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The identification of prognostic markers in early multiple sclerosis (MS) is challenging and requires reliable measures 
that robustly predict future disease trajectories. Ideally, such measures should make inferences at the individual le
vel to inform clinical decisions.
This study investigated the prognostic value of longitudinal structural networks to predict 5-year Expanded Disability 
Status Scale (EDSS) progression in patients with relapsing-remitting MS (RRMS). We hypothesized that network mea
sures, derived from MRI, outperform conventional MRI measurements at identifying patients at risk of developing 
disability progression.
This longitudinal, multicentre study within the Magnetic Resonance Imaging in MS (MAGNIMS) network included 406 
patients with RRMS (mean age = 35.7 ± 9.1 years) followed up for 5 years (mean follow-up = 5.0 ± 0.6 years). EDSS was 
determined to track disability accumulation. A group of 153 healthy subjects (mean age = 35.0 ± 10.1 years) with lon
gitudinal MRI served as controls. All subjects underwent MRI at baseline and again 1 year after baseline. Grey matter 
atrophy over 1 year and white matter lesion load were determined. A single-subject brain network was reconstructed 
from T1-weighted scans based on grey matter atrophy measures derived from a statistical parameter mapping-based 
segmentation pipeline. Key topological measures, including network degree, global efficiency and transitivity, were 
calculated at single-subject level to quantify network properties related to EDSS progression. Areas under receiver 
operator characteristic (ROC) curves were constructed for grey matter atrophy and white matter lesion load, and 
the network measures and comparisons between ROC curves were conducted.
The applied network analyses differentiated patients with RRMS who experience EDSS progression over 5 years 
through lower values for network degree [H(2) = 30.0, P < 0.001] and global efficiency [H(2) = 31.3, P < 0.001] from 
healthy controls but also from patients without progression. For transitivity, the comparisons showed no difference 
between the groups [H(2) = 1.5, P = 0.474]. Most notably, changes in network degree and global efficiency were de
tected independent of disease activity in the first year. The described network reorganization in patients experien
cing EDSS progression was evident in the absence of grey matter atrophy. Network degree and global efficiency 
measurements demonstrated superiority of network measures in the ROC analyses over grey matter atrophy and 
white matter lesion load in predicting EDSS worsening (all P-values < 0.05).
Our findings provide evidence that grey matter network reorganization over 1 year discloses relevant information 
about subsequent clinical worsening in RRMS. Early grey matter restructuring towards lower network efficiency 
predicts disability accumulation and outperforms conventional MRI predictors.
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Introduction
Multiple sclerosis (MS) is a chronic immune-mediated disease of 
the CNS characterized by inflammation, demyelination and neuro
degeneration, which may lead to progressive disability.1-3 In par
ticular, grey matter (GM) atrophy has been recognized as an 
important quantity related to disease progression,4,5 even at early 

disease stages.6,7 Even though GM atrophy detected by MRI is sen
sitive to the neurodegenerative component of MS, interindividual 
rates of atrophy vary.8

Recently, overall disability accumulation in relapsing-remitting 
MS (RRMS) was largely attributed to an underlying progressive dis
ease course independent of relapse activity.9,10 Therefore, patients 

can show substantial heterogeneity in clinical progression rates 
over a longer period of time independent of relapse activity. This 
circumstance hampers the ability to detect patients with emerging 
disability within an early ‘window of opportunity’ for treatment op

timization. Hence, biomarkers are needed that can help to distin
guish individuals who will show rapid disability accumulation 
from those who will remain stable.

Atrophy measures alone do not take into account alterations in 
the topographic organization of the brain. One way to depict specific 

patterns of brain morphology is by representing them as a network.11

In general, the two main MRI techniques that have been applied to 
investigate structural brain networks are 3D T1-weighted and diffu
sion tensor imaging.12 Whereas the latter assesses white matter 
(WM) tissue microstructures, 3D T1-weighted scans provide anatom
ical imaging of WM and GM. In structural GM networks, connectivity 

can be traced by assessing similarity in structural properties (e.g. cor
tical thickness or volume across subjects).13 The resultant covariance 
matrix can be described and quantified with graph theory.14 Here, 
nodes represent brain areas and the connections between nodes 
are termed edges when they have structural covariance. This analyt
ical framework is proposed as being very sensitive to subtle struc
tural alterations because microstructural damage to GM follows 
specific topographic patterns.11,13,15,16 Thus, structural covariance 
network analyses account for the spatial complexity of GM integrity 
at the entire brain level, have the advantage of being derived from 
anatomical MRI protocols and might be superior to conventional 
morphometric analyses for prediction of disease outcomes.14,17

Network studies in MS based on interregional structural correl
ation analysis have demonstrated that brain circuits become dis
connected and disintegrated, possibly to the extent of WM lesion 
load.18 Most studies have detected more segregated and less inte
grated structural networks at various MS stages.19-24 However, 
most of these studies addressed GM networks at group level, ne
glecting interindividual variability thus limiting their application 
to single-subject predictions of clinical courses.

The single-subject GM network analysis extends the group-level 
analysis by providing a reliable analytical framework of the individ
ual GM morphology, and hence, a direct quantifiable link to behav
iour or function.13 This approach facilitates the establishment of 
MRI-derived network properties as biomarkers in brain disorders. 
Recently, two cross-sectional studies applied this single-subject ap
proach and demonstrated that a more random topology was re
lated to cognitive dysfunction in both MS24 and clinically isolated 
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syndrome (CIS).25 This recent work suggests that the single-subject 
GM networks could contain crucial information explaining vari
ance beyond conventional volumetric measures with promising 
potential for individual prediction of clinical courses.

In this study, we propose that structural GM networks may help 
to identify individual network properties critical for clinical deteri
oration in MS. Thus, the aim was to investigate the prognostic value 
of longitudinal GM networks using a single-subject approach in 
predicting the 5-year disability progression in MS as well as to con
trast the network properties with the conventional atrophy mea
surements. To test this, we analysed individual GM networks 
from T1-weighted MRI scans within a large multicentre effort in
cluding 406 MS patients (followed up for 5 years to determine 
EDSS progression) and 153 healthy controls (HCs), both with longi
tudinal 3 T MRI at baseline and after 1 year.

Materials and methods
Patients and study design

This study was performed in accordance with good clinical prac
tices and the Declaration of Helsinki. Approval was received from 
the local ethical committee. All participants gave written, informed 
consent for research within each centre prior to study participation. 
A Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) 
data-sharing agreement was signed among the participating 
centres.

For this multicentre, longitudinal, retrospective study, 406 pa
tients with CIS and RRMS at seven European MAGNIMS centres 
with a disease duration of less than 5 years, who were relapse-free 
and received no corticosteroids for at least 30 days prior to enroll
ment were included between 2010 and 2021. Patients underwent 
both a clinical and an MRI evaluation at both the baseline and at 
the 1-year follow-up. In addition, all patients underwent a long- 
term clinical follow-up 5 years after baseline. Furthermore, we in
cluded 153 HCs without a history of neurological dysfunction who 
also had a follow-up MRI evaluation after 1 year. A graphical re
presentation of the study timeline and design is shown in Fig. 1.

Clinical assessment

All patients underwent MRI and complete neurological evaluation at 
baseline, in which the Expanded Disability Status Scale (EDSS) score 
was determined and disease-modifying treatment (DMT) status was 
recorded. The first combined clinical and MRI follow-up assessment 
was performed in patients after a mean of 12.5 ± 4.4 months from 
study baseline. This follow-up included EDSS score assessments, re
cording of the DMT status and determining the presence and ab
sence of disease activity in the first year using the composite score 
NEDA (‘no evidence of disease activity’) versus EDA (‘evidence of dis
ease activity’) based on the established NEDA-3 criteria.26 At the final 
clinical follow-up 5 years after baseline (5.0 ± 0.6 years), patients 
were clinically reassessed and EDSS progression was defined as an 
increase of ≥1 point in the EDSS score for a baseline score of ≥1.5 
or a 1.5-point increase for a baseline score of 0.27 Hence, we ad
dressed accumulation of disability occurring in the early phase of 
the disease, but not conversion from the relapsing-remitting to the 
secondary progressive form of the disease.

Data acquisition

Structural MRI was performed longitudinally on in all seven partici
pating centres [Barcelona and Mainz: Magnetom Trio (Siemens); 

London and Bochum: Achieva (Philips); Oslo: Magnetom Avanto 
(Siemens); Prague: Magnetom Skyra (Siemens); Rome: Magnetom 
Avanto (Siemens)] without major changes to the hardware or the 
software during the follow-up investigation. The MRI acquisition 
protocol included the following sequences in all patients and 
HCs: high-resolution, isotropic, sagittal 3D T1-weighted sequence 
and sagittal 3D T2-weighted fluid-attenuated inversion recovery 
(FLAIR) sequence (Supplementary Table 1).

White matter lesion load estimation and lesion filling

White matter lesion load was automatically computed using the 
SPM12-based Lesion Segmentation Toolbox (LST).28 3D FLAIR 
images were co-registered to 3D T1-weighted images and bias cor
rected. After partial volume estimation, lesion segmentation was 
performed with 20 initial threshold values for the lesion growth al
gorithm. By comparing automatically and manually estimated le
sion maps, the optimal threshold (κ value, dependent on image 
contrast) was determined for each patient and an average value 
for all patients was calculated.28 Subsequently, a uniform κ value 
of 0.1 was applied in all patients for automatic lesion volume esti
mation and filling of 3D T1-weighted images. Then, the quality of 
the filled 3D T1-weighted images was visually inspected. 
Lesion-filled T1-weighted images were used for the computation 
based on regional GM properties.

Longitudinal MRI preprocessing

First, images were corrected for bias field inhomogeneity using 
the N4 algorithm.29 For all pairs of T1-weighted anatomical MRI 
scans, a pairwise inverse-consistent alignment, as implemented 
in SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/), was ap
plied.30 Initially, the first and second scans of each subject were 
aligned using a rigid-body transform. Then, non-linear pairwise 
alignment was performed by incorporating bias field correction. 
The resulting aligned images were averaged to obtain a within- 
subject mid-point image. The mid-point image was deformed to 
the first and second scans, resulting in Jacobian maps encoding 
the relative volume at each voxel between the scan and the mid- 
point average, from which the deformation velocities were com
puted and normalized by the time interval between the two scans 
(in years) and possible acquisition effects between the centres. 
Finally, the divergence of the initial velocities was computed to cre
ate a map of the divergence of the velocity field. In this map, nega
tive values are considered the rate of volumetric contraction over 
1 year.

Additionally, the mid-point registered images were segmented 
into GM, WM and CSF tissue compartments and normalized to 
MNI (Montreal Neurological Institute) space using DARTEL,31 a 
fast diffeomorphic image registration algorithm that minimizes 
anatomical variations among subjects while preserving topology.32

The segmentation was based on a priori tissue templates adapted to 
better delineate subcortical structures and to enhance the sensitiv
ity of voxel-based morphometry, while being more optimal for 
younger populations than the standard ICBM (International 
Consortium of Brain Mapping) template.33 The above-mentioned 
divergence map is entered into the single-subject GM network pipe
line (see later and Fig. 2).

Single-subject grey matter networks

Following MRI preprocessing, the single-subject GM networks were 
reconstructed from GM tissue segmentations using an automated 
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method based on the generation of 3D cubes of a predefined size 
along the brain, which has been previously described in detail.13

This interregional covariance approach conceptualizes how mor
phological properties of different GM cubes relate to each other at 
the single-subject level and has been applied in MS populations 
before.24,25 In brief, network matrices were first constructed where 
the network nodes are defined as 6 mm3 voxel cubes and the net
work edges are defined by the GM covariance (i.e. Pearson’s correl
ation) between the cube pairs. To account for the natural shape of 
the cortex, i.e. folding and curvature, and to identify the max
imum correlation coefficient, the cubes are located at an angle to 
each other and rotated with multiples of 45°.13 By defining nodes 
as cubes, no a priori hypotheses about the regions of interest 

need to be made, which is advantageous for whole brain connect
ivity analyses. Thus, both the folding structure of the cortex and 
the local GM information serve to assess the correlation between 
nodes.

To reduce the number of false positives, the constructed net
work matrices were binarized. The threshold was calculated as 
the proportion of connections that allow the network to be fully 
connected,13 avoiding the evaluation of fragmented networks. 
This ensures that group differences are not confounded by differing 
numbers of nodes and edges as for an absolute threshold at a single 
density.34,35

Figure 2 shows a schematic overview of the applied approach, 
which is completely automated and data driven.

Figure 1 Study analysis design. Study timeline and design, including (1) network measure group comparisons; (2) regression analyses; and (3) receiver 
operating characteristic (ROC) curve comparisons. EDA = evidence of disease activity; EDSS = Expanded Disability Status Scale; NEDA = no evidence of 
disease activity.
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Network properties measures

The network measures were calculated using functions from the 
Brain Connectivity Toolbox.36 For each single-subject GM network, 
key network measures characterizing the essential topological 
architecture were computed: ‘network degree’ (centrality) to quan
tify the degree of connections in the network, ‘global efficiency’ as a 
network integration measure and ‘transitivity’ as a network segre
gation measure.

Network degree is the measure of centrality and quantifies the 
number or the degree of connections of the nodes in the network; 
thus, representing a measure of the extent to which a graph is 
connected.36

Global efficiency is a network integration measure to describe 
information flow over the entire network.36 It is the average of 
the shortest inverse path length between all of the nodes in the 
network.37

The transitivity of the network is a measure of network segrega
tion, reflecting the probability that two regions neighbour each 
other. Transitivity is based on the relative number of triangles in 
a graph compared with the total number of connected triples of 
regions.38

Eventually, the resulting network measures represent the indi
vidual GM network dynamic change over 1 year.

Statistical analysis

The clinical and demographic data of patients and HCs were com
pared between groups using a Mann–Whitney U-test for continu
ous variables and Pearson’s chi-square test for categorical 

variables (SPSS software, version 22.0; IBM). Unless otherwise indi
cated, data are expressed as mean ± standard deviation (SD).

For all network measures (network degree, global efficiency and 
transitivity) of the patients and the HCs, the Kolmogorov–Smirnov 
normality test was used to check whether data were distributed 
normally.

Network measures were compared between HCs, MS patients 
without EDSS progression and MS patients with EDSS progression. 
To determine whether 1-year changes in single-subject networks 
are related to current disease activity rather than to subsequent 
disability accumulation, we opted to divide MS patients into four 
groups based on their disease activity and their EDSS progression: 

(i) MS patients with NEDA in the first year and without EDSS progression 

(NP) over 5 years (NEDA+NP);

(ii) MS patients with EDA in the first year, but without EDSS progression 

over 5 years (EDA+NP);

(iii) MS patients with NEDA in the first year, but with EDSS progression (P) 

over 5 years (NEDA+P);

(iv) MS patients with EDA in the first year and EDSS progression over 

5 years (EDA+P).

To compare the network measures between groups, we performed 
the statistical inferences in a non-parametric Wilcoxon signed-ranks 
test (two groups) or Kruskal–Wallis test (greater than two groups), as 
most variables were not normally distributed. A post hoc Dunn– 
Bonferroni correction for multiple comparisons was applied to the sig
nificances obtained from the series of Kruskal–Wallis test results.

To test associations between network characteristics and clinic
al worsening over the 5-year period (EDSS worsening), 

Figure 2 Methodological pipeline. General pipeline for the extraction of individual grey matter (GM) networks in a longitudinal setting. EDSS =  
Expanded Disability Status Scale.
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we performed linear regression analyses, including age, sex, dis
ease duration, the initial EDSS status and the DMT status as covari
ates in the model.

Finally, receiver operating characteristic (ROC) curve analyses 
were conducted to examine the predictive power of network mea
sures that discriminate patients with and without EDSS progres
sion. Thus, ROC curves were calculated to determine the area 
under the curve (AUC) using MedCalc software (version 20.211). 
Only those network measures that were significantly different in 
the prior group comparisons were selected.

In a first step, the AUC for the network measures, as well as for 
GM atrophy and WM lesion load, were constructed, and the result
ing sensitivities were plotted against the corresponding false posi
tive rates. The AUCs with 95% confidence intervals (CIs) and 
P-values for testing AUC = 0.5 versus AUC ≠ 0.5 were calculated.

In a second step, we also compared the AUCs among each other 
to test for statistical significance of the difference between the 
curves.39 P-values less than 0.05 were considered statistically 
significant.

Results
Demographic and clinical assessment

The demographic, clinical and MRI data from the HCs and MS pa
tients are summarized in Table 1, in combination and after division 
into MS patients with and without EDSS progression.

In total, 406 MS patients (280 female; mean age 35.7 ± 9.1 years) 
and 153 HCs (96 female; mean age 35.0 ± 10.1 years) were followed-up 
with MRI after 1 year with a mean follow-up of 12.5 ± 4.4 and 12.0 ±  
1.2 months, respectively (P = 0.563). MS patients were followed-up 
for clinical (EDSS) reassessment after 5 years (5.0 ± 0.6 years) and the 
follow-up time did not differ between patients with (5.0 ± 0.6 years) 
and without EDSS progression (5.0 ± 0.6 years) (P = 0.695). Of the 406 
MS patients, 115 (28.3%) had EDSS worsening over the clinical follow- 
up time, while 291 (71.7%) had no progression. Patients with and 

without EDSS progression differed in their disease activity in the first 
year (P < 0.001) but not in the remaining comparisons (Table 1).

Grey matter atrophy over 1 year and white matter 
lesion load

Over the 1-year MRI follow-up, GM atrophy was not significant be
tween HCs and all MS patients (Z = −1.9, P = 0.055; Supplementary 
Fig. 1B). However, there were significant groupwise effects for the 
comparison between HCs and MS patients with and without EDSS 
progression [H(2) = 6.4, P = 0.041; Fig. 3B]. Post hoc analyses revealed 
a significant difference between HCs and MS patients with EDSS 
progression (P = 0.035) only, after adjustment for multiple compar
isons. No other comparisons were significant. The comparison of 
GM atrophy after subdivision into the four groups based on 
NEDA/EDA and EDSS progression showed no differences between 
the groups [H(3) = 6.0, P = 0.110; Fig. 4B].

Finally, the WM lesion load at baseline did not differ between MS 
patients with and without EDSS progression (Z = −1.2, P = 0.904), 
and it also did not differ between the four MS groups (NEDA/EDA 
each with and without EDSS progression) [H(3) = 2.9, P = 0.413].

Classifying grey matter network changes over 1 year 
based on subsequent EDSS progression status

The Wilcoxon signed-ranks test indicated that network degree was 
significantly lower in MS patients compared with HCs (Z = −2.3, P =  
0.022; Supplementary Fig. 1A). After dividing the MS group into pa
tients with and without EDSS progression over 5 years, there was a 
significant effect for network degree between the three groups 
[H(2) = 30.0, P < 0.001; Fig. 3A]. Post hoc tests revealed a significant 
difference between MS patients with and without EDSS progression 
(P < 0.001) and between HCs and MS patients with EDSS progression 
(P < 0.001), each with lower values in patients with subsequent pro
gression. There was no difference between HCs and MS patients 
without EDSS progression (P = 1.0). The lower values of network 

Table 1 Demographical, clinical and MRI data of MS patients and HCs at baseline and after division into MS patients with and 
without EDSS progression after 5 years of follow-up

MS 
(n = 406)

HCs 
(n = 153)

NP 
(n = 291)

P 
(n = 115)

P-value 
(NP versus P)

P-value 
(MS versus HCs)

Sex, female/male 280/126 96/57 204/87 76/39 P = 0.431a P = 0.162a

Mean (±SD) age at MRI, years 35.7 ± 9.1 35.0 ± 10.1 35.3 ± 8.9 36.9 ± 9.5 P = 0.114b P = 0.142b

Mean (±SD) MRI follow-up, months 12.5 ± 4.4 12.0 ± 1.2 12.6 ± 4.3 12.3 ± 4.6 P = 0.424b P = 0.563b

Mean (±SD) clinical follow-up, years 5.0 ± 0.6 – 5.0 ± 0.6 5.0 ± 0.6 P = 0.695b –
Mean (±SD) age at onset, years 32.8 ± 9.1 – 32.3 ± 8.9 34.1 ± 9.7 P = 0.090b –
Mean (±SD) disease duration, years 2.7 ± 3.3 – 2.6 ± 3.2 3.2 ± 3.5 P = 0.103b –
Median (range) EDSS at baseline 1.5 (0–6.5) – 1.5 (0–6.5) 1.5 (0–5.5) P = 0.788b –
Disease course at baseline, CIS/RRMS 115/291 – 87/204 28/87 P = 0.264a –
NEDA/EDA first year 219/187 – 174/117 45/70 P < 0.001a –
EDSS progression over 5 years, no/yes 291/115 – – – – –
DMT at baseline, no/moderatec/highd 132/210/64 – 94/151/46 38/59/18 P = 0.990a –
Mean WM LL at baseline, ml 3.5 ± 4.3 – 3.5 ± 4.3 3.7 ± 4.1 P = 0.904b –
Mean GMV at baseline, ml 620.8 ± 67.0 656.6 ± 61.1 623.3 ± 67.1 614.0 ± 66.7 P = 0.224b P < 0.001b

CIS = clinically isolated syndrome; DMT = disease-modifying treatment; EDA = evidence of disease activity; EDSS = Expanded Disability Status Scale; GMV = grey matter volume; 
HCs = healthy controls; MS = multiple sclerosis; NEDA = no evidence of disease activity; NP = no (EDSS) progression; P = (EDSS) progression; RRMS = relapsing-remitting multiple 

sclerosis; SD = standard deviation; WM LL = white matter lesion load. 
aP-value derived from Pearson’s chi-square test (sex, disease course, NEDA/EDA and DMT). 
bP-value derived from Mann–Whitney U-test (age at MRI, follow-up time, age at onset, disease duration, EDSS, WM LL and GMV). 
cModerate efficiency DMT = glatiramer acetate, interferon-beta, teriflunomide, dimethyl fumarate, azathioprine. 
dHigh efficiency DMT = fingolimod, natalizumab, rituximab, mitoxantrone.
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degree in MS patients with EDSS progression indicate a generally 
less connected network.

Global efficiency was lower in MS patients compared with HCs 
(Z = −2.3, P = 0.022; Supplementary Fig. 1A). In the three-group com
parison, there was a significant effect between the groups [H(2) =  
31.3, P < 0.001; Fig. 3A]. Post hoc tests demonstrated a significant dif
ference between MS patients with and without EDSS progression 
(P < 0.001) and between HCs and MS patients with EDSS progression 
(P < 0.001). Lower values were observed in patients with subsequent 
progression over 5 years. The post hoc comparison between HCs and 
MS patients without EDSS progression was not significant (P = 1.0). 
This global efficiency decrease in patients with EDSS progression 
suggests GM reorganization towards a structure with less long- 
range connections.

For the network measure transitivity, the initial comparison 
between all MS patients and HCs showed no significant difference 
(Z = −0.001, P = 0.999). Likewise, the comparison between HCs 
and MS patients with and without EDSS progression also showed 
no significant difference in transitivity between the three groups 
[H(2) = 1.5, P = 0.474]. Stable transitivity measures in all subjects indi
cate a maintained homogenization of neighbouring regions.

Grey matter network changes over 1 year based on 
NEDA/EDA status and subsequent EDSS progression

To determine whether 1-year changes in single-subject networks 

are related to current disease activity rather than to subsequent 

disability accumulation, we opted to divide MS patients into four 

groups based on their disease activity and their EDSS progression 

(see the ‘Materials and methods’ section).
The comparison between the four subdivided groups showed 

that the effect of group significantly influenced all network mea
sures (Fig. 4).

There were significant differences between the four groups for 
the network degree measurements [H(3) = 29.2, P < 0.001; Fig. 4A]. 

Post hoc tests were performed and showed lower values for 

NEDA+P compared with NEDA+NP (P < 0.001) and EDA+NP 

(P < 0.001). Furthermore, EDA+P showed lower values compared 

with NEDA+NP (P = 0.005) and EDA+NP (P = 0.002). None of the other 

comparisons were significant after adjustment.
For global efficiency, there was a significant effect between the 

four groups [H(3) = 30.4, P < 0.001; Fig. 4A]. Post hoc tests revealed 
lower global efficiency values for NEDA+P compared with 

Figure 4 Network measures between multiple sclerosis (MS) patients with (P) and without (NP) Expanded Disability Status Scale (EDSS) progression 
over 5 years, depending on their disease activity in the first year. The plots show the mean and standard deviation values of (A) network degree and 
global efficiency and (B) grey matter (GM) atrophy. *P < 0.05, **P < 0.001, ***P < 0.0001. Disease activity was defined by the ‘no evidence of disease activity’ 
concept (NEDA) versus ‘evidence of disease activity’ (EDA). NEDA+NP = MS patients with NEDA in the first year and without EDSS progression over 
5 years; EDA+NP = MS patients with EDA in the first year, but without EDSS progression over 5 years; NEDA-P = MS patients with NEDA in the first 
year, but with EDSS progression over 5 years; EDA+P = MS patients with EDA in the first year and EDSS progression over 5 years.

Figure 3 Network measures between healthy controls and multiple sclerosis patients with (P) and without (NP) Expanded Disability Status Scale 
(EDSS) progression over 5 years. The plots show the mean and standard deviation values of (A) network degree and global efficiency and (B) grey matter 
(GM) atrophy. *P < 0.05, **P < 0.001, ***P < 0.0001. HC = healthy controls; MS+NP = multiple sclerosis patients without EDSS progression; MS+P = multiple 
sclerosis patients with EDSS progression.
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NEDA+NP (P < 0.001) and EDA+NP (P < 0.001). In addition, EDA+P 
showed lower values compared with NEDA+NP (P = 0.005) and 
EDA+NP(P = 0.001). No other comparisons were significant after ad
justment for multiple comparisons.

For transitivity, our results demonstrated no significant differ
ences between the four groups [H(3) = 3.0, P = 0.386].

Association of grey matter network changes over 1  
year with EDSS changes over 5 years

EDSS worsening over 5 years was then related to the respective lon
gitudinal network measures over 1 year (network degree, global ef
ficiency and transitivity) by multiple linear regressions and 
adjusted for age, sex, disease duration, the initial EDSS status and 

the DMT status. Higher (more positive) values in EDSS changes in
dicated greater disability accumulation over 5 years. EDSS worsen
ing over 5 years was associated with both lower network degree 
[B = −0.001, standard error (SE) < 0.001, P < 0.001; Fig. 5A] and lower 
global efficiency (B = −10.6, SE = 2.4, P < 0.001; Fig. 5A). EDSS worsen
ing was not significantly associated with transitivity (B = 2.7, SE =  
3.1, P = 0.370).

Discriminative power of longitudinal grey matter 
networks over 1 year in predicting EDSS progression

Finally, an overall ROC analysis was performed to determine the 
predictive discriminating value of longitudinally acquired network 
measures to distinguish MS patients with and without EDSS pro
gression over 5 years. Resulting values with AUC, standard error, 
95% CI and P-values are presented in detail in Fig. 6. In summary, 
for network degree (AUC = 0.677, 95% CI = 0.626–0.724) and global 
efficiency (AUC = 0.680, 95% CI = 0.629–0.727), the P-values for test
ing AUC = 0.5 versus AUC ≠ 0.5 were less than 0.001. In contrast, GM 
atrophy (AUC = 0.557, 95% CI = 0.505–0.608) and WM lesion load 
(AUC = 0.504, 95% CI = 0.454–0.554) were not significantly different 
from a random classifier (P > 0.05), meaning both markers have no 
class separation capacity (Table 2).

In a last step, a comparison of ROC curves was conducted to test 
the statistical significance of the difference between the areas un
der the four ROC curves (network degree, global efficiency, GM atro
phy and WM lesion load). This analysis of differences between 
AUCs demonstrated that the AUC of the ROC curve from network 
degree was significantly larger than the AUCs from GM atrophy 
(ΔAUC = 0.117, 95% CI = 0.024–0.211, P = 0.014) and WM lesion load 
(ΔAUC = 0.173, 95% CI = 0.081–0.265, P < 0.001). In addition, the 
AUC of the ROC curve from global efficiency was significantly larger 
than the AUCs from GM atrophy (ΔAUC = 0.120, 95% CI = 0.027– 
0.214, P = 0.012) and WM lesion load (ΔAUC = 0.176, 95% CI = 0.083– 
0.268, P < 0.001). These results indicate superiority of network de
gree and global efficiency over GM atrophy and WM lesion load in 
discriminating MS patients with and without EDSS progression 
(Table 2).

Discussion
Our study provides evidence for structural network alterations in 
early MS patients experiencing EDSS progression after 5 years. 
Here, single-subject brain networks were reconstructed from 

Figure 6 Receiver operating characteristic (ROC) curves with areas un
der the curve. ROC curves of network degree and global efficiency as 
well as grey matter (GM) atrophy and white matter (WM) lesion load, dis
criminating multiple sclerosis patients with subsequent Expanded 
Disability Status Scale (EDSS) progression from those without EDSS pro
gression over 5 years.

Figure 5 Association of Expanded Disability Status Scale (EDSS) change over 5 years with network measures and grey matter atrophy over 1 year. 
EDSS change over 5 years in relation to (A) the respective network measures (network degree and global efficiency) and (B) grey matter (GM) atrophy 
by multiple linear regressions adjusted for age, sex, disease duration, the initial EDSS status and the disease-modifying treatment status.
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longitudinal T1-weighted MRI scans based on 1-year GM atrophy 
measures and network properties were determined and related to 
EDSS progression. We identified a decline in key network properties 
shown by reduced network degree and global efficiency in MS pa
tients with subsequent EDSS progression compared with non- 
progressive MS patients and most notably, this was independent 
of disease activity in the first year. The observed network reorgan
ization was evident beyond detectable atrophy as characterized by 
conventional methods. Lastly, the individual GM network mea
sures even outperformed conventional MRI measurements in 
identifying MS patients at risk for disability accumulation. All cal
culated network measures, as well as classical GM atrophy, con
sistently showed no difference between controls and MS 
patients without 5-year EDSS progression. This supports the 
premise that GM pathology over 1 year in non-progressive MS pa
tients may not be sensitive enough to be detected. Strikingly, net
work measures were significantly different between patients with 
and without EDSS progression, in spite of no significant differ
ences in GM atrophy between them. Thus, our findings show 
that network degree and global efficiency derived from individual 
GM network analyses capture additional information beyond sim
ple GM volumetry and that this hidden information is clinically 
relevant.

In our predictive modelling approach, we complemented this 
observation by demonstrating a significant superiority of both net
work measures (network degree and global efficiency) over conven
tional MRI measures (GM atrophy and WM lesion load) in 
discriminating patients with EDSS progression from those without 
progression. Moreover, we aimed to elucidate whether the pres
ence or absence of disease activity over 1 year influences the net
work measures between patients with and without subsequent 
EDSS progression over the following 5 years. Earlier work has de
monstrated that disease activity using the NEDA composite score 
over 1 year likely does not influence GM network measures using 
a conventional group-level approach.19 This suggests that both 

active and stable MS patients show similar alterations within the 
cortex which is captured by structural covariance networks. Our 
single-subject approach confirmed that NEDA status over 1 year 
does not associate with network measures over 1 year. However, 
subsequent disability accumulation seems to be dependent upon 
early differences in network measures, as also recently shown for 
MS-related fatigue in a large multicentre study.7 Moreover, a longi
tudinal network study demonstrated reorganizational changes to
wards a disrupted GM network in CIS patients, highlighting the 
clinical relevance of early GM network changes.20

Here, MS patients without EDSS progression exhibited a stable 
GM network (compared with HCs) irrespective of their first-year 
disease activity. In comparison, MS patients with EDSS progression 
demonstrated GM network alterations, again independent of their 
first-year disease activity status. Taken together, the evidence of 
network reorganization based on EDSS progression and not based 
on disease activity supports the view that early GM restructuring 
occurs regardless of observable disease activity.19

Our findings provide the brain network equivalent to accumu
lating evidence from neuropathological,40 conventional imaging41

and recent clinical9 studies suggesting a more insidious structural 
damage in MS across all phenotypes. This considers MS as a disease 
continuum with relapse-associated worsening, but also with pro
gression independent of relapse activity early in the disease.10,42

It is biologically plausible that this early progressive and neurode
generative continuum of the disease is reflected by a loss of GM in
tegrity and thus by alterations in structural GM networks. Against 
this background, the individual GM networks, as shown by our find
ings, might serve as an advanced imaging criterion to mark upcom
ing disability accumulation in early MS. This would be particularly 
advantageous because the detection of EDSS progression in MS pa
tients with a relapse onset and generally mild disability is challen
ging due to the inherent lack of granularity and reproducibility of 
clinical metrics.9

Our results depict GM reorganization preceding beyond the es
tablished measures of GM atrophy. The GM network architecture 
is more randomly constructed in those MS patients experiencing 
disability accumulation compared to MS patients without EDSS 
worsening. Decreased global efficiency indicating impaired inte
gration represents a less efficient network organization principle 
of biological systems.14,43 This network imbalance between im
paired integration and preserved segregation (unchanged transitiv
ity) might depict either direct cortical GM damage or an early 
maladaptive response of the cortex in order to deal with chronic in
flammation, of which both can explain the observed clinical 
deterioration.

In a recent individual GM network approach in a cross-sectional 
setting, a more random network organization was related to inter 
individual worsening in cognitive function in MS.24 In line with 
this, CIS patients showed altered network properties in several cor
tical regions, including areas relevant to cognition.25 At group level, 
an early study showed that an increased WM lesion load in MS is as
sociated with a decrement in cortical network efficiency,18 substan
tiating the hypothesis that WM lesions lead to axonal transection 
and subsequent retrograde degeneration, contributing eventually 
to cortical atrophy.44 In our study, WM lesion load did not differ be
tween patients with and without EDSS progression. This observa
tion fits the assumption that GM integrity loss in MS may be 
partly independent of axonal transection (through lesions) and 
that there is an additional primary neurodegenerative process re
lated to other disease mechanisms, perhaps including meningeal 
inflammation.45

Table 2 ROC curve results and comparisons

AUC SE 95% CI P-value

ROC
Network degree 0.677 0.032 0.626–0.724 <0.001
Global efficiency 0.680 0.032 0.629–0.727 <0.001
GM atrophy 0.557 0.035 0.505–0.608 0.103
WM lesion load 0.504 0.034 0.454–0.554 0.907
ROC comparisons
Network degree versus GM 

atrophy
0.117 0.048 0.024–0.211 0.014

Network degree versus 
WM lesion load

0.173 0.047 0.081–0.265 <0.001

Global efficiency versus 
GM atrophy

0.120 0.048 0.027–0.214 0.012

Global efficiency versus 
WM lesion load

0.176 0.047 0.083–0.268 <0.001

Network degree versus 
Global efficiency

0.003 0.003 −0.004–0.010 0.413

GM atrophy versus WM 
lesion load

0.055 0.053 −0.048–0.158 0.293

Receiver operating characteristic (ROC) curve results and comparisons of ROC curves 

to assess superiority of one of these measures over the others. 
Bold values denote statistical significance at the P < 0.05 level. 

AUC = area under the curve; CI = confidence interval; GM = grey matter; SE =  
standard error; WM = white matter.
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Recently, the WM network properties on MRI were found to be 
associated with neuronal size and axonal density in a post-mortem 
in situ whole-brain diffusion tensor imaging study, indicating that 
macro-scale network measures may reveal neuroaxonal degener
ation in MS.46 Considering that WM- and GM-derived networks ex
hibit a similar network organization in MS patients,22,47 our data 
suggest that early EDSS progression seems to originate from a 
microstructurally disintegrated network which may precede 
MRI-detectable GM atrophy later on. Hence, individual GM net
works derived from generally available MRI sequences could pro
vide sensitive and robust biomarkers aimed at detecting MS 
patients experiencing disability accumulation.

One possible limitation of our study stems from our unique de
sign of combining 1-year MRI and 5-year clinical follow-up data, 
whereby possible later network changes (between Years 2 and 5) 
are not captured by nature. However, structural networks in MS 
change early in the disease and already in short-time intervals.20,47

Hence, the 1-year MRI follow-up in our large cohort is less prone to 
potential fluctuations that might come up over a 5-year period. In 
addition, a biomarker obtained over 5 years in order to predict clin
ical worsening is clinically less meaningful. Another consideration 
refers to the fact that study baseline was not necessarily at disease 
onset in all patients. However, all included patients had a disease 
duration of less than 5 years at baseline and, thus, were clearly in 
the early phase of the disease. This, in turn, limits the generalizabil
ity of our results to other types of MS. Moreover, the EDSS score as 
our outcome measure is limited by its poor assessment of upper 
limb function, fatigue and cognitive impairment. However, despite 
its disadvantages, it is still the most established score for evaluat
ing MS progression in clinical trials and routine clinical practice. 
In this regard, it is worth noting that EDSS progression was not con
firmed after the 5-year follow-up, which might have provided a 
more accurate evaluation of irreversible disability accrual.27

Furthermore, we did not include a spinal cord MRI evaluation, 
which may be relevant for disability accumulation besides brain 
damage.48

Future studies should evaluate the impact of longitudinal net
work properties on other clinical outcomes, such as cognitive per
formance and patients’ reported outcomes. Recent evidence 
endorses the existence of network changes in radiologically iso
lated syndrome suggesting that network alterations can even start  
years before clinical manifestations.49 There are also the questions 
of whether and how the network changes in MS patients with re
lapse onset before transitioning to the progressive form. Current 
evidence suggests that the network might ‘collapse’ after passing 
a critical threshold of efficiency loss.14,43 In addition, several at
tempts have highlighted a convergence of GM covariance networks 
with diffusion MRI connections50 as well as functional connectiv
ity51 suggesting that GM networks also contain information about 
correlated intrinsic functional activity and potentially cellular me
chanisms behind structural covariance, e.g. synaptic physiology.52

Thus, the integration of both structural and functional network MRI 
measures may aid the identification of specific circuits critical for 
clinical deterioration.53

In conclusion, our findings demonstrate that GM network al
terations over 1 year predict subsequent clinical worsening in MS. 
The individual GM networks are sensitive to an underlying progres
sive disease course and largely independent of relapse activity. 
Early GM restructuring towards a less efficient network precedes 
EDSS progression and outperforms conventional MRI predictors. 
Hence, longitudinal single-subject networks provide promising 
MRI-based markers to track disability accumulation in MS.
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