissue Development	2	1	FSH, HNF1A, Ifn gamma, NEDD9, PCK1 (includes EG:18534),
	and Function, Tissue Development,			UBR5
	Lipid Metabolism			

<u>Supplementary table 4.</u> Biofunctional analysis of Inflammatory Response identified in differentially expressed genes in the colonic mucosa

Functions Annotation	p-value	Molecules
Chemotaxis of B lymphocytes	2,03E-09	CCL19, CCL20, CCL21, CXCL13
Immune response	5,72E-09	C3, CCL19, CCL20, CCL21, CCR7, CD180, CR1, CXCL13,
		DUOX2, MS4A1, TCL1A
Chemotaxis of dendritic cells	1,45E-07	CCL19, CCL20, CCL21, CCR7
Migration of dendritic cells	2,10E-07	CCL19, CCL20, CCL21, CCR7
Chemotaxis of leukocytes	4,32E-07	C3, CCL19, CCL20, CCL21, CCR7, CXCL13
Cell movement of phagocytes	5,44E-07	C3, CCL19, CCL20, CCL21, CCR7, SELL
Chemotaxis of T lymphocytes	7,07E-07	CCL19, CCL20, CCL21, CXCL13
Migration of monocyte-derived	1,72E-06	CCL19, CCL21, CCR7
dendritic cells		
Chemoattraction of Langerhans	2,22E-06	CCL19, CCL20
cells		
Chemotaxis of phagocytes	2,52E-06	C3, CCL19, CCL20, CCL21, CCR7
Chemotaxis of naive T lymphocytes	6,67E-06	CCL19, CCL21
Chemotaxis of memory T	4,65E-05	CCL19, CCL21
lymphocytes		
Antimicrobial response	3,69E-04	CCL19, CXCL13, DUOX2

<u>Supplementary table 5.</u> Expression of barrier-related genes in QT-PCR of colorectal mucosa of healthy volunteers following acute experimental stress

Gene	Relative mRNA expression	p-value
	Stress/Control (Mean ± SEM)	
JAM-A	1.26 ± 0.33	0.72
CLDN2	0.94 ± 0.13	>0.99
ZO-1	0.93 ± 0.04	0.5
ZO-3	1.10 ± 0.02	0.25

Probes used for each of the genes are presented in supplementary table 1b.

References

- 1. Wallon C, Braaf Y, Wolving M, et al. Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scand J Gastroenterol 2005;40:586-95.
- 2. Gustafsson JK, Hansson GC, Sjovall H. Ulcerative colitis patients in remission have an altered secretory capacity in the proximal colon despite macroscopically normal mucosa. Neurogastroenterol Motil 2012;24:e381-91.
- 3. Wallon C, Persborn M, Jonsson M, et al. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology 2011;140:1597-607.