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Establishing the pathogenic nature of variants in ATM, a gene associated with breast cancer and other
hereditary cancers, is crucial for providing patients with adequate care. Unfortunately, achieving good
variant classification is still difficult. To address this challenge, we extended the range of in silico tools
with a series of graphical tools devised for the analysis of computational evidence by health care
professionals. We propose a family of fast and easy-to-use graphical representations in which the
impact of a variant is considered relative to other pathogenic and benign variants. To illustrate their
value, the representations are applied to three problems in variant interpretation. The assessment of
computational pathogenicity predictions showed that the graphics provide an intuitive view of pre-
diction reliability, complementing and extending conventional numerical reliability indexes. When
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applied to variant of unknown significance populations, the representations shed light on the nature of
these variants and can be used to prioritize variants of unknown significance for further studies. In a
third application, the graphics were used to compare the two versions of the ATM-adapted American
College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines,
obtaining valuable information on their relative virtues and weaknesses. Finally, a server [ATMision
(ATM missense in silico interpretation online)] was generated for users to apply these representations in
their variant interpretation problems, to check the ATM-adapted guidelines’ criteria for computational
evidence on their variant(s) and access different sources of information. (J Mol Diagn 2024, 26: 17e28;
https://doi.org/10.1016/j.jmoldx.2023.09.009)
The ataxia-telangiectasia mutated (ATM ) gene encodes a
serine/threonine kinase essential in the detection and
signaling to repair DNA double-stranded breaks and with an
important role in cancer susceptibility.1 Monoallelic patho-
genic germline variants in ATM increase the risk of cancer,
particularly breast cancer (lifetime absolute risk of approxi-
mately 20% by the age of 85 years),2,3 but also melanoma,4

prostate cancer, and pancreatic cancer.5,6 In addition,
studies have shown that women aged <45 years with rare
ATM missense variants may be at increased risk for devel-
oping secondary contralateral breast cancer after radio-
therapy.7 Biallelic germline loss-of-function variants cause
the disorder ataxia telangiectasia, a pleiotropic neurodegen-
erative disease8with symptoms such as progressive cerebellar
degeneration, immunodeficiency, chronic lung disease, can-
cer predisposition, endocrine abnormalities, segmental pre-
mature aging, chromosomal instability, and radiation
sensitivity. Given the role ofATM in cancer susceptibility, it is
ubiquitously included in hereditary cancer multigene testing
panels.9 Identification of carriers of ATM disease-causing
variants offers patients and families precise clinical manage-
ment based on personalized prevention. For example, it can
improve patient access to enhanced mammography and
magnetic resonance imagingebased screening10 or allow a
better tailoring of radiotherapy treatments to patients with
cancer.7,11

In this context, it is of paramount relevance to accurately
assess the deleterious effect of variants on ATM protein
function for ultimately providing a classification for clinical
use that will lead to the safest patient management possible.
However, variant interpretation is difficult in ATM because
it is a large, multifaceted protein that phosphorylates >700
substrates, such as protein P53 and checkpoint kinase
CHEK2, involved in cell cycle control, DNA repair, cell
survival, and other cellular processes.1 As a consequence,
93% of missense variants (6119 of 6585; ClinVar database,
https://www.ncbi.nlm.nih.gov/clinvar) are variants of
unknown significance (VUSs), of little clinical value
without further research.

Recent results indicate that in silico tools may contribute
to alleviating this situation by providing fast variant pre-
dictions useful in the clinical context.12,13 These tools,
known as pathogenicity classifiers or predictors, use artifi-
cial intelligence algorithms to integrate a series of variant
descriptors to produce a binary classification (pathogenic or
benign) of variants. However, although their accuracy is
increasingly better,13 in silico tools still make mistakes
(Figure 1). To mitigate the impact of these errors, it is
crucial to conduct user analysis, which involves assessing
the reliability of the results and verifying whether they make
sense or not. However, this task can be difficult and time-
consuming because of the intricate nature of artificial in-
telligence models and the technical expertise required.
This article presents a graphical approach that addresses

this problem, allowing professionals to assess variants and
their classifications in light of what is known about ATM
variants. To this end, target variants are represented in terms
of properties related to their molecular impact, and pop-
ulations of pathogenic and benign ATM missense variants
are used for comparison purposes. The usefulness of this
tool is illustrated in three open problems in the clinical
classification of these variants. First, we describe how the
graphical representation can support prediction assessment.
For this application, two ATM-specific pathogenicity pre-
dictors have been generated, based on two different sets of
properties. Second, the proposed representations are used to
analyze and prioritize VUSs. Third, this representation is
applied to the comparison of the two adaptations to ATM of
the guidelines of the American College of Medical Genetics
and Genomics and the Association for Molecular Pathol-
ogy9,14 in their treatment of computational evidence.
Finally, this article presents ATMision (ATM missense in
silico interpretation online), a web portal (http://biotoclin.
org/ATMision, last accessed March 1, 2023) where users
can access the representations and predictors developed to
analyze their variants. Links to other resources are also
provided to facilitate the characterization of variants with
relevant biological and biomedical information.

Materials and Methods

Graphical Representations for Analysis of Variants

There are two key elements in the representations proposed:
the populations of pathogenic and neutral variants and the
features used to characterize them. The former are obtained
as explained in Variant Data Set. The features are properties
that characterize variants and capture specific aspects of
their impact. In this work, two sets of features are tried. The
first, Bioinf, is constituted by properties routinely used in
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 1 Performance of 17 pathogenicity predictors for ATM missense variants. Each column in the colored tables corresponds to an in silico predictor,
and each row corresponds to a variant in the variant data set. Table cells are colored according to whether the variant is classified as pathogenic (yellow),
benign (green), or unknown (white). A: Pathogenic variants. B: Benign variants.

Enhancing ATM Variant Interpretation
developing pathogenicity predictors13 (eg, conservation in
multiple sequence alignments and native-mutant differences
in hydrophobicity). The second, Metap, is constituted by the
score of several pathogenicity predictors. A more detailed
description of these properties is provided in the upcoming
sections.

For a given set of features (Bioinf or Metap), the graph-
ical representations are obtained as follows.

First, merge the pathogenic and benign populations in a
single data set. Second, label the variants with the selected
features. For example, for Bioinf, each variant is labeled with
five properties (see Bioinf Features). And third, do a principal
components analysis using the Scikit-learn (https://scikit-
learn.org, release 1.2.2, last accessed September 22,
2023)15 implementation (sklearn.decomposition).

Finally, contour plots (kdeplot function, from Seaborn
library,16 https://seaborn.pydata.org, release version 0.12,
last accessed September 22, 2023) are used to represent
the distributions of pathogenic and benign variants in the
plane of the first two components. A special symbol is
used to highlight the variant of interest.

Variant Data Set

To build the graphical representations in this work, the
authors used two data sets of ATM missense variants derived
previously.9 The first data set, consisting of 248 variants (35
pathogenic and 213 benign), was only used for generating
the representations of variants located in the N-terminal half
The Journal of Molecular Diagnostics - jmdjournal.org
of ATM (before protein residue 1960). The second data set,
which consisted of 177 variants (68 pathogenic and 109
benign), was employed to represent variants in the protein’s
C-terminal half (at, or beyond, protein residue 1960). In
addition, this second data set was also used for training the
pathogenicity predictors presented in this work.

The pathogenic variants were obtained from the literature
in the field.9 The benign variants were obtained using a
homology-based model routinely used for developing
pathogenicity predictors.17e20

A list of the variants, together with the corresponding
values of the Bioinf and Metap features, is provided in
Supplemental Table S1.

Bioinf Features

The authors used five properties chosen for their good
performance in protein-specific pathogenicity pre-
dictors.19,20 Three amino acid indexes were used: van der
Waals volume21 and hydrophobicity22 changes on mutation
and Blosum6223 matrix elements. The remaining properties
are computed from the multiple sequence alignment (MSA)
of ATM, retrieved from the Align-GVGD server (http://
agvgd.hci.utah.edu, last accessed February 1, 2022):
Shannon entropy and position-specific scoring matrix ele-
ments. Shannon entropy reflects the overall conservation at
an alignment column and is equal to -Sipi.log(pi), where pi
is the frequency of the natural amino acid i at the variant’s
locus in the MSA; i varies between 1 and 20. The position-
19
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specific scoring matrix element reflects the conservation of
the native residue in an alignment. It is equal to log(fnat,i/
fnat,MSA), where fnat,i is the frequency of the native amino
acid at locus i of the variant and fnat,MSA is the abundance of
the same amino acid throughout the MSA.

Metap Features

The authors used the scores of six known tools: REVEL,24

CADD,25 VEST4,26 Polyphen-2-Hdiv,17 SIFT,27 and Align-
GVGD.28

RF Pathogenicity Predictors

In the applications described in Graphical Analysis of
Variants and Contour Plots as Companions for in Silico
Tools in Variant Classification, in Results, the authors use
two in-house random forest (RF) pathogenicity predictors,
RF_Bioinf and RF_Metap, that used Bioinf and Metap as
discriminant features, respectively, and classify variants as
either pathogenic or benign.

These predictors are built with the random forest algo-
rithm, randomForest, implemented in the R package (https://
cran.r-project.org/web/packages/randomForest/index.html,
version 4.7-1.1, last accessed September 22, 2023). They
are restricted to variants from the protein’s C-terminal half
because their training requires a minimum number of
cases20 that is only attained for ATM’s C-terminal half,
where most pathogenic missense cases in the variant data set
happen (68, see Variant Data Set). Because of the limited
size of this data set, there were certain constraints in training
the RF predictors. First, the authors did not incorporate a
hyperparameter tuning step; instead, they relied on the
default parameters of the randomForest package, which
typically yield satisfactory performances.29 Second, to
mitigate overfitting, the authors employed a leave-one-out-
cross-validation procedure18 rather than a traditional
training-validation-test scheme to estimate the performance
of their models. This approach is commonly followed when
working with small data sets.30

To enhance the accuracy of their leave-one-out-cross-
validation performance estimates, the authors used a more
stringent version of this method (Supplemental Figure S1A).
Standard leave-one-out-cross-validation divides the avail-
able data into a training and a testing data set. The training
data set comprises all variants except one, which is set aside
to form the test set. The process is then iterated over all the
variants in the data set, and the results obtained for the test
set variants are used to compute the model’s performance.
In this work, instead of leaving one variant out at each step,
all the variants occurring at the same position are simulta-
neously set aside. These variants are then scored with the
trained random forest. The procedure is iterated along all the
locations of the variants in the data set, and the test results
are used to compute the final performance of the method.
This approach eliminates a major source of data leakage
20
effects between training and test sets,31 thus resulting in
more realistic performance estimates.
Because of the imbalance between pathogenic and benign

variants in the training set, the resampling program SMOTE
(smotefamily in R) (Supplemental Figure S1B) is used to
keep to a minimum the impact of imbalance on predictor
performance.20 To smooth out statistical fluctuations, this
process is repeated 100 times, ending up with 100 versions
of the same predictor (eg, 100 versions of a random forest
trained with Bioinf features) (Supplemental Figure S1C). To
classify a new variant, these 100 tools are applied; if �50 of
them call it pathogenic, the variant is classified as patho-
genic; otherwise, it is classified as benign.

Reliability Computation

The aim is to produce a reliability index related to the ac-
curacy of predictions (ie, an index for which high and low
values correspond to high and low accuracies, respectively).
The procedure proposed here is inspired by the observation
according to which the values of prediction scores are
related to prediction accuracy.32,33 In the present case, this
translates to the following principle: the closer a prediction
is to the boundary between the target classes, the less reli-
able it is. This principle is embodied in the following pro-
cedure, designed for an arbitrary pathogenicity predictor
with M input features. It is divided into two parts: clustering
and reliability assignment.

Clustering
First, normalize each feature. Second, build an M-dimen-
sional lattice using all input features (internode spacing,
0.1). Third, obtain the pathogenicity prediction for each
lattice node. Fourth, do a K-means clustering of these
nodes using the Scikit-learn15 implementation
(sklearn.cluster.KMeans).
For each final cluster, two quantities are computed, rp and

rb. The rp is the fraction of pathogenic nodes in the cluster:
rp Z np/(np þ nb), where np and nb are the number of
pathogenic and benign predictions for the nodes inside the
cluster, respectively. The rb is the fraction of benign nodes
in the cluster: rb Z nb/(np þ nb).

Reliability Assignment
For a variant of interest, find the cluster with the closest
centroid. Reliability will be equal to the rp or rb of the
cluster, depending on whether the variant’s prediction was
pathogenic or benign, respectively.
The relationship between reliability and prediction accu-

racy was checked for RF_Bioinf and RF_Metap. To this
end, the predictions of these tools for the variant data set
were partitioned using a threshold of reliability, R Z 0.6
(which guarantees a minimum sample size for accuracy
computations). For R � 0.6, the accuracies of RF_Bioinf
and RF_Metap were 58% and 40%, respectively; for
R > 0.6, the accuracies of RF_Bioinf and RF_Metap were
jmdjournal.org - The Journal of Molecular Diagnostics
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98% and 97%, respectively. In summary, high and low re-
liabilities correspond to high and low accuracies, respec-
tively, as desired.

In ATMision, the website where these results are avail-
able (see ATMision Web Portal), a modified procedure was
employed in the case of ATM-adapted American College of
Medical Genetics and Genomics and Association for Mo-
lecular Pathology guidelines of Feliubadaló et al.9 This new
procedure considers that the scores of only two predictors
are used. The clustering was performed on a two-
dimensional lattice with an internode spacing of 0.001.
Here, rp was equal to: rp Z np/(np þ nb þ ndis), where np
and nb have the same meaning as before, and ndis is the
number of nodes for which the two predictors in the
guidelines are discordant. The rb is defined analogously.

In Silico Pathogenicity Predictors for Benchmarking

The authors used 17 pathogenicity predictors. The scores for
14 of them were retrieved from dbNSFP4,34 version 4.0:
REVEL,24 PROVEAN,35 VEST4,26 Polyphen-2-Hvar and
Polyphen-2-Hdiv,17 SIFT,27 MetaSVM and MetaLr,36

DEOGEN2,37 CADD,25 MutationAssessor,38 FATHMM,39

LRT,40 and GenoCanyon.41 For the remaining tools, the
predictions from the corresponding websites were retrieved:
Align-GVGD28 (ATM multiple sequence alignment option:
human to sea urchin, http://agvgd.hci.utah.edu/agvgd_
input.php, last accessed February 1, 2022), PON-P242

(http://structure.bmc.lu.se/PON-P2, last accessed February
1, 2022), and PMut33 (http://mmb.irbbarcelona.org/PMut,
last accessed February 1, 2022).

Performance Assessment of in Silico Pathogenicity
Predictors

The authors used four standard performance measures43,44:
sensitivity, specificity, accuracy, and Matthews correlation
coefficient (MCC).

SensitivityZ
TP

TPþFN
ð1Þ

SpecificityZ
TN

TN þFP
ð2Þ

AccuracyZ
TPþ TN

TPþFPþ TN þFN
ð3Þ

MCCZ
TP $ TN �FP $ FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþFNÞ$ ðTN þFPÞ$ ðTPþFPÞ $ ðTN þFNÞp ð4Þ

where true positive (TP) and false negative (FN) are the
numbers of correctly and incorrectly classified pathogenic
variants, respectively; and true negative (TN) and false
positive (FP) are the numbers of correctly and incorrectly
classified benign variants, respectively.
The Journal of Molecular Diagnostics - jmdjournal.org
ATMision Web Portal

The tools presented are available at the website ATMision
(http://biotoclin.org/ATMision). At a technical level, to
provide easy access to the data, they were stored in a
PostgreSQL database and then a website was built on top
of it using the Django framework version 4.0.1 (http://
www.djangoproject.com, last accessed March 1, 2023).
Finally, the information on each variant is completed with
a series of links to external databases of interest. A
description of the web portal structure and options is
provided below in Results.

Results

Graphical Analysis of Variants

The authors present a family of graphical representations to
support the interpretation and classification of ATM
missense variants. On the basis of the use of contour plots,
these representations allow the authors to locate a variant, or
set of variants, relative to the populations of known patho-
genic and benign variants. The following sections present
the application of these plots to three problems in variant
interpretation: reliability analysis of in silico evidence for
variant classification; VUS prioritization; and comparison of
classification guidelines. For the first two applications, two
in-house predictors, RF_Bioinf and RF_Metap, are used.
These tools have been developed specifically for this work,
following the standards in the field (explained in Materials
and Methods), and have a competitive performance
compared with standard in silico pathogenicity predictors
(Supplemental Figure S2).

Contour Plots as Companions for in Silico Tools in
Variant Classification

The authors encode the populations of pathogenic and
benign variants in the C-terminal region of the ATM protein
(native residue locations, �1960) using two-dimensional
contours (Figure 2, A and B). These contours are produced
after a principal component analysis of the known variants
in this region (see Materials and Methods), performed
after labeling the variants with a given set of properties. In
the final graphic, a specific symbol shows the variant of
interest.

The resulting representations for Bioinf (Figure 2A) and
Metap (Figure 2B) show common motifs: an overlap region
between populations, the maxima of each population
(around which contour lines concentrate), and the external
regions where only one variant type is present. By seeing
how a variant relates to these regions, users can complete
and visually confirm standard, reliability-based prediction
assessments. For example, the benign variant D2987E is
correctly classified by RF_Bioinf as benign, with a high
reliability (1.0); its location nearby the core of the benign
21
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Figure 2 Contour representations for predic-
tion and classification analysis. A and B: Contour
plots representing populations of pathogenic
(orange) and benign (green) variants. Data are
obtained by performing a principal component
(PC) analysis on the variant data set, with variants
labeled with Bioinf and Metap features (see Bioinf
Features and Metap Features). PC1 and PC2 indi-
cate the first and second principal components,
respectively. Specific symbols are used for the
examples. C and D: Variants in the variant data set
are colored according to the reliability of their
prediction. The variant predictions were obtained
with RF_Bioinf and RF_Metap tools, respectively.
The horizontal and vertical axes are the same as in
A and B. C and D: The distribution of colors
matches the main features in the A and B contour
plots, respectively, showing the relationship be-
tween in silico prediction reliability and the con-
tour representations.

Porras et al
population (Figure 2A) supports the in silico prediction. On
the contrary, A2067D, a pathogenic variant incorrectly
classified as benign, with low reliability (0.02), falls in a
region where both variant types are present, reinforcing the
suspicions raised by the low reliability. A comparable
analysis can be performed using the contour plot for Metap
(Figure 2B) and the RF_Metap predictions for D2987E and
A2067D that, in this case, coincide with those from
RF_Bioinf. Here, the reliabilities are 1.0 and 0.18, respec-
tively, and are consistent with the locations of the variants in
the contour plots.

In general, there is a qualitative agreement between in
silico prediction reliabilities and the main features of the
contour plots (Figure 2, C and D): highly reliable pre-
dictions predominate in contour regions (maxima and outer
sides), where pathogenic or benign variants predominate,
and less reliable predictions predominate in the overlap re-
gion. This agreement supports the value of the contour plots
as a tool for visually checking prediction reliability. The
graphical analysis, although related, is not equivalent to
using reliability indexes from pathogenicity predictors
because it includes the behavior of pathogenic and benign
populations.

VUS Prioritization

The contour plots are used to explore the structure of the
population of ATM missense VUSs, focusing on those cases
22
located in the C-terminal domain of the protein (beyond
residue 1960): 1572 variants were retrieved from ClinVar
(November 2021) (https://www.ncbi.nlm.nih.gov/clinvar).
These variants are represented in the plots corresponding
to Bioinf (Figure 3A) and Metap (Figure 3B) features.
Considering that VUSs are variants whose pathogenic na-
ture is difficult to determine, one would expect them to
cluster at the boundary between pathogenic and benign
populations. Interestingly, this is not the case; for both
representations, VUSs spread over most of the plot. Some
fall in intermediate regions, but others fall in predominantly
pathogenic or benign regions, indicating that the population
of VUSs is heterogeneous.
On the basis of this result, one may want to prioritize

these variants for further study (eg, focusing on the clearest
pathogenic or benign cases). A simple procedure is pro-
posed based on the correspondence (Figure 2, C and D)
between the contour plots’ predominantly pathogenic and
benign regions and high prediction reliabilities. First, the
VUSs are assessed with RF_Bioinf; then, those cases with
reliability indexes below a certain threshold (the authors
tried 0.65 and 0.95) are eliminated; finally, the remaining
variants are plotted. Figure 4, A and C, shows how
increasingly stringent reliability thresholds deplete the
overlapping regions, leaving only the variants that populate
the desired regions. A similar result is observed with the
Metap representation (Figure 4, D and F) after assessing the
VUSs with RF_Metap and applying the reliability
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 3 Representation of 1572 ATM
missense variants of unknown significance (VUSs)
relative to the populations of pathogenic and
benign variants. A and B: The contour plots ob-
tained using Bioinf and Metap properties. The
1572 VUSs (gray circles) were retrieved from
ClinVar (November 2021) (https://www.ncbi.nlm.
nih.gov/clinvar, last accessed February 15, 2023)
and belong to the C-terminal half of the protein
(see VUS Prioritization). The pathogenic and
benign variant populations are shown with orange
and green contour plots, respectively. PC, prin-
cipal component.

Enhancing ATM Variant Interpretation
thresholds. Supplemental Table S2 contains the final list of
selected variants.

Comparison of the ATM-Adapted Guidelines

The two versions of the ATM-adapted guidelines9,14 follow
different criteria to accept or discard computational
Figure 4 Application of contour plots for the prioritization of missense variant
for the set of 1572 missense VUSs are obtained using RF_Bioinf (A) and RF_Metap
with orange and green circles, respectively. Their location is shown in the contour
plots after eliminating those variants with R � 0.65. C and F: Equivalent for R �

The Journal of Molecular Diagnostics - jmdjournal.org
evidence, and users may want to understand the differences.
The contour plots provide an intuitive approach for their
comparison.

Feliubadaló et al9 score variants with two in silico path-
ogenicity predictors; when they disagree, computational
evidence is rejected. Three aspects deserve mention in the
contour plots corresponding to this criterion (Figure 5, A
s of unknown significance (VUSs) in ATM. A and D: Pathogenicity predictions
(D). Variants predicted as pathogenic and benign by these tools are shown
plots for the Bioinf (A) and Metap (D) input features. B and E: The resulting
0.95. PC, principal component.
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Figure 5 Visual representation of the criteria for computational evidence in the ATM-adapted American College of Medical Genetics and Genomics and
Association for Molecular Pathology guidelines.9,14 The ATM-adapted guidelines of Feliubadaló et al9 use two in silico pathogenicity predictors whose
contribution is accepted when they agree and rejected otherwise. The chosen predictors depend on the variant’s location in the protein sequence:
REVEL þ VEST4 (before residue 1960) and REVEL þ PROVEAN (at, or after, residue 1960). A and B: The combination of colored areas and contour lines shows
how these criteria work and their accuracy. Colored and white squares correspond to the acceptance and rejection regions of the criteria, respectively. The
overlap between squares and contour lines reflects accuracy. Contour lines traversing a square of the same color indicate variants that will be correctly
classified; if the colors are opposite, the classification will be incorrect. Arrows indicate these two situations. Finally, contour lines traversing a white square
indicate variants for which computational evidence will be rejected. C: The same scheme is applied to ClinGen’s ATM-adapted guidelines,14 which use a single
classifier, REVEL, for the in silico classification of variants. Here, a single histogram is enough to illustrate the guideline’s criterion. The acceptance and
rejection regions are colored as before, and the arrows indicate the potential classification successes and failures of the acceptance regions. Pathog,
pathogenic.

Porras et al
and B). First, contour lines traversing an acceptance region
of the same color correspond to variants that will be
correctly classified. Second, contour lines traversing an
acceptance region of a different color (eg, green lines
traversing the orange region) correspond to variants that will
be incorrectly classified. And third, contour lines traversing
Figure 6 Comparison of the two ATM-adapted guidelines.9,14 A and B: Com
sequence before and after residue 1960. Over the contour plots corresponding to t
region. The following situations may happen. When the band overlaps with a color
the variants inside. Consequently, applying ClinGen’s14 criterion relative to the cri
and in the loss of a substantial number of correct in silico classifications (both case
criteria coincide. Finally, outside the gray band, contour lines traversing white s
criteria of Feliubadaló et al9 but accepted by ClinGen’s14 criterion.
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the rejection region correspond to variants for which
computational evidence will be disregarded.
Clinical Genome Resource (ClinGen) expert panel14 uses a

single tool, REVEL, for the in silico pathogenicity classifi-
cation of missense variants. The rejection region corresponds
to REVEL scores between 0.249 and 0.733 (Figure 5C).
pare both versions of the guidelines for variant locations in the protein
he criteria of Feliubadaló et al,9 a gray band identifies ClinGen’s14 rejection
ed acceptance region, ClinGen’s14 criterion will discard in silico evidence for
teria of Feliubadaló et al9 results in the elimination of some potential errors
s identified with arrows). When the gray band overlaps a white square, both
quares correspond to cases where in silico evidence will be rejected by the

jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 7 ATMision (ATM missense in silico interpretation online) web portal. The figure summarizes the main features of the website. The highlighted
variant representation button gives access to the contour plots where users can compare a variant of interest against a population of pathogenic (orange
contour) and benign (green contour) variants. The figure also shows the additional information that can be accessed through summary tables (mousing over
the numbers, one can access the corresponding record in the external database) and an interactive representation of the ATM protein sequence in which some
features of interest are represented. In the variant prediction option, users can access, for their variant(s) of interest, the in silico prediction for the tools
presented in this work, RF_Bioinf and RF_Metap, and the in silico recommendations from the two ATM-adapted American College of Medical Genetics and
Genomics and Association for Molecular Pathology guidelines.9,14 This option also gives users additional information (tables and the interactive sequence
plot). gnomAD, Genome Aggregation Database; NCBI, National Center for Biotechnology Information; OMIM, Online Mendelian Inheritance in Man.

Enhancing ATM Variant Interpretation
Figure 6 compares the two adapted guidelines. The gray
central band corresponds to ClinGen’s14 rejection region. This
region has one main effect relative to the criterion of Feliuba-
daló et al9: decreasing the number of variants classified because
of a reduction in the acceptance region. This effect has one
positive consequence: classification errors will decrease when
applying ClinGen’s14 criterion. On the negative side, a sub-
stantial amount of correct classifications will be rejected: this
primarily affects pathogenic variants before protein residue
1960 (Figure 6A) or benign variants above protein residue
1960 (Figure 6B). Another effect of ClinGen’s14 criterion is
acceptance, primarily for variants located beyond protein res-
idue 1960 (Figure 6B), of a minor amount of correct classifi-
cations discarded by the criteria of Feliubadaló et al.9

ATMision Web Portal

The graphical tools and pathogenicity predictors presented
in this work have been made available by generating a
specific web portal, ATMision (Figure 7) (http://biotoclin.
org/ATMision).

ATMision allows users to jump directly to the graphical
representations presented in the Results. A dropdown menu
shows the four representation options available
The Journal of Molecular Diagnostics - jmdjournal.org
(Supplemental Figures S3 and S4): a plot derived from the
Bioinf or Metap features or the criteria of Feliubadaló et al9

(Supplemental Figure S3) or ClinGen14 (Supplemental
Figure S4). Users can choose to represent one or more vari-
ants (Supplemental Figures S3A and S4A, and S3B and S4B,
respectively). The first case is designed for an in-depth anal-
ysis of the variant: links to a variety of external information
sources are accessible from the variant’s landing page, as well
as an interactive representation of ATM’s sequence
(Supplemental Figure S5) that includes several features of
interest (eg, exon and functional domain locations). Instead of
a single variant, users can display up to 500 variants. This
option is appropriate for global analyses of variant pop-
ulations, identifying trends or outliers in quality control
checks. Apart from the plot, no other information is provided
in this case. In the single variant mode, the variant is labeled
for its identification. When plotting several variants, dynamic
labels, which appear when mousing over the variant symbols
(Supplemental Figures S3B and S4B), replace static labels to
avoid crowded figures.

On its landing page, ATMision also allows users to access
the RF predictors or to generate the computational evidence
corresponding to the two ATM-adapted versions of the Amer-
ican College of Medical Genetics and Genomics and the
25
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Association for Molecular Pathology guidelines
(Supplemental Figure S6).9,14 The results are presented on a
webpage with prediction information, graphical representa-
tions, and additional biomedical information. Again, ATMi-
sion gives the option to generate predictions for one or more
variants. In the second case, a table with the main results is
presented; one can then mouse over it to access the page for a
specific variant.
Discussion

This work presents a graphical approach to support and
improve the interpretation of missense variants in the gene
ATM. It is in line with the increasingly widespread view45,46

that human experts must be able to supervise high-stakes
machine learning applications. The graphics are designed
to promote and facilitate the role of professionals by
providing fast and easy-to-comprehend representations of
one or more target variants in the context of populations of
pathogenic and benign variants. The main features of the
resulting figures are related to the reliability of pathogenicity
predictions (Figures 2, C and D). This result supports their
use for visually assessing in silico predictions for variant
classification, thus extending the information provided by
standard reliability indexes.32,33

The general nature of the representations allows us to use
them for purposes other than prediction assessment. For
example, these help in the interpretation of the large popu-
lation of ATM VUSs. The number of these variants in genes
of clinical interest is a bottleneck in the development of
genomic medicine47 and, with 93% missense VUSs (6119
of 6585 missense variants in ClinVar, February 2023), ATM
is no exception.9 In this context, strategies to understand
these variants and reduce their numbers are a priority. Here,
a preliminary and fast understanding of ATM VUSs relative
to their molecular impact is obtained with the contour rep-
resentations, which show (Figure 3) how the VUS popula-
tion covers the whole pathogenic-benign range. To select
the clearest cases for subsequent studies, the reliability in-
dexes of the variants’ predictions are used to define accep-
tance and rejection regions. This strategy allowed the
selection of variants in the desired regions (Figure 4, B, C,
E, and F, and Supplemental Table S2).

In a third example, the contour plots are used to compare
the criteria for using computational evidence in the ATM-
adapted guidelines.9,14 It is found that ClinGen’s14 criteria
favor a lower misclassification rate at the price of rejecting a
substantial number of correct classifications. In contrast, the
opposite is true for the criteria of Feliubadaló et al.9 A priori,
it is not possible to establish which criteria are preferable;
the answer will depend on the application context. For
example, if the available evidence on a variant is strong,
applying ClinGen’s14 criteria seems preferable as the po-
tential rejection of computational evidence will have a low
impact. However, if the available evidence is scarce or
26
weak, using the more inclusive criteria of Feliubadaló et al9

may give valuable hints on the nature of the variant.
The tools presented in this work have been developed

using the variant data sets in the study by Feliubadaló et al,9

which are limited to what is available in the literature. As
more variants become available, these tools will be updated.
A priori, a minor impact is expected on the main charac-
teristics of the contour plots because these plots reflect the
general behavior of variant populations. There may be some
variations, however, in the contour lines representing the
less populated regions of the plot. Overall, it is anticipated
that the general applicability of contour plots to classifica-
tion problems will remain the same.
Finally, the results presented are centered on ATM; how-

ever, the method can also be extended to other genes of in-
terest because of its simplicity. The only requisite is that there
are enough classified variants to produce the contour plots.
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