
1 

SUPPLEMENTARY MATERIAL 

Mathematical arguments based on the work performed and technical 

specifications on the use of artificial intelligence algorithms 
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Methods 

Linear application of ordered sets 

Responses on the SF-36 range from 1 to 6, as shown in Table 1, with higher scores corresponding 

to better health. A subscale is a set of questions related to a specific condition. Therefore, we can 

define a set of ordered responses for each individual as an ordered 36-dimensional vector. 

Similarly, subscales define an ordered 8-dimensional vector for each individual. Figure S1 details 

the process of computing the set of 8-dimensional vectors of the subscales (matrix B) from the 

set of 36-dimensional vectors of the responses of SF-36 questionnaires (matrix A) through a linear 

application. Note that matrix A is rescaled to be in the range between 0 and 5, i.e., the minimum 

value is 0 instead of 1.  

 

Figure S1.-  Diagram of the transition from matrix A to B through a linear application.  

 

 

While maintaining its properties, this linear application does not guarantee bijectivity since two 

different 36-dimensional vectors of matrix A could generate the same 8-dimensional vector in 

matrix B. However, it is relevant to underline that this transformation maintains the properties of 

the linear application. 
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The clustering analysis 

 

The clustering analysis was implemented in Python (version 3.7.14). The decoded SF-36 answers 

and subscale matrices were used and compared. The dimensions were 2347x36 and 2347x8, 

respectively. To select the optimal number of clusters, some models were fitted with values in 

the range [2,6] for k (Birch and spectral clustering) by the elbow method. (Bengfort et al. 2022) 

and the Calinski and Harabasz metric (see Stable 1). Three validation metrics are proposed using 

the scikit-learn package (version 1.0.2) to evaluate the performance of each tested model when 

the truth labels are unknown: 

● Silhouette Coefficient 

● Calinski–Harabasz Index (Kozak 2012) 

● Davies–Bouldin Index (Halkidi, Batistakis, and Vazirgiannis 2001) 

 

STable 1.- Clustering Algorithms tested 

Algorithm Parameters optimized Package used 

K-means  ● Initializer: K-Means++. This method was used to 

find out optimal initial centers.  

● Metric distance: Euclidean and Manhattan have been 

compared. 

● Optimized using Silhouette score (Rousseeuw 1987) 

by 200 runs. 

Pyclustering  

(v 0.10.1.2) 

(Novikov 

2019) 

Agglomerative ● Links: Centroid, single, complete, and average links 
were tested, and the maximum silhouette score was 
chosen 

pyclustering 

Birch ● Branching_factor and threshold.  

● Optimized by grid-search using maximum silhouette 

score. 

scikit-learn 

DBSCAN ● Eps (The maximum distance between two samples, 

for one to be considered as in the neighborhood of 

the other). 

scikit-learn 

https://paperpile.com/c/akjTQX/sWLbw
https://paperpile.com/c/akjTQX/HTCFS
https://paperpile.com/c/akjTQX/ns0GS
https://paperpile.com/c/akjTQX/nvMb9
https://paperpile.com/c/akjTQX/w96ew
https://paperpile.com/c/akjTQX/w96ew
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STable 1.- Clustering Algorithms tested 

Algorithm Parameters optimized Package used 

● Minimum samples. 

● Left size (this can affect the speed of the 

construction and query and the memory required to 

store the tree) using maximum silhouette score. 

K-MEDOIDS ● Initializer: k-medoids++.  

● Optimized using Silhouette score by 200 runs. 

scikit-learn 

Fuzzy-C ● Initializer: K Means++. Farthest Centre Candidate 

option.  

pyclustering 

 

 

Principal Components Analysis 

As mentioned before, the set of SF-36 questionnaires consists of 2,347 records or individuals. For 

each question, we examine the normality and correlation between all pairs of variables. In 

addition, we use Principal Component Analysis (PCA) to summarize and visualize the interaction 

between the characteristics. Once the standardization is complete, the analysis is complete and 

is illustrated by the factor map in Figure S7: 

- Eigenvalues and variances for each feature. 

- Plot analysis, where positively correlated vectors are grouped in the same quadrant, and 

negatively correlated vectors are positioned on opposite quadrants. 

- Vectors far from the origin (i.e., the center of the coordinate system) are well represented 

on the factor map. 

The cosine square (𝑐𝑜𝑠2) method is computed to measure the quality of each feature, where a 

high value indicates a good representation of the variable on the principal component and is close 

to the circumference of the correlation circle (radius equal to 1). This analysis is performed using  

R (v 4.2.1)  with packages factoextra (v 1.0.7) and factominer (v 2.6) (Kassambara 2017). 

 

https://paperpile.com/c/akjTQX/m3deR
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Contingency table difference analysis 

A contingency table was created for patients who completed the single CPET test and the SF-36 

questionnaire. We selected 92 patients who met the criteria (Figure S2) from 239 single CPET 

registries. The contingency table is constructed using the clustering labels and Weber's 

classification based on VO2 levels. 

 

Figure S2.- Steps for the contingency table.  

 

 

Results 

Matrix Analysis 

The d'Agostino and Pearson tests are used to analyze the normality of each SF-36 question 

response and its aggregated subscales  (D’agostino & Pearson, 1973). Pearson's linear correlation 

is calculated between all pairs of variables, and the histogram of the results is shown in Figure 

S3, where the maximum value is 0.8 in the RE1-RE2 pair corresponding to the emotional role. 

None of the distributions fits a normal distribution. 

 

https://paperpile.com/c/akjTQX/5VpK6
https://paperpile.com/c/akjTQX/5VpK6
https://paperpile.com/c/akjTQX/5VpK6
https://paperpile.com/c/akjTQX/5VpK6
https://paperpile.com/c/akjTQX/5VpK6
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Figure S3.- Histograms of the series of pairs of linear correlations of variables by 

matrix. The number of correlations is x/2 (x-1), being x the number of features of each matrix. 

The red dotted line represents the mean value.  

 

 

Each data set can be interpreted as a vector, and as mentioned above, it is an ordered set of 

vectors that represent the state of health of the patient. The modulus of each vector is calculated 

to create a new ordered set of values. The histograms of these ordered sets are shown below in 

Figure S4. 

 

Figure S4.- Histograms of vector’s modulus by matrix.  

 

 

The modulus histograms are not equivalent to matrix A and matrix B. The order of each register 

was analyzed by percentile performance. If the order is similar, the percentiles would be similar 

as well. We analyzed the difference in the percentiles of each record in the two matrices, giving 

an error margin of ±0.1. We noted that the records with the higher margin of error, 40.14% of 

the records, indicate a change in the percentile < 0.1 in both matrices, which concludes that the 

order changes in both matrices. Furthermore, a very differentiated histogram structure is 

observed, showing a distribution compatible with normality in matrix A and a significant 
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concentration in lower values (patients with worse health status) between values of 30-70 and 

less when the modulus value is more significant than 100 in matrix B.  

 

PCA analysis 

The eigenvalues measure the amount of variation retained by each principal component. The 

variance contributed by each dimension is calculated with a PCA of 8 components for matrix A 

and five components for matrix B, as shown in Figure S5. 

 

Figure S5.- Percentage of explained variances by matrix. 

 

 

Matrix A needs eight dimensions or components (reduced from 36) to explain 60.4% of the 

variance, and matrix B needs five dimensions (reduced from 8) to explain 81.6%. The 

contributions of these variables for the variability in a given principal component are expressed 

in percentages. Variables that are correlated with any dimension are the most important in 

explaining the variability in the dataset. The contribution of variables is shown in Figure S6.  

 

Figure S6.- Contribution of variables by Matrix. The contribution is calculated for an 8-

dimensional PCA in matrix A and a 5-dimensional PCA in matrix B. The red dashed line on the 

graph above indicates the expected average contribution. In matrix A, each column represents 

the name of each response. In matrix B, each column represents the name of each subscale. 
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Critical variables have larger contributions. Significant differences are observed between the 

matrices in the representativeness of the variance of the dimensions. In Matrix A, the variables 

related to the emotional role (ER) have the most significant influence. On the other hand, in 

matrix B, somatic pain (BP) contributes the most, with two variables (bp1, bp2) among those that 

contribute the most in matrix A. The physical part significantly influences Matrix B, with the scales 

of Body Pain (BP) and Physical Role (PR). 

 

The correlation plot of variables shows the relationship between all pairs of variables, with 

positively correlated variables grouped in the same quadrant and negatively correlated variables 

in opposite quadrants. The distance between the variables and the origin measures the quality of 

the variables, where a greater distance from the origin of the coordinates implies better quality. 

The 𝑐𝑜𝑠2 value indicates the goodness of the variable's representativeness. In Figure S7, we 

depict the most relevant vectors, i.e., the vectors with 𝑐𝑜𝑠2 > 0.45. 

 

Figure S7.- Correlation plot of variables. Note that the display takes the two main 

dimensions of each matrix, which contribute 33.3% of the variance in the case of matrices A and 

39.8% in the case of matrices B. The color indicates the contribution to the variance. The color 

indicates the contribution to the variance. The redder the color, the more significant the variance 

contributed. Each column represents the name of each response in Matrix A. Each column 

represents a subscale name in Matrix B. 
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The scales and the physical variables they contain are divided into two groups. In both matrices, 

Emotional Roles (ER) and Mental Health (MH) are correlated and symmetrically arranged in the 

first and fourth quadrants of the figure, and so are the more physical parts of the questionnaire 

(bodily function and vital capacity). The correlation of variances should not be confused with 

Pearson's linear correlation. These are different concepts in this analysis. 

 

Clustering Analysis 

 

Hopkins clustering test (Lawson & Jurs, 1990) is used to assess the clustering tendency of a data 

set by measuring the probability that a uniform data distribution generates a given data set. The 

data is not uniformly distributed if the test is positive (Hopkins score ≃ 0). Hence, clusterings can 

help to classify the observations. However, if the score is too high (≥ 0.5), the data is uniformly 

distributed, and clustering cannot solve the problem. The Hopkins test scores for both matrices 

are 0.3045 (matrix A) and 0.2509 (matrix B); consequently, they can be classified. 

 

Determination of the number of clusters. 

The Calinski-Harabasz metric has been used to determine the optimal number of clusters. It is 

tested with three algorithms (K-means, Birch, and Spectral) whose results are consistent and are 

shown in Figure S8. 

 

https://paperpile.com/c/akjTQX/MPdLT
https://paperpile.com/c/akjTQX/MPdLT
https://paperpile.com/c/akjTQX/MPdLT
https://paperpile.com/c/akjTQX/MPdLT
https://paperpile.com/c/akjTQX/MPdLT
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Figure S8.- Graphs of the determination of the number of clusters of the three 

algorithms. The graphs represent the optimal number of clusters to be analyzed, and in all 

algorithms, k=2 is the best result. 

 

 

Silhouette and Calinski-Harabasz have optimized all algorithm parameters. These metrics are for 

internal validation since the labels are unknown at the outset. They measure the compactness 

(distance between objects in the same group) and separation (distance among different clusters 

or groups). The best scoring algorithms (Agglomerative and DBSCAN) lack functional partitioning 

because they virtually eliminate a cluster. Table S2 and Table S3 show that label 0 is composed 

of modulus values with lower responses in the remaining algorithms, and therefore the health 

status is worse. Thus, K-means Euclidean distance manages to separate up to an average of 6.99 

in 1,407 records in a cluster. As for the metrics, there is also no unanimity regarding the best 

algorithm since Birch but if we classify by Calinski-Harabasz, Birch would be far behind K-means 

or Fuzzy-C. No conclusive study defines one metric better than another (Xiong & Li, n.d.); in our 

case, one must choose which matrix to use. 

 

https://paperpile.com/c/akjTQX/QNAu6
https://paperpile.com/c/akjTQX/QNAu6
https://paperpile.com/c/akjTQX/QNAu6
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Table S2.- Results from Clustering Algorithms Matrix A. Validations metrics: Scores of 
each metric. Labels count: Number of items of each class. Modulus mean: mean for each 
class of modulus values. 

 Validations metrics Labels Count Modulus mean 

Algorithm Silhouette Calinski - 
Harabasz 

Davies 
Bouldin 

Label 0 Label 1 Mod 0 Mod 1 

K-means 
Euclidean 

0.17 433 2.24 1,407 940 6.99 10.21 

K-means 
Manhattan 

0.20 394 2.15 1,751 596 7.43 1.80 

Agglomerative 0.50 32 0.92 2,341 6 8.27 14.00 

Birch 0.21 284 2.46 1,861 486 7.72 10.46 

DBSCAN 0.52 12 0.89 2,345 2 8.28 14.29 

K-Medoids 0.18 404 2.27 1,535 812 7.07 10.58 

Fuzzy - C 0.15 426 2.47 1,237 1110 6.73 10.01 

 

Table S3.- Results from Clustering Algorithms Matrix B. Validations metrics: Scores of 
each metric. Labels count: Number of items of each class. Modulus mean: mean for each 
class of modulus values. 

 Validations metrics Labels Count Modulus mean 

Algorithm Silhouette Calinski - 
Harabasz 

Davies 
Bouldin 

Label 0 Label 1 Mod 0 Mod 1 

K-means 
Euclidean 

0.24 739 1.69 1389 958 70.23 135.43 

K-means 
Manhattan 

0.26 667 1.65 635 1712 144.23 79.27 

Agglomerative 0.60 11 0.28 2346 1 96.80 207.82 

Birch 0.29 252 1.61 2180 167 94.46 128.01 

DBSCAN 0.55 20 0.85 2344 3 96.73 183.95 

K-Medoids 0.24 717 1.68 814 1533 138.37 74.80 
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Fuzzy - C 0.23 736 1.69 1295 1052 67.94 132.44 

 

It can be observed that there are small differences between the scores of the two matrices. For 

the purpose of comparison, the order of the scores for each metric is ranked, and the lower score 

is added to obtain the better score, taking into account that neither DBSCAN nor Agglomerative 

is a valid alternative. With K-means, Matrix A could be a good alternative. With Matrix B, it would 

be Birch, although Fuzzy-c should be analyzed from a different perspective. Calinski-Harabasz 

performed well in the study of internal validation metrics (Xiong & Li, n.d.). This metric is less 

sensitive to noise and the different shapes it can take in an n-dimensional field. It considers the 

difference between the mean module values of the two clusters, making using the K-means 

algorithm optimum on the 36-dimensional database. The result obtained is shown in Figure S9, 

where the colored cluster represents each item. The three-dimensional values obtained from a 

PCA on the original database define the three-dimensional representation.  

  

https://doi.org/10.1201/9781315373515-23/clustering-validation-measures-hui-xiong-zhongmou-li
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Figure S9.- 3-D clustering plot K-means Euclidean distance with matrix A. The three 

axes have been defined using three-dimensional PCA for visualization. Each item is assigned a 

cluster by color. 

 

 

  



14 

REFERENCES 

Bengfort, Benjamin, Larry Gray, Rebecca Bilbro, Prema Roman, Patrick Deziel, Kristen McIntyre, 
Molly Morrison, et al. 2022. Yellowbrick v1.5. https://doi.org/10.5281/zenodo.7013541. 

D’agostino, Ralph, and E. S. Pearson. 1973. “Tests for Departure from Normality. Empirical 
Results for the Distributions of b2 and √b1.” Biometrika 60 (3): 613–22. 

Halkidi, Maria, Yannis Batistakis, and Michalis Vazirgiannis. 2001. “On Clustering Validation 
Techniques.” Journal of Intelligent Information Systems 17 (2): 107–45. 

Kassambara, Alboukadel. 2017. Practical Guide to Cluster Analysis in R: Unsupervised Machine 
Learning. STHDA. 

Kozak, Marcin. 2012. “‘A Dendrite Method for Cluster Analysis’ by Caliński and Harabasz: A 
Classical Work That Is Far Too Often Incorrectly Cited.” Communications in Statistics - 
Theory and Methods 41 (12): 2279–80. 

Lawson, Richard G., and Peter C. Jurs. 1990. “New Index for Clustering Tendency and Its 
Application to Chemical Problems.” Journal of Chemical Information and Computer Sciences 
30 (1): 36–41. 

Novikov, Andrei. 2019. “PyClustering: Data Mining Library.” Journal of Open Source Software 4 
(36): 1230. 

Rousseeuw, Peter J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of 
Cluster Analysis.” Journal of Computational and Applied Mathematics 20 (November): 53–
65. 

Vallat, Raphael. 2018. “Pingouin: Statistics in Python.” Journal of Open Source Software 3 (31): 
1026. 

Xiong, and Li. n.d. “Clustering Validation Measures.” Data Clustering. 
https://doi.org/10.1201/9781315373515-23/clustering-validation-measures-hui-xiong-
zhongmou-li. 

 

 

 

 

 

http://paperpile.com/b/akjTQX/sWLbw
http://paperpile.com/b/akjTQX/sWLbw
http://paperpile.com/b/akjTQX/sWLbw
http://paperpile.com/b/akjTQX/sWLbw
http://dx.doi.org/10.5281/zenodo.7013541
http://dx.doi.org/10.5281/zenodo.7013541
http://paperpile.com/b/akjTQX/5VpK6
http://paperpile.com/b/akjTQX/5VpK6
http://paperpile.com/b/akjTQX/5VpK6
http://paperpile.com/b/akjTQX/5VpK6
http://paperpile.com/b/akjTQX/ns0GS
http://paperpile.com/b/akjTQX/ns0GS
http://paperpile.com/b/akjTQX/ns0GS
http://paperpile.com/b/akjTQX/ns0GS
http://paperpile.com/b/akjTQX/m3deR
http://paperpile.com/b/akjTQX/m3deR
http://paperpile.com/b/akjTQX/m3deR
http://paperpile.com/b/akjTQX/m3deR
http://paperpile.com/b/akjTQX/HTCFS
http://paperpile.com/b/akjTQX/HTCFS
http://paperpile.com/b/akjTQX/HTCFS
http://paperpile.com/b/akjTQX/HTCFS
http://paperpile.com/b/akjTQX/HTCFS
http://paperpile.com/b/akjTQX/MPdLT
http://paperpile.com/b/akjTQX/MPdLT
http://paperpile.com/b/akjTQX/MPdLT
http://paperpile.com/b/akjTQX/MPdLT
http://paperpile.com/b/akjTQX/MPdLT
http://paperpile.com/b/akjTQX/w96ew
http://paperpile.com/b/akjTQX/w96ew
http://paperpile.com/b/akjTQX/w96ew
http://paperpile.com/b/akjTQX/w96ew
http://paperpile.com/b/akjTQX/nvMb9
http://paperpile.com/b/akjTQX/nvMb9
http://paperpile.com/b/akjTQX/nvMb9
http://paperpile.com/b/akjTQX/nvMb9
http://paperpile.com/b/akjTQX/nvMb9
http://paperpile.com/b/akjTQX/whnda
http://paperpile.com/b/akjTQX/whnda
http://paperpile.com/b/akjTQX/whnda
http://paperpile.com/b/akjTQX/whnda
http://paperpile.com/b/akjTQX/QNAu6
http://paperpile.com/b/akjTQX/QNAu6
http://paperpile.com/b/akjTQX/QNAu6
http://paperpile.com/b/akjTQX/QNAu6
http://dx.doi.org/10.1201/9781315373515-23/clustering-validation-measures-hui-xiong-zhongmou-li
http://dx.doi.org/10.1201/9781315373515-23/clustering-validation-measures-hui-xiong-zhongmou-li
http://paperpile.com/b/akjTQX/QNAu6

