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Supplementary Note 1:LILAC

Overview

LILAC is a WGS framework to determine the HLA class I types for the germline of each
patient as well as determining the status of each of those alleles in the tumor including
complete loss of one or more alleles, allele specific somatic mutations and allelic imbalance.

LILAC provides several conceptual and practical improvements over the numerous available
tools for HLA-I typing: i) increased accuracy for WGS samples with coverage between
30-100X, particularly remarkable for rare alleles, ii) integrated analysis of paired
tumor-normal sample data to call allele-specific copy number and assignment of somatic
variants to specific alleles, iii) detection of novel germline variants and/or alleles (including
indels) via analysis of unmatched fragments iv) full report of quality control metrics and
number of fragments assigned to each HLA-I allele and, finally, v) identification of HLA-Y
presence (a pseudogene with high similarity to HLA-A present in up to 20% of the population
but is not present in the reference genome).

LILAC relies on the somatic point mutations and copy number estimations to estimate the
tumor HLA-I status. LILAC also works for whole-exome sequencing. Lastly, LILAC supports
GRCH37, hg19 and hg38 (with no alt) reference genomes (Fig. 1b from main text). LILAC is
freely avaliable at https://github.com/hartwigmedical/hmftools/tree/master/lilac.

HLA-I typing algorithm

The starting point for the LILAC algorithm is the complete set of possible 4 digit alleles and
all the fragments aligned to HLA-A, HLA-B and HLA-C. Where multiple 6 digit or 8 digit types
are present in the IMGT/HLA database1, LILAC uses the numerically lowest type for all
calculations. Note that 2 HLA-A alleles {A31:135, A33:191} have been removed from the
database due to it frequently being found as a low level artifact (likely due to the high
similarity to closely related genes and pseudogenes such as HLA-H).

LILAC algorithm begins with collecting all fragments which are not duplicates and have:

● At least one read with an alignment overlapping a coding base of HLA-A, HLA-B or
HLA-C; and

● all alignments within 1000 bases of a HLA coding region; and
● a mapping quality of at least 1

The algorithm then has 2 main phases to determine the germline alleles: an elimination
phase which aims to remove allele candidates that are clearly not present and an evidence
phase where LILAC considers all possible sets of 6 alleles amongst the remaining
candidates and chooses the solution that best explains the fragments observed.
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After the germline alleles are determined, LILAC determines the tumor copy number and any
somatic mutations in each allele. Note that if more than 300 bases of the HLA-A,HLA-B and
HLA-C coding regions have less than 10 coverage, then LILAC will fail with errors and will
not try to fit the sample.

Elimination phase

The elimination phase is primarily an optimization. Its goal is simply to reduce the number of
possible alleles from ~14k present in the IMGT/HLA database to a manageable number such
that the evidence phase can run efficiently. The principle in the elimination phase is to
remove any allele that does not have at least a certain minimal coverage of each of it’s
amino acids and bases. To mitigate the chance of inadvertently eliminating a true allele,
common alleles may be recovered at the end of the elimination phase if they have sufficient
unique support, but are then penalized in the subsequent evidence phase relative to other
candidate alleles.

The steps in the elimination phase are:

1. Nucleotide matrix
At each coding position, create a matrix of (high quality) nucleotide count and determine all
bases which are heterozygous across all 6 alleles.

We do this 3 separate times for HLA-A, B and C. Each time we consider fragments from any
of the alignment records that have similar exon boundaries to the type in question. For
instance, fragments from the earlier exons which have identical boundaries across all 3
genes will be used to construct the A, B and C matrices, but fragments from the later exons
may only contribute to A and B or perhaps only C. The counts of supporting fragments are
then aggregated at each position to construct the nucleotide matrix.

Fragments with in-frame indels are only included if the indel matches an existing hla type
allowing for realignment. Fragments with out-of-frame indels are always excluded (note for
the special case of C*04:09N, a relatively common allele with out of frame indel, it is
explicitly rescued at a later stage

During the elimination phase, nucleotide candidates are filtered to include only those with at
least max(1,0.000375 * FragmentCount) high quality (base qual >
min(30,medianBaseQuality)) fragment and at least max(2,0.00075 * FragmentCount)
fragments overall support. Subsequently, base quality is not considered. Sites with more
than 1 nucleotide candidate are deemed heterozygous and sites with only 1 are considered
to be homozygous across all 6 alleles.

Any alleles with bases that do not match both the heterozygous and homozygous locations
of the nucleotide matrix are eliminated.
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2. Amino acid matrix

Similarly to the nucleotide matrix, LILAC also constructs a matrix of amino acid candidates.
Again, amino acid candidates are filtered to those where at least max(1,0.000375 *
FragmentCount) fragments support with high base quality (all 3 nucleotides) and at least
max(2,0.00075 * FragmentCount) fragments over all. The codon matrix can include inframe
insertions and deletions where these match at least one known allele (base quality is not
considered).

Exon boundary ‘enrichment’ is applied for all shared amino acids across all 3 genes (amino
acids index < 298). This enriches any fragment with nucleotides on one side of an exon
boundary with any homozygous nucleotides from the other side so that an amino acid is able
to be constructed.

Similarly to the nucleotide matrix, any alleles with an amino acid or inframe indel that do not
match the amino acid matrix are eliminated.

3. Phased haplotypes
In this step we phase the heterozygous amino acid locations and eliminate any alleles that
are not supported by phased locations with sufficient overall shared coverage.

First, we find phased evidence of each consecutive pair of heterozygous codons and record
the haplotypes of all fragments containing both codons. This is performed separately for
each of HLA-A, HLA-B and HLA-C to account for differences in exon boundaries. Fragments
which overlap amino acid 338 onwards will only be assignable to a subset of the alleles,
since the exon boundaries differ after this amino acid. The points are only phased if the total
coverage is at least 7 fragments per allele [minFragmentsPerAllele] included in the subset at
that location (ie. between 14 and 42 fragments with shared coverage depending on the
amino acid location). A phased haplotype with only 1 supporting fragment will be removed if
the total fragments supporting the pair is 40 or more [minFragmentsToRemoveSingle]
(assumed to be a sequencing error).

We then iteratively choose the phased haplotype with the most support and perform the
following routine:

● Find other phased evidence that overlaps it.
● Find the minimum number of codon locations required to uniquely identify each

phased evidence, eg, if the left evidence has haplotypes [SP, ST] you only need the
last codon but if the right evidence has haplotypes [PD, TD, TS] you would need both
codon locations.

● Find evidence of fragments that contain all the required codons. As with the paired
evidence, there must be at least at least 7 fragments per allele supporting the pair
[minFragmentsPerAllele] and a haplotype with only 1 supporting fragment will be
removed if the total fragments supporting the pair is 40 or more
[minFragmentsToRemoveSingle].

● Check that the new overlapping evidence is consistent with the existing evidence.
● Merge the new evidence with the existing paired evidence.

6



● Replace the two pieces of used evidence with the new merged evidence.

Once complete, we can eliminate any alleles that do not match the phased evidence.

4. Recover common alleles
As a fail safe for phasing, any ‘common alleles’ with more than 0.1% population frequency
are recovered. The frequencies of alleles are specified in a resource file and are derived
from the Hartwig cohort.

Additionally, C*04:09N (the most common HLA allele with a frameshift variant) specifically is
also rescued if the out of frame indel 6:31237115 CN>C is present.

5. Detect HLA-Y presence
HLA-Y is a pseudogene that is highly similar to HLA-A and is not present in the human ref
genome but is found in approximately 17% of the Hartwig cohort. The presence of HLA-Y
can cause confusion in typing particularly in determining the HLA-A types. To detect HLA-Y,
LILAC counts the number of fragments that can be assigned uniquely to one of the 3 known
HLA-Y alleles and no other candidate alleles. If at least 1% of fragments align uniquely to
HLA-Y then HLA-Y is considered to be present in the sample. If HLA-Y is found to be
present ANY fragment which matches exactly to a HLA-Y allele (uniquely or shared with
other alleles) are excluded from further analysis to prevent confusion with highly similar
HLA-A alleles.

6. Test for 2 digit types with unique evidence
To further reduce the number of candidate alleles, If any 2-digit types are sufficiently unique
(i.e. uniquely supported by at least 2% of fragments, they are required to contain at least one
4 digit type belonging to that 2 digit type in the evidence phase. If two 2 digit types from the
same gene are found to be sufficiently unique all other alleles are discarded at this point. If
more than two groups are found to be unique the 2 with the highest evidence are supported
Any recovered alleles are also discarded at this point unless the 2 digit group has at least
one fragment of unique support.

7. Remove incomplete alleles with insufficient unique evidence
Many alleles in the IMGT database are incomplete (ie contain ‘*’ characters), all of which are
rare in population frequency. To prevent spurious matches to these wildcard containing
alleles in the evidence phase, we eliminate unlikely candidates. Wildcard containing alleles
are eliminated unless they contain at least 2 fragments support for the non wildcard
sequence which do not support any remaining candidate allele with a complete sequence
defined.

Evidence phase

In the evidence phase, LILAC evaluates all possible ‘complexes’ (ie. combinations) of
remaining alleles that satisfy the following conditions
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● There must be either 1 (homozygous) or 2 (heterozygous) alleles belonging to each
gene

● At least 1 allele must match each uniquely supported 2 digit type

For each complex, LILAC counts the number of fragments that can be aligned exactly to at
least one allele in the complex at all heterozygous locations. If a fragment has an amino acid
which does not match ANY of the amino acid candidates at a heterozygous location, but has
at least 1 nucleotide with base qual<min(medianBaseQuality,30), then the amino acid is
deemed to match all amino acid candidates For exon boundaries only exact nucleotide
matches are permitted. Any fragments that can be aligned to 2 or more alleles are
apportioned equally between the alleles and counted as shared fragments.

Since many allele definitions have undetermined (‘wildcard’) sequences, particularly in exon
1 and exons 4-8, these require special treatment so that these wildcard alleles are neither
unfairly favored or discriminated against in the fitting. To achieve this balance, fragments
which don’t match an exact sequence in any candidate allele are dropped altogether from
consideration such that random sequencing errors or other artifacts overlapping wildcard
regions cannot contribute to the complex count for wildcard containing alleles, but any
remaining fragments are considered to match an allele if they match all non wildcard
sequences (ie. any amino acid is deemed a match to a wildcard).

Complexes are scored based on the total fragments that can be aligned to at least one allele
in the complex, with a small penalty applied base on allele frequency in the population, a
penalty for each allele included that was eliminated but subsequently recovered, and a
bonus to boost scores of complexes with homozygous allele, and a penalty for solutions with
wildcard characters which may cause spurious matches. The final score is given by:

Complex Score = AlignedFragments + FreqPenalty + HomBonus +

RecoveryPenalty + Wildcard penalty

where

FreqPenalty = 0.0015 * SUM[max(log10(Frequency),1e-4) *

AlignedFragments]

HomBonus = 0.0045 * (# of Homozygous alleles) * Fragments

RecoveryPenalty = 0.005 * (# of Recovered alleles) * Fragments

WildcardPenalty = 0.000015 * (# of wildcard characters in alleles) *

Fragments

If 2 complexes are precisely equally scored, then the solution with the lowest alphabetical 4
digit allele types is chosen.

The matching unique, apportioned shared, and wildcard (in rare cases where the full allele is
not present in the IMGT/HLA database) support for each allele is recorded in both tumor and
normal.
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As a further performance optimisation, if there are predicted to be more than 1 million
complexes, then the evidence phase is first performed individually for complexes of 2 alleles
per gene to find the top candidates for each of HLA-A, HLA-B & HLA-C. LILAC retains only
the top 5 pairs including each individual allele candidate and then chooses the first 10
unique alleles appearing in the ranked list of pairs, with any common alleles also retained.
The evidence phase is then subsequently run using this reduced set of candidate alleles.

Tumor and RNA status of alleles

Tumor allele specific copy number

LILAC optionally accepts a tumor .bam file and a gene copy number file (produced by
PURPLE) which contains the minimum copy number and minimum minor allele copy number
of each gene. If a tumor sample is provided, then fragments are counted for each allele in
the determined type. For each of HLA-A, HLA-B & HLA-C, the minor allele copy number is
assigned to the allele with the lowest ratio of supporting fragments for the allele in the tumor
compared to the normal. The other allele for each is assigned the implied major allele copy
number from the gene copy number file. If a gene is homozygous present in the normal
sample, then the minor and major allele copy numbers are arbitrarily assigned in the tumor.

Somatic variant assignment to alleles

LILAC optionally accepts a .VCF input of somatic small indel and point mutations (called by
Sage in the Hartwig pipeline) and can assign somatic variants to the specific allele which is
damaged.

LILAC gathers the set of variants from the vcf (filter = “PASS”) that overlap either a coding or
canonical splice region in any of HLA-A, HLA-B and HLA-C and finds all fragments that
contain that variant. LILAC assigns portions of the fragment to the allele which matches the
fragment at all heterozygous locations after excluding any somatic variants from the
fragment. The allele with the highest matching fragment count is determined to contain the
somatic variant. If the variant is assigned to 2 alleles with identical weight it is assigned with
0.5 weight to each. In the case of homozygous alleles, the variant is assigned arbitrarily to
the 1st allele.

RNA expression of alleles

LILAC also optionally accepts a RNA bam. As per the fragments in the bam are counted for
each allele in the determined type. This can be interpreted as a proxy for allele specific
expression.
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Benchmark

Germline-tumor agreement comparison

We assessed LILAC’s robustness to perform HLA-I typing compared to two state-of-the art
tools: Polysolver2 (v4, reference genome hg19, ethnicity Unknown, insertCalc 0 and
includeFreq 0) and xHLA3 (with default parameters). We first retrieved GRCh37 aligned
reads including the MHC-I locus (chr6:29,854,528-32,726,735) for the PCAWG and Hartwig
germline and tumor samples. For each of these three tools, we first independently run the
HLA-I typing for the germline and for the tumor across all available samples (see above,
Hartwig and PCAWG cohort), and then we annotated whether there was a perfect
agreement between them based on the inferred 2-field HLA-I haplotypes. Samples that
failed to provide an output by any of the three methods were not included in the comparison.
A total of 4,774 Hartwig and 2,099 successfully provided germline and tumor HLA
haplotypes and were used in this analysis. Moreover, to reduce potential effects of tumor
specific alterations on the HLA-I genes, we performed a similar comparison but limited to
samples without HLA-I alterations (i.e. somatic mutations or LOH HLA events) according to
LILAC.

Crosswise tools HLA-I haplotype comparison

We also assessed LILAC’s agreement with two widely used tools for HLA typing: Polysolver
(v4, reference genome hg19, ethnicity Unknown, insertCalc 0 and includeFreq 0) and xHLA
(with default parameters). For each of these tools we first ran the germline HLA typing and
we then performed the comparison based on the four digit HLA-I type annotation. Samples
that failed to provide an output by any of the three methods were not included in the
comparison. A total of 4,774 Hartwig and 2,099 successfully provided germline and tumor
HLA haplotypes and were used in this analysis. We only considered that two, or three
respectively, tools have an agreement if the four digit HLA-I alleles perfectly match among
them.

HLA-I typing performance using Platinum and Yoruba family trios

The Illumina Platinum Genomes includes several family trios that underwent WGS and that
had been extensively used by HLA-I typing tools to evaluate their sensitivity. Moreover, to
include a family trio from a non-caucasian genetic ancestry we also processed the Yoruban
family trio from 1000 Genomes. High-coverage raw sequencing data was downloaded from
the original sources. The reference HLA-I types were extracted from the Additional File 1 of
the Kourami manuscript4.
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HLA-I typing agreement with the TRACERx 100 lung cohort

After being granted access to the TRACERx lung WES cohort (EGAS00001002247) we
downloaded the raw sequencing data of the germline and one representative tumor sample
for the 100 patients included in the cohort. In total, 100 tumor samples were downloaded and
subsequently underwent HLA-I typing by LILAC, resulting in 600 HLA-I typing calls.

As a reference for the comparison, we obtained, through personal communication with the
authors; the HLA-I typing calls used in the LOHHLA original study5. Unfortunately, HLA-I
typing calls for homozygous alleles were not available, which prevented their inclusion in the
HLA-I typing analysis (i.e., that is the reason for matching 490 alleles in Fig. 1e instead of
the 600). Moreover, the HLA-I typing originally provided by the authors missed a few
samples. In those cases we processed an alternative tumor sample from the same patient
with available HLA-I typing information. Finally, we considered a match by relying on 2-field
allele resolution.

Copy number estimation of HLA-I compared to other genes

We aimed to evaluate whether the polymorphic nature of the HLA-I locus could have a
negative impact on the tumor copy number estimation and subsequent annotation of HLA-I
individual alleles. A proxy for incorrect tumor copy number estimation is the difficulty to
assign an integer copy number. Therefore, we compared the proportion of samples with
HLA-I genes with a purity adjusted integer copy number (i.e., estimated minor and major
allele copy number <= 0.3 or >= 0.7) compared to other 1,000 randomly selected genes
across the human exome. We performed this comparison across the two cohorts used in this
study. Only samples with sufficient quality according to LILAC were used in this comparison.

LILAC’s LOH of HLA-I agreement with LOHHLA in TRACERx cohort

To have an estimation on LILAC’s ability to identify LOH of HLA-I we assessed the
agreement with LOHHLA5, a dedicated tool for LOH of HLA-I calling. LOHHLA was originally
developed and tested using a high-coverage (>300x tumor sequencing depth) WES cohort5

(TRACERx Lung). More recent studies have also applied LOHHLA to a set of colorectal
WES/WES patients with high-sequencing coverage of their tumor samples6. However,
according to our tests, the lower sequencing coverage of the PCAWG and the Hartwig
cohorts did not seem to be suitable for LOHHLA, preventing its application in our dataset.

Instead, we decided to run LILAC on the TRACERx lung cohort (EGAS00001002247). Since
identification of LOH of HLA-I by LILAC requires of the tumor copy number estimations (and
the HLA-I typing already computed by LILAC, see above), we entirely re-processed 100
tumor-normal paired WES samples from TRACERx using our tumor analytical pipeline
(https://github.com/hartwigmedical/hmftools). Several adjustments were made to adapt our
pipeline, originally developed to work with WGS data, to the characteristics of this WES
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dataset. Finally, the comparison was made by comparing the LOHHLA calls provided by the
authors (personal communication) with LILAC’s output.

Experimental validation by high-to allelic resolution HLA typing

We selected 96 Hartwig samples (10 from the tumor and 86 from the germline) to assess
LILAC’s agreement with an orthogonal approach based on high-to allelic resolution HLA
typing (see below). The selection of samples were prioritized based on the following criteria:
i) sample availability, ii) disagreement of LILAC with either xHLA or Polysolver, iii)
challenging cases due to presence of rare alleles and iv) tumor samples bearing either
somatic mutations or LOH of HLA-I. One germline sample failed to provide output with
sufficient quality and was therefore not included in the final comparison (see Supp. Data 1).

HLA genes were amplified with the NGSgo® MX11-3 (GenDx) amplification strategy and
libraries were prepared using the NGSgo® Library Full Kit (GenDx); both according to
manufacturer's instructions. Libraries were sequenced on the MiSeq (Illumina) and the
generated .fastq files were analyzed using the HLA typing analysis software NGSengine®
(GenDx), 2.24.0, using the IMGT3.44 reference database. All data was reviewed by two
independent reviewers and all exon heterozygous positions deviating from standard patterns
were inspected and interpreted manually.

Application to Hartwig and PCAWG datasets

All pre-selected PCAWG and Hartwig samples (Extended Data Fig. 2a) were then processed
by LILAC using the tumor-normal pair mode, which relied on the germline and tumor raw
HLA-I files, the somatic mutation calls by SAGE
(https://github.com/hartwigmedical/hmftools/tree/master/sage) and the copy number
estimations by PURPLE (https://github.com/hartwigmedical/hmftools/blob/master/purple/)
(both outputs were available as part of the Platinum Hartwig pipeline5 output).

All the pre-selected Hartwig samples but two (4,439 samples out of 4,441) were successfully
processed by LILAC whereas 1,880 out of 2,275 PCWAG samples successfully achieved
LILAC’s quality control criteria. The main failure reason of PCAWG samples was insufficient
coverage to perform a four digit HLA-I typing, and therefore they can not be further
considered in this study.

As a result of the pipeline we obtained 2-field HLA-I class types for all successful samples
alongside annotation of somatic mutations and the copy number estimations mapping for
each allele.

Usage
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To install, download the latest compiled jar file from the download links
(https://github.com/hartwigmedical/tools/tree/master/lilac#version-history-and-download-links
). Please check the github page for further information about how to use LILAC.
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Supplementary Note 2: Neoantigen
pipeline
Overview

The goal of this pipeline (named as Neo) is to provide a reliable collection of neoepitopes
derived from tumor specific alterations. These alterations consider point mutations (i.e.,
missense variants and stop loss variants), small indels (i.e., in-frame indels and frameshift)
and gene fusions (in-frame and out-of-frame fusions). The neoepitope pipeline works in 2
main steps to form a comprehensive set of neopeptide and neoepitope predictions from our
DNA pipeline output:

● Determination of all novel peptides (i.e., neopeptides) from all point mutations, small
indels and gene fusions.

● Calculation of allele specific presentation scores using a novel binding affinity
prediction algorithm.

Although we annotate with expression information from RNA (when available), the
neoepitope predictions are currently based solely on mutations found in the DNA. Hence we
specifically ignore RNA events such as circular RNA, RNA editing, endogenous retroviruses
and alternative splicing as we are unable to determine if these are tumor specific and hence
will make neoepitopes. High confidence fusions detected in RNA but not found in DNA are
also currently ignored. We also acknowledge that we miss protein level events including
non-canonical reading frames, post translational amino acid modifications & proteasomal
peptide splicing.

Workflow

1. Identification of candidate neoepitopes

We searched for potential neoepitopes for point mutations and structural variants that meet
the following criteria (see below):

1. We included somatic point mutations and indels with coding effects (i.e., missense,
frameshift, in-frame or stop loss) and a SAGE filter == ”PASS”.

2. We considered in-frame and out-of-frame gene fusions.

Type Criteria

Point mutations ●   Filter = ‘PASS’
●   Coding effect in (missense, frameshift, in-frame indel and stop lost)
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Fusions (intergenic or Rules as per LINX fusion calls with the following exceptions:
intragenic) ●   The 5’ partner breakend for neo-epitopes MUST be in the coding region (exonic or

intronic)
●   No restriction applies on the coding context for the 3’ breakend for neoepitopes
●   Fusions that are predicted to be terminated in the 5’ or 3’are not considered for

neo-epitopes
●   The 3’ transcript biotype for neo-epitope must not be ‘nonsense mediated decay’

Subject to the criteria above, all transcripts (or combination of transcripts in the case of
fusions) are considered as candidate neoepitopes. Where 2 transcripts (or transcript
combinations) lead to either the same amino acid sequence or the amino acid sequence of
one transcript forms a subset of another, the transcripts are merged to form a single
neoepitope. For each unique neoepitope, Neo outputs the amino acid (AA) sequence string
broken up into ‘upstream’, ‘novel’ and ‘downstream’ segments as follows:

Field Description

NeId Unique Id for neoepitope

Variant type One of: {MISSENSE, INFRAME, OUT_OF_FRAME_FUSION, INFRAME_FUSION,
FRAMESHIFT}

VariantInfo Unique identifier for variant
For point mutations = <chr>:<Position>:<ref>:<alt>
For SV = <chrUp>:<posUp>:<orientUp>-<chrDown>:<posDown>:<orientDown>

GeneNameUp Gene name for the upstream part of the neoepitope

GeneNameDown Gene name for the downstream part of the neoepitope

UpstreamAA Section of the neoepitope that matches the upstream transcript

DownstreamAA Section of the neoepitope that matches the downstream transcript (if any)

NovelAA Novel section of the neoepitope (if any)

WildtypeAA Wildtype AA sequence for agretopicity calculation (missense variants only)

UpTranscripts List of transcripts in the up gene that support the neoepitope

DownTranscripts All unique transcripts on the up gene that support the neoepitope

Note that the precise definition of the novel segment and upstream and downstream AA
depend on the type of event. The exact rules are outlined in the table below:

Variant Type Novel Segment Upstream flank Downstream flank

Missense SNV/MNV* Ref->Alt AA(s) Up to 16 AA limited by Up to 16 AA limited by
start codon stop codon

Inframe* If conservative inframe, Up to 16 AA limited by Up to 16 AA limited by
inserted AA only else start codon stop codon
also use flanking
disrupted AA on each
end

Stop_lost / frameshift* All downstream AA until Up to 15 AA limited by NA
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new stop codon reached start codon

Inframe fusion NA*** Up to 16 AA limited by Up to 16 AA limited by
(Phase=0) start codon stop codon

Inframe fusion Mixed transcript AA*** Up to 16 AA limited by Up to 16 AA limited by
(Phase = {1,2}) start codon stop codon

Out of frame coding to Possible mixed transcript Up to 16 AA limited by NA**
coding or coding to AA + all downstream AA start codon

non-coding fusion
until new stop codon
eached**

* Where multiple somatic variants are phased within 17 AA, include entire intermediate section as
novel AA
**For coding to 5’UTR fusions, if a start codon is reached prior to a novel stop codon and is
‘inframe’, the novel segment should be limited to the region up to the new stop codon with the
downstream flank set as the first 17 AA of the 3’ partner.
***For exonic-exonic fusions, include any inserted sequence

Neo further annotates each of the candidate neoepitopes with TPM and direct RNA fragment
support for the novel amino acid sequence. TPM per transcript is sourced from Isofox
(https://github.com/hartwigmedical/hmftools/tree/master/isofox) if RNA-Seq is available. If
not available, it is estimated as the median of the cancer type or full cohort where cancer
type is not known. Neo also reanalyses the RNA BAM to count the RNA depth at the location
of the variant that caused the neoepitope and the direct RNA fragment support for the
neoepitope (defined as matching precisely the 1st novel AA and 5 bases either side).

2. Calculation of allele specific binding affinity and presentation scores

Using the identified neoepitopes, we determine all candidate peptide and allele pairs (pHLA)
combinations that may be presented by the cell. For each candidate neoepitope, we
consider all peptides between 8 and 12 length which either overlap the novel amino acid
sequence or overlap both the upstream and downstream amino acid sequence.

For each pHLA we estimated a presentation likelihood based on a newly developed Position
Weighted Matrix (PWM) algorithm that considers both the binding affinity and the processing
likelihood for each pHLA pair.

2.1 pHLA algorithm description

2.1.1. Conventions regarding positions, peptide lengths and HLA allele binding
motifs

Position Independence
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Our model assumes that the peptides at each position each have an independent impact
on binding and that no correlated effects apply (an assumption held almost universally
across binding prediction tools). In fact, a preliminary internal test showed that this
assumption holds true.

Peptide length mappings

Neo supports 8-12 length kmers. Our model assumes that anchor (2nd and last peptide
position) positions and their surrounding positions have high similarity across peptide
length with central peptides variable and relatively less important for binding. We
therefore convert all peptides to a 12mer, with the following padding conventions for
shorter peptides.

12mer 0 1 2 3 4 5 6 7 8 9 10 11

11mer 0 1 2 3 4 X 5 6 7 8 9 10

10mer 0 1 2 3 4 X X 5 6 7 8 9

9mer 0 1 2 3 4 X X X 5 6 7 8

8mer 0 1 2 3 4 X X X X 5 6 7

Flanking sequences

The flanking amino acids upstream and downstream are known to impact cleavage and
proteasomal processing. To capture these impacts we include 3 upstream amino acids
(U3,U2,U1) and 3 downstream amino acids (D1,D2,D3) in the model. The
enrichment/depletion of amino acids at these positions globally (including ‘X’ where the
flanking sequences are beyond the start or end of an allele) is included in the peptide
score.

Binding Motifs

We utilize the same assumptions as NetMHCpan7 which is that only proximate (within 4
angstroms across a representative set of HLA-A/ HLA-B structures) polymorphic
residues may affect binding, which yields 34 distinct positions with the following
specificities.

Position Proximate Polymorphic Amino Acid Residues

0 31,83,86,87,90,183,187,191,195
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1 31,33,48,69,86,87,90,91,94,123,183

2 94,121,123,138,180,183

3 90,182,183,187

4 93,94,182

5 93,94,97,98,121,180

6 93,97,121,138,171,174,176,180

7 97,100,101,171

8 98,101,104,105,108,119,121,140,142,167,171

In general we observe that positions with identical binding motifs observe highly similar
amino acid weight distributions in mass spectrometry observations.

Binding Motif similarity

We assume that binding motifs with similarity tend to have similar bindings. We estimate
binding motif similarity by summing the log likelihoods from the BLOSUM62 substitution
matrix across all binding positions.

2.1.2. Training dataset

We have curated IEDB8 and the literature for high quality unbiased monoallelic mass
spectrometry results assessing that i) the datasets were monoallelic and ii) whether the
study did not appear to contain an empirically high rate of likely false positive results.
Binding affinity results are not used in the training data due to their inherent experimental
selection bias. Overall we identified 20 studies (all included in IEDB) with 413,000 MS
observations across 103 alleles to be used in our training set. For 8 specific alleles which
had no mono-allelic results, but where there was sufficient high quality multi-allelic data
(specifically A*69:01,B*35:08,B*41:01,A*26:08,C*15:05',B*44:09,B*44:27 and B*44:28) we
included the results from 4 additional studies.

Finally, we also included monoallelic data from the recent Pyke et al.9 (hereafter also
referred to as Sherpa dataset) study which has results from 25 monoallelic cell lines
including 6 additional cell lines not represented in the IEDB data. To eliminate potential
experimental artifacts, the Sherpa dataset was also filtered to include only peptides that
were found to be bound to 2 or less distinct alleles.

Any {peptide;allele} observations found in more than 1 dataset may be counted multiple
times towards position matrices. We also have determined the 3 bases flanking both
upstream and downstream for each peptide where possible by matching the peptides to th
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reference proteome. 10% of the full data is held back as a validation dataset (see Validation
section).

2.1.3 Construction of Position Weight Matrix (PWM)

A position weight matrix is constructed per allele per peptide length. To deal with sparsity
of data for specific alleles and peptide lengths, we use the following principles to learn
from other peptide lengths and alleles:

1. Peptide lengths may learn from other lengths when they lack sufficient allele and
length specific data. The more similar the peptide length, the higher the
weighting

2. Alleles may learn from other alleles with identical or similar binding motifs for that
position when they lack sufficient allele specific data. The more similar the
binding motif, the higher the weighting

This is implemented in a 2 step process. First we consolidate all specific length counts into
a single length weighted count (LWCount) for the tested peptide length for each allele using
the following formula:

LWCount(A,L,P,AA) = Count(A,L,P,AA) + LWF * SUM(l<>L)

[Count(A,l,P,AA) /abs(L-l)] * maxLW / max( LWF *

SUM(l<>L)[Count(A,I,P) /abs(L-l)],maxLW)

Then, using the motif m of the tested allele, we consolidate all matching and similar
binding motif observations from other alleles to obtain a total weighted count (WCount)
using the following formula:

WCount(A,L,P,AA) = LWCount(A,L,P,AA) + MWF* SUM(a<>A) [

LWCount(a,L,P,AA) * (2^(LogSim(m,M)) / MAX(i=all

motifs)[2^(LogSim(i,M))]] * maxMW / max(MWF * SUM(a<>A) [

LWCount(a,L,P) * (2^(LogSim(m,M)) / MAX(i=all

motifs)[2^(LogSim(i,M))]],maxMW)

where:
● A=allele
● L= length
● P= Peptide position
● AA = amino acid
● M = binding motif of allele A at position P
● LWF = length weight factor (<=1; default = 0.25)
● MWF = motif weight factor (<=1; default = 0.25)
● maxLW = max length weight (default = 200)
● maxMW = motif weight factor (default = 200)
● Obs(a,l) = observations of peptides of binding allele a and peptide length l
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● LogSim(a,b) = Blosum62 log similarity of motifs a and b summed over all
motif positions

The output of this is a final weighted position weight matrix for each allele and length.

2.1.4. Scoring and ranking per allele per peptide length

Each peptide is scored based on the positional amino acid frequencies relative to the
amino acid frequency in the proteome:

PeptideScore = Sum[Log2(max(P(x,i),0.005)/Q(x))]

where
● P(x,i) = % weight of amino acid = x at position = i (note for C we use 3*weight

to correct for MS bias)
● Q(x) = frequency of amino acid = x in the proteome

An additional flank score based on a pan allele flanking PWM is calculated as follows:

FlankScore = Sum(i=U3-U1,D1-D3)[Log2(P(x,i)/Q(x))]

As has been noted previously by other groups, we do observe enrichment when U1 = ‘M*’
(ie the first amino acid of the coding sequence) or D1 = ‘X’ the stop codon of a transcript, but
not for the other bases in the flanks. Hence for the U1 and D1 base we set the PWM score
to be the observed enrichment for ‘M*’ (approximately 2 fold greater) and ‘X’ (approximately
4 fold greater) respectively. For the other 2 flanking bases on either side we observe no
further enrichment in ‘M*’ or ‘X’ and hence set the PWM score simply to 0 (no enrichment or
depletion) if they overlap the start or end of the transcript.

The total score is then set to:

TotalScore = PeptideScore + FlankScore

The score is converted to a binding rank percentile (per allele per peptide length) by
comparing to the percentile scores compared to scores for 100,000 peptides of the same
length randomly from the proteome (note that random peptides are excluded if they are
found to be binders already in the MS results). Where flanks are available the rank is given
relative to the total score distribution and where not available relative to just the peptide
score distribution.

2.1.5. Relative presentation likelihood and ranking per allele (pan peptide length)

To assess the relative likelihood of presenting peptides of different lengths for a particular
allele given the binding ranks, we determine the relative density of mass spectrometry
observations in our training set per peptide length per binding rank percentile bucket.
The relative likelihood is calculated as:
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RelPresentationLikelihood =

MSobs(A,Rb,L)/Size(Rb)/SUM(Rb,L)[MSobs(A,Rb,L)/ Size(Rb)]

Where
● A = Allele
● L = Peptide Length
● Rb = Rank Bucket. Exponential buckets in powers of 2 are used to reflect the

relative importance of the very low binding ranks:
{0.00005,0.0001,0.0002,0.0004,...,0.8192}

To deal with sparse MS data, particularly for non-9mers, the density of a given ranking
bucket is set to be at least as high as any lower ranked bucket. Furthermore, so that we
can always rank the higher buckets regardless of the number of observations, any bucket
with 0 observations is padded with observations of
min(totalObservationsPerAllele/1000,0.25) for bucketed rank < 1%, or half the
observations of the preceding ranked bucket where the bucketed rank > 1%.

The output of this algorithm is a set of weights per bucket per peptide length reflecting the
relative likelihood of an observation from that bucket being presented on the surface in that
cell. For individual peptides we can predict an exact relative likelihood by interpolating the
rank between the bucketed values.

An example of the output for A*29:02 is shown below indicating that a 9mer with 0.00005
rank is ~28x (ie 0.3007/0.0116) more likely to be presented than an 8mer with the same rank
and ~6x (ie 0.3007/0.0520) more likely to be presented as a 9mer with a rank of 0.0004.

The relative presentation likelihood is calculated for each 4-digit and 2-digit allele with more
than 200 MS observations in the training data as well globally for HLA-A, HLA-B and HLA-C.
Any 4-digit allele which does not have sufficient MS observations is assigned the likelihoods
of the 2-digit allele if available or if not the likelihoods for the HLA gene as a whole.

To conclude, a presentation percentile rank is calculated for each allele across all lengths by
comparing the relative likelihood of the peptide compared to that of all negative decoy
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peptides (equally weighted across 8,9,10 and 11-mers to give best compatibility to other tool
rankings).

Each pHLA score was then ranked compared to a random set of 100,000 peptides derived
from the human canonical proteome to derive a presentation likelihood rank for each pHLA.

3. Expression adjusted presentation likelihood algorithm

Multiple studies have shown the importance of including RNA expression in the prioritization
of neoepitopes. The pHLA presentation scores were further adjusted by the inclusion of the
normalized RNA expression of the mutated transcript/s (including the 5’ and 3’ transcripts in
gene fusions). When RNA expression was not available, we used the average expression
across the patient cancer type or the pan-cancer when the cancer type is unknown. We then
calculated the expression-adjusted likelihood rank (ExpLikelihoodRank) for each pHLA using
the expression adjusted likelihood compared to the same randomly selected peptides.

3.1. Training data

For training the impact of expression on presentation likelihood we use the subset of the
mass spectrometry training dataset included with the HLAthena publication10 together with
the matched TPM estimates provided with this publication for the B.721.221 cell line. For the
purpose of the training the TPM of the gene is assumed to be the TPM of the transcript
containing the epitope.

3.2. TPM adjusted likelihood rank

To determine the impact TPM expression has on presentation we compared the TPM of the
MS identified peptides of strong predicted binders (LRank<0.1%) found to be presented in
the HLAthena training data to all predicted strong binders from the proteome for the same
alleles. For each log2 TPM bucket we calculate the proportion of pHLA combinations that are
found to be presented. We find this to be a very strong relationship, ranging from a <<1%
chance of presentation where TPM < 1 up to higher than 20% chance where TPM > 1000:

Using this observed rate of TPM we can calculate:
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ExpAdjLikelihood = PresentationLikelihood * TPMLikelihood /

[PresentationLikelihood * TPMLikelihood +

(1-PresentationLikelihood) * (1-TPMLikelihood)]

We then calculate a new overall rank globally across all pHLA using the expression adjusted
likelihood compared to the same randomly selected peptides.

Neoepitope identification in Hartwig and PCAWG dataset

We defined the collection of neoepitopes as those pHLA with a LikelihoodRank < 0.02 and
ExpLikelihoodRank < 0.02 (i.e., within the 2% percentile of all peptides). Hence, the total
neoepitope load of a patient tumor sample is the sum of all pHLA neoepitopes (using the
germline’s HLA-I types) with LikelihoodRank < 0.02 and ExpLikelihoodRank < 0.02.

Neoepitope clonality

Each predicted neoepitope (see above) derived from point mutations and small indels was
matched with the source variant estimated clonality from PURPLE. We defined clonal
mutations as those with a subclonal score lower than 0.85. Gene fusions were not
considered for this analysis.

Neo pipeline validation

We assessed the performance of our neoepitope prioritization pipeline (Neo) by
conducting four orthogonal validations:

1. Neo performance compared to MHCFlurry2.0 in a curated dataset of
experimentally identified peptides derived from HLA monoallelic cell lines.

2. Neo ranking of random peptides.
3. Neo robustness by performing an allele leave-one-out experiment.
4. Neo expression adjusted model performance compared to the

non-expression model.

For these validations, we assumed that the 100,000 random peptides used for the ranking
likelihood calculation (after filtering any {peptide,allele} combinations included in the training
data) were not binders. This is a conservative assumption as some of the highest ranked
random peptides would certainly be expected to bind. Therefore, since only the top ~0.1% of
peptides are expected to strongly bind, we mostly used the True Positive Rate (TPR) as the
performance metric. This metric measures how well the model is able to rank known
presented peptides (from a curated set) compared to the random set of 100,000 peptides.
Other measurements, such as AUC measurements may be dominated by the relative
performance of very weak predictions and are therefore not as informative in our endeavor.
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1. Neo performance compared to MHCFlurry2.0

The aim of this validation is to compare our pipeline ability to prioritize bona-fide peptides
presented by the HLA-I in comparison to an outstanding open access tool such as
MHCFlurry2.011. To do so, we held-out 10% of the training set composed by the
non-redundant union of experimentally identified peptides reported in IEDB and in other
studies (see above Training set section). Hence, this 10% was not used in our training and
will be used as a validation dataset to evaluate the True Positive Rate (TPR) across multiple
rank thresholds compared to MHCFlurry2.0. The TPR was estimated as the number of
predicted peptides below the given threshold compared to the total number of peptides in
the validation dataset. Moreover, to ensure comparability we use the presentation percentile
of MHCFlurry2.0 and then recalculated a rank using 100k random peptides in the same
manner we did for the Neo Likelihood ranks. This number deviates from the MHCFlurry
Presentation rank which may have different assumptions about negatives

The average TPR was higher in Neo predictions compared to the predictions from
MHCFlurry2.0 by relying in six ranking thresholds (1e-06, 1e-05, 1e-04, 5e-04, 1e-03, 1e-02, 2e-02

and 1e-01, see Figure1 below). This trend was maintained when we split by peptide length
from 8-kmers to 11-kmers (Figure 1). Nothewortly, the greatest differences in TPR were
observed for 8-mers (average TPR Neo 0.48 compared to 0.32 of MHCFlurry2.0), while the
difference for other peptide lengths was considerably lower. Taken together our results
showed that Neo sensitivity to rank true binders is slightly better than MHCFlurry2.0 at
different percentile rank thresholds.
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Figure 1. Neo performance in a 10% held-out validation dataset compared to
MHCFlurry2.0. The x-axis represents the threshold of the ranking used as predicted
peptides. The y-axis represents the TPR at each threshold. Red and blue dots and lines
represent Neo and MHCFlurry2.0 performance, respectively.
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2. Neo ranking of random peptides.

In the previous analysis we have shown Neo’s sensitivity to rank true binders among the
lowest percentile ranks. However, whether this is a unique feature of true binders or a
systemic bias towards low percentile rankings is yet unclear. To address this, we evaluated
Neo median percentile ranking in a set of 50k random peptides at five peptide lengths (from
8-12mers, 10k peptides per kmer length).
Reassuringly, we observed that the median allele percentile ranking distribution was very
close to 0.5 (ie., percentile rank 50th) across all evaluated lengths and alleles (Figure 2).
These results show that observed percentile rankings for true binders are not the effect of a
systemic bias towards low rankings and are thus the result of Neo’s ability to discern
between true binders are random peptides.

Figure 2. Neo median percentile ranking in a set of 50,000 random peptides across 25
HLA-I alleles. Each dot represents the median percentile rank across the evaluated random
peptides for a particular allele and peptide length. Dashed horizontal line represents the 50th
percentile ranking.
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3. Neo robustness by performing an allele leave-one-out experiment.

We aimed to assess how well our model is able to rank the presentation of peptides for an
HLA allele that lacks representation in the training set. To do so we performed the following
steps:

I. For each of the 116 HLA alleles with sufficient representation in the training dataset
we iteratively removed the peptides from the curated dataset and re-trained the full
model (i.e., leave-one-out experiment).

II. We computed the TPR at a 0.02 ranking threshold on the curated peptides for that
allele (i.e., number of ranked peptides with a ranking likelihood below that threshold
compared to the total number of peptides for that allele in the original training set).

III. We compared the leave-one-out TPR to the original TPR by training with the full
dataset. The percentage of TPR decrease (%TPR loss) measures the ability of our
model to generalize predictions for HLA alleles that lack representation. Alleles with
high %TPR loss are those for which the model can not reliably make predictions
without the training data. Conversely, HLA alleles with low %TPR loss are those for
which the model can find accurate predictions by generalizing the predictions from
other alleles with available training data.

We observed an average %TPR loss of 4.4% ± 6% std. (Figure 3). Only 15 HLA alleles
(~12% of the 116 screened alleles) show a %TPR loss greater than 10% (Figure 3),
highlighting the capacity of Neo pipeline to generalize predictions for alleles lacking
representation in the training set. Certain alleles such as B*08:01, B*15:03 or A*30:01
displayed a very high %TPR loss suggesting that they may have a unique binding
preference that can not be interpreted from neighbor HLA alleles (Figure 4). Another
plausible explanation is that the 34 HLA amino acids selected for our model are unable to
capture the binding preference of these alleles and additional amino acids are thus needed.

When splitting by peptide length, we observed that the most consistent predictions were for
9-mers, likely due to the higher representativeness of these peptides in the training dataset.
Other k-mers had greater average %TPR loss.

Taken together our results show that, in general, our pipeline is able to accurately rank
peptides for HLA alleles lacking representation in the training set and that our
learn-from-others approach is a robust strategy to prioritize peptides presented by the HLA
complex.
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Figure 3. Percentual TPR loss distribution after leave-one-out
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Figure 4. HLA allele leave-one-out analysis. The X-axis represents the leave-one-out
allele TPR (by removing the allele peptides of the training set and re-training the model). The
Y-axis represents the original TPR including all peptides in the training set. Thick continuous
line overlaps with the diagonal. Dashed lines represent a %TPR loss greater or equal to
10%. HLA alleles with the annotated label are those with a %TPR loss greater than 10%.

29



4. Neo expression adjusted model performance

We evaluated whether the expression adjusted model (see above Expression adjusted
presentation likelihood) is able to improve the predictions from the expression naive model.
To assess this, we leveraged the part of our training set that was obtained from ref.10. Briefly,
this is a publicly available dataset that contains experimentally identified peptides through
immunopeptidomics across 95 HLA monoallelic cell lines engineered from B721.221. We
therefore matched these observations with the RNA-seq expression of the source HLA-null
cell line B721.221.

We observed that the model adjusted by the RNA expression has consistently higher TPR
across all the evaluated ranking thresholds (1e-06, 1e-05, 1e-04, 5e-04, 1e-03, 1e-02, 2e-02 and
1e-01, see Figure5 below). The average TPR across these thresholds was higher in the
expression adjusted group (0.52) compared to the non-adjusted (0.45). Taken together,
these observations confirm the added value of adjusting by the RNA expression of the
source transcript. Unless otherwise specified, this model will be used to select the potential
(neo)epitopes derived from tumor specific alterations in our neoepitope prioritization pipeline.
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Figure 5. Performance comparison of expression adjusted versus non adjusted models.
The x-axis represents the evaluated percentile ranking thresholds. The y-axis represents
the TPR at the given thresholds. Basic model is the non-expression adjusted model.

Usage

Neo use the following inputs from the Hartwig pipeline
● Somatic variants: PURPLE somatic .vcf
● Structural variants: LINX candidate fusion neoepitopes (a new file produced by

LINX to output all candidate neoepitope files).
● HLA typing: LILAC output (or from alternative methods as long as they are

formatted appropriately).

Where RNA is available additional annotations are added, an effective TPM of each
neoepitope is also estimated based on the following inputs

● Gene Expression: Isofox
(https://github.com/hartwigmedical/hmftools/tree/master/isofox) transcript expression

● Neo-epitope fragment support: RNA .bam

For presentation and immunogenicity predictions, Neo also uses a number of resource files,
that are pre-calculated from external resources (including IEDB8, the HLAthena10 publication
and the IPD-IMGT/HLA1 database). See
https://github.com/hartwigmedical/hmftools/tree/master/neo for more information about how
to use Neo.
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Supplementary Note 3: GIE and tumor
genomic features

Tumor genomic features and GIE association

We aimed at identifying cancer type genomics features associated with an increased GIE risk.
Hence, we performed a cancer type aggregation of the two datasets (i.e., metastatic and
primary) to increase statistical power of the analysis. We then computed 99 genomic features
and 366 driver alterations and evaluated its association with GIE across 38 cancer types with
sufficient representativeness (i.e., total number of samples >=15). For this analysis, we used a
definition of GIE that considers all GIE events except non-focal LOH of HLA-I as it likely reflects
a passenger event in tumor evolution (see Fig. 6 of main text).

Background simulation of GIE alterations

Some of the identified associations between tumor genomic features and GIE incidence could
be explained by higher background mutation and CNV rates. In order to distinguish between
those tumor genomic features exclusively associated with GIE and those that are likely the
result of higher background alteration rate we devised a background control by performing 100
simulations of GIE alterations (i.e., GIE simulations) across the tumor samples included in this
study. More in detail, we followed the next steps:

1. We randomly selected 100 genes from the entire human genome (excluding driver
cancer genes, genes in sexual chromosomes and GIE genes).

2. Then we performed 100 GIE simulations following the next steps:
a. For every simulation, si (i 1..100), we randomly sampled with replacement 21∈

genes from step 1) (i.e., equal to the total number of genes included in the study).
b. Next, these background 21 genes were matched with any of the GIE pathways

included in the study by preserving the number and proportion of genes originally
associated with every pathway (i.e., three for HLA-I, eight for antigen
presentation, seven for IFN-γ, one for CD58, etc.). In that manner, every GIE
gene from the study has a randomly selected decoy gene in the simulation si.

c. Then, for every decoy gene (labeled with a GIE pathway in b.) we annotated the
presence of alterations considered in that specific pathway across all samples
included in the study. For instance, if the decoy gene was linked to the antigen
presentation pathway, we considered as mutated those samples with monoallelic
truncating variants, biallelic non-synonymous mutations or deep deletions. The
only exception was the LOH and deep deletions of HLA-I genes, for which, given
the genomic proximity of the three genes (HLA-A, HLA-B and HLA-C), we only
considered one decoy gene that would act as a proxy of LOH (or deep deletion,
respectively) in the HLA-I locus.

3. Then for every tumor sample and every simulation si (i 1..100) we annotated the∈
existence of simulated GIE alterations if there was any GIE alteration across the six
simulated GIE pathways in that specific sample.
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In the association between tumor genomic features and GIE we only considered as exclusively
associated with GIE those genomic features that showed a significant association (i.e., q-value
< 0.05) that did not show a simulated GIE association (i.e., less or equal than 2% of GIE
simulations showed a significant association with the same genomic feature). To perfectly match
the definition of GIE used in the genomic features GIE association analysis (see above), we also
excluded non-focal LOH of HLA-I (i.e., its decoy gene in each simulation) as part of the GIE
simulations.

Tumor mutation burden, neoepitope load and SV load

For each cancer type, we used a univariate logistic regression to quantify the association of 21
TMB-related measurements (see Supp. Data 4 for full list of evaluated features) and the
presence/absence of a GIE event. Independent variables were z-scored. The Logit() function
(with default parameters) from the statsmodels12 v.0.13.1 library was used to perform the logistic
regression. This function provides the odds ratio with confidence intervals alongside the p-value
of significance. The p-values were adjusted with a multiple-testing correction using the
Benjamini–Hochberg procedure (alpha=0.05).

The clonality of each variant was defined using the PURPLE subclonal likelihood estimation.
More specifically, a variant was considered as clonal if the estimated subclonal likelihood was
lower than 0.85.

The global neoepitope load of each patient’s sample was calculated as the sum of the predicted
neoepitopes (i.e., allele specific neoepitope repertoire, see Supp. Note 2) across the germline
HLA-A alleles inferred by LILAC. The subset of neoepitopes (i.e., fusion derived, mutation
derived, clonal and subclonal) was computed by matching the source alteration -and their
clonality- of each predicted neoepitope. Therefore, a mutation (or gene fusion) may be the
source for multiple neoepitopes.

Mutational signatures

The number of somatic mutations falling into the 96 single nucleotide substitution (SBS), 78
double base substitutions (DBS) and 83 indel (ID) contexts (as described in the COSMIC
catalog13 https://cancer.sanger.ac.uk/signatures/) was determined using the R package
mutSigExtractor (https://github.com/UMCUGenetics/mutSigExtractor, v1.23).

SigProfilerExtractor (v1.1.1) was then used (with default settings) to extract up to 21, 8 and 10
de novo mutational signatures for SBS, DBS and indels (respectively). This was performed
separately for each of the 22 tissue types which had at least 30 patients in the entire dataset
(aggregating primary and metastatic samples, see Supp. Table 2). Tissue types with less than
30 patients as well as metastatic patients with unknown primary location type were combined
into an additional ‘Other’ group, resulting in a total of 23 tissue types for signature extraction. In
order to select the optimum rank (i.e. the eventual number of signatures) for each tissue type
and mutation type, we manually inspected the average stability and mean sample cosine
similarity plots output by SigProfilerExtractor. As a result, there were 484 de novo signature
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profiles extracted across the 23 tissue type groups (see Supp. Table 2 and Supp. Data 4). Least
squares fitting was then performed (using the fitToSignatures() function from mutSigExtractor) to
determine the per-sample contributions to each tissue type specific de novo signature.
The extracted de novo mutational signatures with high cosine similarity (>=0.85) to any
reference COSMIC mutational signatures with known cancer type associations13 were labeled
accordingly (number of labeled de novo signatures = 274 matched to 57 COSMIC references).

For the collection of remaining non-labeled de novo signature profiles of each mutation type, we
reasoned that there could be one or more signatures that are highly similar to those found in the
set of signatures of other tissue types (and thus likely representing the same underlying
mutational process) and that have not been yet matched to a COSMIC reference. We therefore
performed clustering to group likely equivalent signatures and to label them as such.
Specifically, we followed the next steps:

1. We calculated the pairwise cosine distance between each of the de novo signature
mutational profiles.

2. We performed hierarchical clustering and used the base R function cutree() to group
signature profiles over the range of all possible cluster sizes (min no. clusters = 2; max
no. of clusters = number of signature profiles for the respective mutation type).

3. We next calculated the silhouette score at each cluster size to determine the optimum
number of clusters.

4. Finally, we grouped the signature profiles according to the optimum number of clusters.
This yielded in total 45 de novo signature clusters (see Supp. Data 4).

For certain de novo signature clusters we were able to manually assign the potential etiology by
relying on the average similarity to the COSMIC reference mutational signatures. For instance,
SBS_denovo_clust_3 represented a collection of de novo signatures highly similar to the
reference SBS2 and SBS13 from COSMIC, linked to APOBEC mutagenesis. In many cases the
mutational signatures displayed an aggregation of both mutational spectra (SBS+SBS13)
preventing the reference annotation in the first step of our pipeline. Similarly,
DBS_denovo_clust_3 and DBS_denovo_clust_6 represented a collection of de novo signatures
similar to the DBS5 of COSMIC, which had been linked to platinum treatment exposure. These
de novo mutational signatures presented the characteristic CT>[AA or AC] peak of DBS5
COSMIC signature in combination with residual contribution from other DBS channels. Finally,
we assigned MMR deficiency as the etiology for several clusters (e.g., ID_denovo_clust_1, see
Supp. Data 4) as these clusters were enriched in MMR deficient samples.

Next, for each cancer type, we used a logistic regression to quantify the association between
the number of somatic point mutations, indels or double base substitutions (DBS) attributed to a
certain mutational signature and the presence/absence of a GIE event. We only considered
mutational signatures with known/suspected etiology or with high similarity to a reference
COSMIC signature (cosine similarity >=0.85) as well as high incidence in a particular cancer
type (i.e., at least 15 samples with a mutational signature exposure greater or equal than 100
SBS, 50 IDs or 25 DBS). 49 mutational signatures fulfilled these filters in at least one cancer
type. Moreover, to diminish associations that could be mainly attributed to an elevated molecular
age, we also included the exposure to aging mutational signature(s) as an independent variable
(SBS1 + SBS5 cumulative exposure as a proxy for molecular age). Independent variables were
z-scored. The Logit() function (with default parameters) from the statsmodels library was used to
perform the logistic regression. This function provides the odds ratio with confidence intervals
alongside the p-value of significance for both dependent variables. The p-values were adjusted
with a multiple-testing correction using the Benjamini–Hochberg procedure (alpha=0.05).
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MMR and HR deficiency

We also tested whether mismatch repair deficiency (MMRd) and Homologous repair deficiency
(HRd) were predictive of GIE. The Hartwig analytical pipeline provides the MMRd status of each
processed tumor sample (i.e., microsatellite stable or microsatellite unstable). Analogously, the
CHORD14 software was used to evaluate HRd in tumor samples. Fisher's exact test was used to
evaluate the significance. A minimum of 5 DNA repair-deficient tumor samples were required to
assess the significance. P-values were adjusted with a multiple-testing correction using the
Benjamini–Hochberg procedure (alpha=0.05).

DNA viral insertion and Whole Genome Duplication
The presence of viral DNA and whole-genome duplication (WGD) is provided by the Hartwig
analytical pipeline. A Fisher's exact test was used to evaluate the significance. A minimum of 5
tumor samples harboring viral DNA insertions were required to assess the significance.
P-values were adjusted with a multiple-testing correction using the Benjamini–Hochberg
procedure (alpha=0.05).

Immune infiltration deconvolution

For samples with available tumor RNA-Seq data we performed an immune infiltration
deconvolution based on the normalized TPM and RPKM values in Hartwig and PCAWG,
respectively. More specifically, we implemented 6 different markers of immune infiltration: the
natural killer cells (NK) quantification by Patrick Danaher et al.15, the global immune infiltration,
CD8+ T-cells and CD4+ T-cells implemented by Teresa Davoli et al.16, the T-cell infiltration used
by Catherine Grasso et al.17 and the preliminary IFN-γ profile reported by Mark Ayers et al18.

Next, we used univariate logistic regression to quantify the association of these measurements
with GIE prevalence. Independent variables were z-scored. The Logit() function (with default
parameters) from the statsmodels library was used to perform the logistic regression. This
function provides the odds ratio with confidence intervals alongside the p-value of significance
for both dependent variables. The p-values were adjusted with a multiple-testing correction
using the Benjamini–Hochberg procedure (alpha=0.05).

HLA-I supertypes

We performed a cancer-type specific Fisher’s exact test to assess enrichment of HLA-I
supertypes with the GIE frequency. Only HLA-I supertypes present in at least 50 patients were
evaluated. HLA-I supertypes were gathered from ref.19 and manually curated. P-values were
adjusted with a multiple-testing correction using the Benjamini–Hochberg procedure
(alpha=0.05).
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HLA-I divergence

We calculate the germline average and cumulative HLA-I divergence20 as the mean and sum of
LILAC’s HLA-I alleles pairwise divergence. Both measurements were independently regressed
against the GIE prevalence in a cancer type specific manner. Following the same methodology
used with other features, a logistic regression was used to evaluate the significance of the
association.

Pre-biopsy treatment exposure

We also tested whether exposure to pre-biopsy treatment had a predictive value for GIE
prevalence. For this analysis, we only relied on metastatic pre-treated samples with available
pre-treatment information (N=2,212). Five treatment groups were tested: chemotherapy,
radiotherapy, immunotherapy, targeted therapy and hormone therapy because of the prevalence
across cancer types. A minimum of 5 treated samples were required to carry out the
association between a treatment and GIE in a particular tumor type. Fisher's exact test was
used to evaluate the significance. P-values were adjusted with a multiple-testing correction
using the Benjamini–Hochberg procedure (alpha=0.05).

Driver alterations

We evaluated whether driver alterations (including mutations, copy number gain and losses)
showed a significant positive or negative association with GIE. We defined driver alterations per
sample as those reported by Linx (v1.17) with a driver likelihood greater than 0.5. Only cancer
types with at least 15 tumor samples were considered. Genes associated with GIE were not
considered. Similarly, genes close in the proximity of SETDB1 and CD274 (same cytogenetic
band) were not considered due to high likelihood of co-amplification. A minimum of 5 mutated
samples were required to perform the assessment of association. P-values were adjusted with
a multiple-testing correction using the Benjamini–Hochberg procedure (alpha=0.05).
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