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Abstract

Background: Multimorbidity, the coexistence of multiple chronic conditions in an individual, is a complex phenomenon
that is highly prevalent in primary care settings, particularly in older individuals. This systematic review summarises the
current evidence on multimorbidity patterns identified in primary care electronic health record (EHR) data.

Methods: Three databases were searched from inception to April 2022 to identify studies that derived original mul-
timorbidity patterns from primary care EHR data. The quality of the included studies was assessed using a modified version
of the Newcastle-Ottawa Quality Assessment Scale.

Results: Sixteen studies were included in this systematic review, none of which was of low quality. Most studies were
conducted in Spain, and only one study was conducted outside of Europe. The prevalence of multimorbidity (i.e. two or
more conditions) ranged from 14.0% to 93.9%. The most common stratification variable in disease clustering models was
sex, followed by age and calendar year. Despite significant heterogeneity in clustering methods and disease classification
tools, consistent patterns of multimorbidity emerged. Mental health and cardiovascular patterns were identified in all
studies, often in combination with diseases of other organ systems (e.g. neurological, endocrine).

Discussion: These findings emphasise the frequent coexistence of physical and mental health conditions in primary care,
and provide useful information for the development of targeted preventive and management strategies. Future research
should explore mechanisms underlying multimorbidity patterns, prioritise methodological harmonisation to facilitate the
comparability of findings, and promote the use of EHR data globally to enhance our understanding of multimorbidity in
more diverse populations.
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Introduction

Owing to increases in life expectancy and improvements in
medical care, more people than ever are living with mul-
timorbidity, which is commonly defined as the coexistence
of multiple chronic conditions in an individual." Depending
on the population studied and the list of conditions assessed,
prevalence estimates may be as high as 41% in the general
population® and 89% in older adults aged 60 years and
above.® Individuals with multimorbidity often require
complex management plans and are at a higher risk of
adverse health outcomes, including hospitalisation,* func-
tional impairment,” and poor quality of life.®

While multimorbidity has traditionally been oper-
ationalised as counts or weighted indices of chronic con-
ditions, the importance of considering the non-random
clustering of conditions has been increasingly recognised.’
It has been claimed that the study of multimorbidity patterns
has the potential to facilitate a shift from a single-disease
paradigm to a more holistic and patient-centred approach to
care.™” Several statistical methods have been employed to
identify clusters of conditions that co-occur more frequently
than chance, providing insight into possible underlying
mechanisms and highlighting potential avenues for inter-
vention.'® Such patterns have also been shown to have
strong discriminative capacities for a wide spectrum of
important health-related outcomes, including healthcare
utilisation,'" institutionalisation,'> and the risk of devel-
oping health conditions that can profoundly impact indi-
viduals’ quality of life (e.g. dementia,'® frailty'* and
disability'”).

The generalisability of patterns across various settings
and populations can be challenging due to the substantial
variations in data sources and the operationalisation of
chronic conditions.'® Indeed, hospital data may not capture
the full burden of multimorbidity, as chronic conditions that
are less acute or unrelated to the cause of hospitalisation
may be underreported. On the other hand, community-based
studies may focus on a priori shorter lists of conditions, fail
to capture individuals with a higher burden or more complex
combinations of conditions, or have less reliable data if self-
reported data cannot be cross-checked with clinical data.'”

The increased availability of data from electronic health
records (EHR) over the last decade has provided researchers
access to large-scale primary care data, potentially paving
the way for a more comprehensive understanding of mul-
timorbidity patterns in the general population. Indeed, given
the longitudinal and generalist nature of the care provided

by primary care physicians, such data sources would likely
capture a broader spectrum of health conditions.'® Fur-
thermore, primary care data may increase the internal and
external validity of the findings by including larger and
more diverse populations, thus enabling real-world de-
scriptions of multimorbidity patterns.'”

Two reviews have previously attempted to systematically
summarise the literature on multimorbidity patterns.
Prados-Torres et al.”’ used a qualitative approach to identify
replicable patterns, while Busija et al.”' used a quantitative
approach (multidimensional scaling). Both studies identi-
fied two multimorbidity patterns (cardiovascular and met-
abolic diseases, and mental health conditions) that coexisted
across studies using different populations, data sources, and
clustering methods. The overall conclusion of both reviews,
however, was that there was significant heterogeneity in the
methodological criteria applied to study multimorbidity
patterns, particularly in the selection of chronic conditions
included in the studies. To address the latter limitation and
update the current state of knowledge on multimorbidity
patterns, we aimed to conduct a systematic review of
multimorbidity patterns, with a specific focus on studies
based on primary care EHR data.

Methods

The reporting of this systematic review is based on the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) 2020 statement (Supplementary
Table 1).

Search strategy

A literature search was performed in the following data-
bases: Medline (Ovid), Web of Science Core Collection
(Clarivate), and CINAHL (EBSCO). Two librarians from
Karolinska Institutet conducted the search after consultation
with the authors on the most relevant terms and concepts.
One librarian was responsible for developing the search and
received feedback on terminology, operators, syntax,
spelling, etc. from another librarian. The search was then
translated into other databases, in part using Polyglot Search
Translator.”” The strategies were proof-read by another li-
brarian prior to execution. De-duplication was done using
the method described by Bramer et al.”® One final, extra step
was added to compare DOIs. The search combined Medical
Subject Headings (MeSH) terms and free-text expressions
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related to multimorbidity and comorbidity (e.g. [Comorbidity]),
patterns of diseases (e.g. [pattern*®], [cluster*]), primary
healthcare (e.g. [Primary Health Care], [family practice]),
and electronic medical records (e.g. [electronic health
records]). Databases were searched from their inception to
April 26, 2022, and articles were restricted to English
language based on the authors’ language competencies. The
detailed search strategy is presented in Supplementary
Tables 2A-2C.

Inclusion criteria

The following criteria were used to screen the articles and
include them in this study:

a. Original peer-reviewed research papers written in
English.

b. Focus on identifying patterns of associative multi-
morbidity (i.e. non-random co-occurrence of health
conditions).

c. Explicit description of the method(s) used for ex-
ploring multimorbidity patterns.

d. Focus on primary care populations and usage of
EHRs as the data source.

Exclusion criteria

Articles were excluded if any of the following criteria were
met:

a. Descriptive measures of multimorbidity were the
only focus of the study (e.g. studies based on the
prevalence or count of health conditions).

b. One-to-one disease associations were the sole focus
of the study, without identifying communities of co-
occurring health conditions (e.g. studies based on
disease combinations or network analysis).

c. The study focused only on grouping patients without
reporting data on the co-occurrence of health
conditions.

d. The study began with a selection of an index con-
dition (i.e. all included participants had an index
condition).

e. The study initially selected fewer than 10 conditions
for analysis.

f. The study did not derive original patterns (i.e. used a
priori defined patterns or patterns derived in another
study).

Selection of articles

After deduplication, references were imported into Covi-
dence, a web-based collaboration software platform that
streamlines the production of systematic and other literature

reviews.”* Two authors (FR and JA) independently
screened the titles and abstracts of the studies for eligibility
based on pre-specified inclusion and exclusion criteria. Any
discrepancies were resolved through a discussion with a
third author (ACL).

Following title and abstract screening, a full-text review
was conducted on all potentially eligible articles by a team
of four authors (AA, FR, GB, and JA) working in duplicate.
In cases where a study did not meet the inclusion criteria or
met one or more exclusion criteria, it was excluded based on
the first criterion that appeared in the inclusion or exclusion
criteria. Additional reasons for exclusion were not specified.
Any conflicts that arose during the full-text review were
resolved by a third reviewer (AA, ACL, or GB), who was
not part of that specific duplicate review pair.

Data extraction

For articles that met all inclusion criteria and none of the
exclusion criteria, information about study design and
characteristics (e.g. author, year, title, country, aim, design,
age, sex, and disease classification) and results (e.g. number
of diseases, type of analysis, and patterns generated) were
extracted. The conclusions of the authors were also re-
viewed. Data extraction was performed in duplicate by AA
and JA, and conflicts were resolved by consensus or by a
third author (GB).

Quality assessment

A modified version of the Newcastle-Ottawa Quality As-
sessment Scale was used to evaluate the quality of the
articles included in the study.>> Modifications were tailored
to the specifics of our research question (e.g. EHR as a data
source) and the types of studies included in the review. We
removed the outcome evaluation item (assessment of the
outcome) because there were no outcomes to be studied in
our research question. The modified tool includes six cri-
teria and allows for a score ranging from zero (minimum) to
eight (maximum) stars. Subsequently, the studies were
classified into three categories: poor (0-2 stars), moderate
(3-5 stars), and high (6-8 stars). The modified quality as-
sessment tool is available in the Supplementary Box.

The quality assessment was performed in duplicate by
AA and JA. Disagreements were first addressed through a
consensus meeting between the two authors. Any remaining
disagreements were resolved by a third author (GB or ACL).

Data synthesis

Owing to the high variability in the types of methods and
sources of data, a narrative synthesis was performed. The
extracted data were organised into tables, and the charac-
teristics, methods, and resulting patterns of each study were
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evaluated. In cases where patterns were not explicitly named
in the original studies, the review authors assigned names to
each pattern based on the diseases that characterised them
(whenever there were more than three overexpressed diseases
in the pattern). Methodological approaches were compared,
and the number and content of patterns were evaluated based
on the type of analysis used. Additionally, the patterns
generated from studies which stratified by age, sex, country
of origin, or other variables were compared to those gen-
erated from studies that only presented overall patterns.

Results

Articles included in the review

A total 0f 4,830 articles were initially identified through our
search strategy, which were subsequently deduplicated,
leaving 2,692 articles for further screening (Figure 1).
Following title and abstract screening, 2,631 articles were
excluded based on the predetermined eligibility criteria. Of
the remaining 61 articles that underwent full-text screening,
16 met the eligibility criteria and were included in this
review.” ' The excluded studies did not identify multi-
morbidity patterns (n = 14), did not explicitly describe the
methods used to generate multimorbidity patterns (n = 8),
did not include populations or EHR data from primary care
(n = 19), began with a preliminary selection of an index
disease (HIV; n = 1), or did not derive original patterns (n =
3). The list of studies excluded during the full-text review,
along with the reason for exclusion, is found in
Supplementary Table 3.

Quality assessment of included studies

The results of the quality assessment of the 16 studies in-
cluded in this review are presented in Supplementary
Table 4. The scores ranged from four to eight stars, with
a median and mode of seven. Among the 16 studies, only
one study received the lowest observed score of four stars,
while two studies received five stars each. Only one study
achieved the maximum score of eight stars. The remaining
studies (12 of 16) scored either six or seven stars. The
quality criterion that was most commonly lacking was
“comparability” (i.e. stratification and/or adjustment for
sociodemographic and other relevant factors). Overall, all
studies had either moderate or high quality.

Characteristics of included studies

Table 1 provides an overview of the characteristics of the
16 studies included in this systematic review. Most of the
studies were conducted in Spain (n = 10), followed by two
studies in the UK,2%*! and one each in Norway,27 Sweden,?
the Netherlands,®* and Mexico.** Data availability ranged

between the years 2005-2020. The number of primary
healthcare centres included in the studies ranged from 4 to
over 200, although some studies reported the number of
general practitioners instead. The number of participants
included across studies ranged from 813 to 3,740,528, with
only one study having fewer than 1,000 participants®* and
the remaining studies having more than 38,000 participants.
Participants’ ages varied across studies, with some in-
cluding all age groups and others restricting the participants
to specific age groups (e.g. 45-64). The prevalence of
multimorbidity (i.e. the coexistence of >2 chronic condi-
tions) ranged from 14.0% to 93.9%, with a lower prevalence
in studies that did not apply age-related inclusion criteria.
There were more female than male participants in all studies
that reported sex distributions.”®**2***% Two studies
included specialised outpatient and inpatient care data in
addition to primary care data.”**> The criteria for disease
selection varied between studies, with chronicity of the disease
being the most common criterion (n = 13),2672%31733:37-3941
followed by high prevalence (n = 12)***** and clinical
relevance (n = 10).20*72%313335373941 The diagnostic clas-
sification tools used included the International Statistical
Classification of Diseases and Related Health Problems,
10th Revision (ICD-10) and the International Classification
of Primary Care, 2nd Edition (ICPC-2). Some
studies®”**~** grouped the ICD-10 and ICPC-2 codes into
Expanded Diagnosis Clusters (EDCs) of the proprietary
Adjusted Clinical Groups (ACG) System, while
others®>373%4! ysed alternative disease classifications,
such as those developed by Calderon-Larrafiaga et al.® and
Barnett et al.*?

Methods and types of analysis conducted

Table 2 summarises the statistical methods used to identify
multimorbidity patterns across studies. The most frequently
used method was multiple correspondence analysis (MCA;
n = 8),262032374% which was employed in conjunction
with other methods in half of the studies that used this
approach.”2"7% Cluster analysis was the second most
commonly used method (n = 5)**?%%233¢ and was com-
bined with other methods in two studies.**° Four studies
employed exploratory factor analysis (EFA)*’>*7¢ or
principal component analysis (PCA),**~">° whereas one
study used latent class analysis (LCA).*' There was sig-
nificant variability across studies regarding aggregation
methods, proximity measures, dimensionality assessment,
and criteria for allocating conditions to patterns. Factor
loadings were used in all studies that employed EFA, with a
lower threshold of 0.25 or 0.30. An observed/expected ratio
of >2 was used in studies that applied MCA.

Four studies did not report any stratification in the
identification of multimorbidity patterns,”*%>**7 although
Mino-Leén et al*® only included individuals over 60,
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Studies from databases/registers (n = 4830)

text review (n = 61)

f=

=]

ki Medline n = 1792

= WoS n = 2187

5 Cinahl n = 851

3

>| Duplicates removed (n = 2138)

Studies screened for title/abstract (n = 2692) >| Studies excluded (n = 2631)
Studies sought for retrieval (n = 61) >| Studies not retrieved (n = 0)
Studies assessed for eligibility through full >| Studies excluded (n = 45)

Screening

v

Studies included in review (n = 16)

* Did not focus on the identification of patterns of
associative multimorbidity (n = 14)

* Did not explicitly describe the method(s) used
for exploring multimorbidity patterns (n = 8)

* Was not based on populations and electronic
health records from primary care (n = 19)

e Began with a preliminary selection of index
condition (n = 1)

® Did not derive original patterns (n = 3)

Figure |. Flowchart of the study selection.

Stafford et al.*” included individuals aged 65-99, and Garcia-
Olmos et al.*° included age and sex alongside the chronic
conditions in their MCA. The most common stratification
variables were sex (n="7),27*%31343540 fo]lowed by age (n =
6),272831:3%3541 and calendar year (n = 4).2°"*** Country
of origin and frailty status were stratified for in one study
each.?”*? Almost all studies (n = 13)?%2%-303241 reported the
number of chronic conditions included in the pattern iden-
tification, with 11 of them”***~%3**! also reporting whether
any prevalence threshold was applied. Prevalence thresholds
ranged from >0% to >2%. Consideration of the clinical
interpretability of the generated patterns was explicitly stated
in all but two studies.***?

Multimorbidity patterns

Table 3 summarises the patterns identified in each study.
The following patterns repeatedly emerged as standalone
or in combination with other conditions: mental health
(n=16), cardiovascular (n = 16), musculoskeletal (n = 12),
respiratory (n = 11), and gastrointestinal (n = 10).

A mental health pattern emerged in all studies and was
referred to by different names such as “mental health”,
“depressive”, and “psychiatric”. This pattern was primarily
characterised by depression and anxiety disorders, which
were often found alongside other psychiatric diseases,
neurological diseases, substance abuse disorders,
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gastrointestinal diseases, musculoskeletal conditions, and
liver diseases. The comorbidities allocated to mental health
patterns varied by age, with dementia and other ageing-
related neurological conditions being more common in
older individuals, whereas alcohol abuse and substance
dependence being more common in younger individuals.
While a mental health pattern was generally observed in
most age- and sex strata, some studies did not identify it in
certain subgroups. For instance, the pattern was absent
among males of African, Asian, or Latin American origin
aged 65 years and older in the study by Diaz et al.”’
Similarly, among older adults aged 70 and above, Ma-
chon et al.*? observed a complex psychogeriatric and eye
pattern in frail participants but not robust participants. Roso-
Llorach et al.>® did not detect a psychiatric pattern using
EFA but detected it through hierarchical cluster analysis
(HCA).

A cardiovascular pattern was also identified in all
studies. Hypertension was the most frequently reported
condition within this pattern; other coexisting cardiovas-
cular diseases included ischaemic heart disease, heart
failure, or conduction disorders (e.g. atrial fibrillation).
Cardiovascular conditions were often clustered with en-
docrine (e.g. diabetes), metabolic (e.g. lipid disorders and
obesity), and renal (e.g. chronic renal failure) conditions.
While Diaz et al.?’ did not identify a cardiovascular pattern
among the youngest age group (15-44), three other
studies***>*! did so. Cardiovascular conditions also ap-
peared in other patterns. For instance, Guisado-Clavero
et al.’! reported cerebrovascular diseases (e.g. stroke) as
part of a neuropsychiatric pattern, whereas Prados-Torres
et al.* identified cardiovascular diseases within a psy-
chogeriatric pattern among females aged 65 years and older.
Garcia-Olmos et al.’® reported cardiac valve diseases and
generalised atherosclerosis as part of a complex pattern that
included several conditions across multiple organ systems.

The musculoskeletal pattern, also called the mechanical
pattern, was consistently identified across age and sex
strata in twelve studies”’*®'*° irrespective of frailty
status and the statistical method used. Among others, this
pattern included broader disease groups (e.g. arthropa-
thies, dorsopathies, soft tissue diseases) and specific
conditions and/or symptoms (e.g. osteoarthritis, lower
back pain, cervical pain). Such patterns were identified as
standalone or coupled with other conditions, such as
psychiatric, cardiovascular, neurological, and gastroin-
testinal diseases. Two studies identified female-dominant
clusters in which musculoskeletal conditions were coupled
with  neurological  conditions (e.g.  peripheral
neuropathy).>’>° In contrast, in a male-dominant cluster,
these conditions were coupled with genitourinary and
mental health conditions.*”

Respiratory patterns encompassed a range of upper and
lower respiratory tract diseases, such as asthma, chronic

obstructive pulmonary disease (COPD), viral infections,
and nose and throat conditions. These conditions were often
reported in conjunction with pain and other diseases af-
fecting different organ systems, such as the dermatological,
cardiovascular, gastrointestinal, renal, genitourinary, and
nervous systems. Diaz et al.>’ found a respiratory pattern
across all age groups and both sexes, but the identification
and composition of the pattern varied depending on the
participants’ country of origin. For instance, a respiratory
pattern was absent among individuals from Eastern Europe
and appeared as part of a larger pattern with hypertension
and hypothyroidism among older females from Asia, Af-
rica, and Latin America. Foguet-Boreu et al.”® identified a
respiratory pattern in the youngest-old (aged 65-79) but not
in the oldest-old group (aged 80 years and above). In the
latter study, chronic lower respiratory diseases were coupled
with psychiatric conditions in a standalone pattern in males.
In contrast, in females, respiratory conditions were part of
two larger, complex patterns. Guisado-Clavero et al.’' did
not identify a respiratory pattern among Spanish females
aged 65 and above, while Roso-Llorach et al.*° did detect
such a pattern among both Spanish males and females aged
45-64, albeit the pattern failed to emerge in males using
EFA as the statistical method. Finally, Zhu et al.*' found
respiratory conditions coupled with irritable bowel syn-
drome and depression among younger participants (aged
18-44), and with pain among participants of all other ages
(45 and above).

A gastrointestinal pattern was reported in ten
studieg?®-28:31:33.34.36.3841 anq  included liver diseases,
cholelythiasis, gastroesophageal reflux disease, diverticu-
litis of the colon, and other diseases of the oesophagus,
stomach, and intestines. These diseases mostly formed
complex patterns with other diseases, such as neurological,
psychiatric, and metabolic, and less frequently with geni-
tourinary, haematological, cardiovascular, and musculo-
skeletal diseases. Bisquera et al.”° identified a standalone
liver disease pattern, whereas Roso-Llorach et al.*® iden-
tified a pattern grouping psychiatric and liver diseases, but
only in men. Zhu et al.*' grouped irritable bowel syndrome
into several different patterns among those aged between
18-84. Prados-Torres et al.>” found gastrointestinal diseases
as part of the mechanical-obesity-thyroid pattern, similar to
Mino-Leén et al..>* who found upper gastrointestinal
conditions coupled with musculoskeletal and vascular
disorders among Mexicans aged 60 years and above.

Other patterns identified in a limited number of
studies were sensory (including eye and ear conditions;
n = 7),28:29323436.3840 gonisourinary (n = 4),54! derma-

343640 and malignant (n = 3).27-*?
28,30,34,37,38

tological (n = 3),
Several studies also identified complex
and non-specific®'*?*"* clusters, which had either
multiple or no overrepresented conditions or organ
systems, respectively. Further information regarding
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Table 3. Summary of multimorbidity patterns identified in the included studies.

Author, year

Additional stratification criteria
(if present)

Age stratification (if present)

Bisquera et al,,
2021
Diaz et al,, 2015

Foguet-Boreu
et al., 2015%

Forslund et al.,
2021

Garcia-Olmos

etal, 2012
Guisado-Clavero
etal, 2018

Machén et al.,
20207

Place of birth and sex
Norway, male

Norway, female
West Europe & North America,

male

West Europe & North America,
female

Eastern Europe, male

Eastern Europe, female

Asia, Africa and Latin America,
male

Asia, Africa and Latin America,
female

Sex

Male

Female

Sex and calendar year
Male, 2009

Female, 2009

Male, 2014

Female, 2014

Frailty status
Robust
Frail

Overall

Mental health; Cardiovascular; Pain; Liver disease; Dependence

15-44 45-64

Mental health; Respiratory- Mental health; Cardiovascular;
atopic Cardio-endocrine; Respiratory

Mental health; Cardio-endocrine;
Respiratory

Mental health; Endocrine

Mental health; Cardiovascular;
Cardio-endocrine; Respiratory

Mental health

Mental health; Respiratory- Mental health; Cardio-endocrine

atopic

Mental health Mental health; Cardio-endocrine

Mental health; Endocrine  Mental-psychiatry; Cardio-
endocrine;
Haematological; Musculoskeletal
Mental health; Cardiovascular;
Cardio-endocrine; Respiratory
Mental health; Cardio-endocrine;

Endocrine; Haematological

Mental health; Respiratory

Mental health; Endocrine;
Haematological

65-79
Cardiometabolic; Musculoskeletal; Psychiatric and respiratory;
Cardiovascular

Cardiometabolic; Musculoskeletal; Complex |; Complex 2

Overall

65+

Mental-geriatric; Cardiovascular;
Cardio-endocrine; Respiratory;
Musculoskeletal; Malignant

Mental-geriatric; Cardiovascular;
Cardio-endocrine; Respiratory;
Musculoskeletal

Mental-geriatric; Mental health;
Cardiovascular; Cardio-
endocrine

Mental-geriatric; Cardiovascular;
Cardio-endocrine; Respiratory;
Malignant

Mental-psychosomatic;
Cardiovascular; Cardio-
endocrine; Malignant; Complex
endocrine

Mental health; Cardio-endocrine;
Haematological

Cardiovascular; Cardio-endocrine;
Malignant; Musculoskeletal

Mental-psychosomatic;
Cardiovascular; Haematological;
Other (hypertension,
hypothyroidism, COPD, asthma)

80+

Cardiometabolic; Gastrointestinal
and musculoskeletal;
Cardiovascular and renal;
Sensory and inflammatory

Cardiometabolic; Musculoskeletal;
Endocrine; Gastrointestinal and
metabolic

Anxiety, depression, alcohol problems; Hypertension; Diabetes and hypertension; Cancer; Thyroid

disorders;
Hearing loss; Hypertension and cardiovascular disease

Overall

Cardiometabolic; Cardiorenal; Psychiatric and respiratory; Complex

65-79

Nonspecific; Endocrine-metabolic; Musculoskeletal; Digestive-
respiratory;
Neuropsychiatric; Cardiovascular

Nonspecific; Musculoskeletal; Endocrine-metabolic; Digestive;
Neuropsychiatric; Cardiovascular

Nonspecific; Endocrine-metabolic; Musculoskeletal; Digestive-
respiratory;
Neuropsychiatric; Cardiovascular

Nonspecific; Musculoskeletal; Endocrine-metabolic; Digestive;

Neuropsychiatric; Cardiovascular

Overall
Nonspecific; Musculoskeletal; Cardiometabolic and renal

80+

Nonspecific; Endocrine-metabolic;
Musculoskeletal; Digestive-
respiratory; Neuropsychiatric;
Cardiovascular

Nonspecific; Musculoskeletal;
Neuropsychiatric; Endocrine-
metabolic; Cardiovascular;
Digestive

Nonspecific; Endocrine-metabolic;
Musculoskeletal; Digestive-
respiratory; Neuropsychiatric;
Cardiovascular

Nonspecific; Musculoskeletal;
Neuropsychiatric; Endocrine-
metabolic; Cardiovascular;
Digestive

Nonspecific; Musculoskeletal; Cardiometabolic; Complex psychogeriatric and eye

(continued)
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Table 3. (continued)

Additional stratification criteria

Author, year (if present)

Age stratification (if present)

Statistical method
Cluster analysis

Mino-Leén et al,,

2017

Principal component analysis

Poblador-Plou Sex
et al,, 2014° Male
Female
Prados-Torres Sex
etal, 2012 Male
Female
Roso-Llorach Sex
et al, 2018 Male, HCA
Male, EFA
Female, HCA
Female, EFA
Stafford et al.,
2021
Violan et al., Sex
2018* Male
Female

Violan et al., 2019

Violan et al., 2020

Zhu et al., 2020

Overall

Endocrine and renal; Cardiac, respiratory, and hypertension; Psychological and neurological; Vascular,

upper
gastrointestinal, and musculoskeletal; Neoplasia

Vascular, upper gastrointestinal, and musculoskeletal; Cardiac, respiratory, and hypertension;

Neoplasia;
Psychological, neurological and renal; Endocrine
15-44 45-64

Cardiometabolic; Gastrointestinal,
musculoskeletal and psychiatric

Cardiometabolic;
Psychiatric and
substance abuse;
Musculoskeletal and
depression

Musculoskeletal, cardio-
endocrine and
dermatological;
Psychiatric; Neurological

15-44

Cardiometabolic;
Psychiatric and
substance abuse

Cardiometabolic;
Mechanical-obesity-
thyroidal

Overall

Cardio-endocrine and eye;
Neurological, gastrointestinal,
and psychiatric

45-64
Cardiometabolic; Mechanical-
obesity-thyroidal

Cardiometabolic; Mechanical-
obesity-thyroidal; Depressive

65+
Cardiometabolic; Complex
gastrointestinal and psychiatric

Complex cardiometabolic and
neurological; Psychiatric;
Complex gastrointestinal and
musculoskeletal

65+

Cardiometabolic; Psychogeriatric;
Mechanical-obesity-thyroidal

Cardiometabolic; Psychogeriatric;
Mechanical-obesity-thyroidal;
Depressive

Cardiometabolic; Musculoskeletal; Psychiatric and respiratory; Sensory and dermatological
Cardiometabolic; Cardiorenal; Psychiatric and liver; Musculoskeletal

Musculoskeletal; Cardiometabolic; Psychiatric; Dermatological and respiratory
Musculoskeletal; Cardiometabolic; Cardiometabolic and sensory; Respiratory and ear

Overall

Non-specific; Diabetes; Neurological and musculoskeletal, female dominant; Behavioral, neurological,
and musculoskeletal (female dominant); Cardio-cerebrovascular and renal; Cardiovascular, renal,

inflammatory, and respiratory; Multisystem
Overall

Nonspecific; Psychiatric and liver; Gastrointestinal and genitourinary; Musculoskeletal;

Cardiometabolic; Dermatological and respiratory

Nonspecific; Musculoskeletal; Dermatological and sensory; Gastrointestinal; Cardiometabolic;

Infectious
Overall

Nervous and digestive; Respiratory, circulatory and nervous; Circulatory and digestive; Mental, nervous
and digestive (female dominant); Mental, digestive and blood (female oldest-old dominant); Nervous,
musculoskeletal and circulatory (female dominant); Genitourinary, mental, and musculoskeletal (male
dominant); Non-specific (youngest-old dominant)

Overall

Non-specific; Eye impairment and mental; Minority metabolic autoimmune-inflammatory; Cardio-
circulatory and renal; Cardio-circulatory, mental, respiratory and genitourinary; Nervous, digestive
and circulatory pattern; Respiratory and ear; Digestive; Nervous, musculoskeletal, and minor
diseases; Multisystem

18-44 45-64 65-84 85+
Depression, anxiety, pain; Hypertension, Hypertension, Hypertension, hearing loss,
Pain, hearing loss, diabetes, pain; diabetes, diabetes; Pain, depression,
hypertension; Asthma, IBS, hearing CKD; Hearing  constipation; CHD, atrial
IBS, depression; IBS, loss, pain; loss, prostate fibrillation, heart failure; Asthma,
depression, hearing loss; Depression, disorder, IBS; COPD, pain
Psychoactive substance pain, anxiety; Depression,
misuse, alcohol Asthma, pain, pain, anxiety;
problems, depression COPD; CHD,
Alcohol, diabetes, atrial
psychoactive fibrillation;
substance COPD,
misuse, pain asthma, pain;
Pain, CHD,
depression

?Pattern names assigned by review authors.

Abbreviations: CHD: Coronary heart disease; CKD: Chronic kidney disease; COPD: Chronic obstructive pulmonary disease; EFA: Exploratory factor
analysis; HCA: Hierarchical cluster analysis; IBS: Irritable bowel syndrome.
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these patterns is available in the Supplementary
Excel File.

Discussion

This systematic review of 16 studies investigated mul-
timorbidity patterns in primary care settings using EHR
data. The majority of the studies were conducted in Spain
and included participants of all ages and sexes. Signifi-
cant heterogeneity in clustering methods and disease
classification tools challenged the synthesis of the results;
however, mental health and cardiovascular patterns were
identified in all studies. Three other patterns containing
musculoskeletal, respiratory, and gastrointestinal dis-
eases, respectively, were also found in most studies.

Identified patterns

The identification of a mental health pattern in all studies
included in this review is in line with findings from previous
reviews, where mental health patterns emerged across all
populations and statistical approaches, adding weight to the
evidence that such patterns are not coincidental.*>*' Due to
their chronic and recurrent nature, mental health conditions
have a significant impact on individuals and healthcare
systems alike, and may point to important avenues for
intervention.** The association of mental health conditions
with other diseases, such as gastrointestinal and musculo-
skeletal conditions, may be explained by shared patho-
physiological mechanisms, such as chronic mild
inﬂammation,4 oxidative stress,45 and altered gut-brain
axis communication.*® There is also evidence that mental
health conditions exacerbate pre-existing physical condi-
tions, or vice versa, highlighting the need for integrated
approaches to care.*’

Similarly, a cardiovascular pattern emerged in all studies
included in the review. This finding is also consistent with
those of previous reviews.'®**2" The presence of cardio-
vascular conditions in a variety of patterns highlights the
complex interplay between the cardiovascular system and
other organ systems. Early detection and effective man-
agement of hypertension, a common precursor to other
cardiovascular, endocrine, and renal conditions,*® may
prevent or delay the transition of individuals with hyper-
tension into more complex cardiometabolic and cardio-
endocrine clusters. The coexistence of cerebrovascular
diseases in the neuropsychiatric pattern corroborates the
close link between the neurological and cardiovascular
systems.*’ Additionally, the presence of cardiovascular
diseases within psychogeriatric patterns supports the need to
perform a comprehensive geriatric assessment among older
adults, and to reinforce the collaboration between medical
and psychiatric care providers.

4

Some patterns, such as the ones characterised by mus-
culoskeletal, respiratory, and gastrointestinal diseases, were
identified in some, but not all, studies. The mechanisms
underlying these patterns are likely multifactorial, and could
include genetic, environmental, lifestyle, and demographic
factors.”® For example, previously identified sex differences
in hormonal and anatomical systems, physical activity levels,
and/or reporting of pain could explain the clustering of
musculoskeletal conditions in female-dominant patterns.”’
Differences in environmental and infectious exposures >
and healthcare access and utilisation™® could explain the
variation in respiratory patterns across countries of birth ob-
served in the study by Diaz et al.,”” where a respiratory pattern
was observed among participants born in all parts of the world,
except in Eastern Europe. The coexistence of gastrointestinal
conditions with neurological and metabolic conditions may be
related to inflammatory and immunological dysregulation
through shared risk factors (e.g. unhealthy diet and obesity)
and gut microbiome dysbiosis,’*>> among others.

It is not surprising that other patterns, such as those
containing dermatological or malignant diseases, were only
observed in a subset of studies. Chronic conditions can be
influenced by a variety of factors, such as socioeconomic
and lifestyle factors, genetic predisposition, health literacy
level and healthcare-seeking behaviours, which can vary
greatly across populations. These variations can lead to
differences in the development and prognosis of chronic
conditions, as reflected in the heterogeneity of multi-
morbidity patterns identified in this review. However, de-
termining the extent to which these findings are truly due to
variations in the aforementioned factors rather than meth-
odological differences between studies is challenging.

Impact of methodology

Most studies included in this systematic review were of high
quality, largely owing to the use of primary care EHRs as the
data source. Primary care serves as the entry point into
healthcare services, particularly for marginalised and un-
derserved population groups.’® The significance of primary
care for multimorbidity research is further strengthened by
its person-centred nature, capturing physical, mental, and
social aspects of health throughout the life course and across
medical specialties.’® Moreover, the population-wide cov-
erage of primary care EHR data ensures the completeness of
information and enables the analysis of large sample sizes
that more accurately represent target populations.'®
Leveraging these inherent strengths of primary care
EHRs lays a solid foundation for exploring multimorbidity
patterns in diverse populations. However, several meth-
odological challenges remain to be considered (Table 4).
Most articles only partially met the quality criterion
related to stratification and/or adjustment for sociodemo-
graphic and other relevant factors. Sociodemographic
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factors, such as age, sex, and socioeconomic status, are
known to be strongly correlated with the incidence and
interplay between chronic conditions.”” For example, in
another review, cardiometabolic patterns were more com-
mon among men of lower socioeconomic status, whereas
musculoskeletal patterns were more common among
women.”” Clustering algorithms may capture some of this
heterogeneity in the absence of stratification; therefore,
researchers should carefully explore the sociodemographic
characteristics of the patterns obtained from non-stratified
analyses as done in a paper included in this review, which
identified "female-dominant" or "youngest-old dominant"
patterns in the total population.** The only study that
managed to meet all the quality criteria was by Diaz et al.,”’
which stratified the entire Norwegian population by age
group and country of birth and found considerable differ-
ences in pattern composition across different strata. Al-
though small sample sizes may hinder stratification, most
reviewed studies included more than 100,000 participants.
Therefore, we emphasise the importance of this quality
criterion for researchers working with such large datasets.
This approach can identify unique patterns and associations
that might be obscured or diluted in total population ana-
lyses, ultimately offering novel insights into the patho-
physiology and complexity of multimorbidity and
contributing to better-informed decision-making by
healthcare providers and policymakers.

The identification of multimorbidity patterns is a com-
plex task that relies heavily on the accurate and compre-
hensive detection of individual conditions, which, despite
being expectedly higher in primary care EHR-based
studies, could also be threatened by several factors.
First, missing or incomplete diagnoses for individuals who
sought care at non-participating health centres (especially
in places where care continuity is suboptimal) or whose
symptoms did not require a visit to a physician might result
in an underestimation of the prevalence of certain con-
ditions.'® Some studies included in the review supple-
mented primary care data with specialised outpatient,
inpatient, or prescription data, which may help reduce
misclassification when population coverage is expected to
be an issue, resulting in more accurate identification of
multimorbidity patterns. However, these additional sour-
ces were not always utilized in the ascertainment of
chronic conditions by the studies included in the review.
We recommend that researchers make use of all available
diagnostic data sources whenever their primary objective
is not to explore one particular data source, but instead to
gain a thorough understanding of the participants’ mul-
timorbidity profiles.

Another challenge that accompanies the use of EHR
data relates to the quality and consistency of the data
recorded by different primary care providers. Indeed, the
accuracy of diagnoses can vary widely among general

practitioners due to differences in diagnosis coding
practices.'® To address this issue, some studies have
grouped similar ICD-10 codes into Expanded Diagnostic
Clusters (EDC) or even higher-level classifications, such
as that developed by Calderon-Larrafiaga et al.,> which
groups all chronic ICD-10 codes into 60 groups based on
shared pathophysiology. Such classifications may result
in lower misclassification rates, albeit at the expense of
information loss regarding disease specificity, staging,
and severity. This approach may be suitable for disease-
centred cluster analyses that aim to identify the common
aetiology of conditions; however, it may not be well
suited for analyses that aim to identify groups of indi-
viduals with similar disease patterns. In such analyses, a
disease may belong to more than one pattern, and the use
of higher-level categories may hinder the identification of
individuals who could benefit from earlier and/or more
targeted interventions. For instance, Sullivan et al.’®
found that the composition of multimorbidity patterns
varied significantly based on the level of kidney dys-
function assessed using the estimated glomerular filtra-
tion rate (eGFR), with cardiovascular conditions
becoming increasingly prominent at lower eGFR levels.
Therefore, careful consideration of accuracy and gran-
ularity when defining chronic conditions is important to
maintain a balance between disease misclassification and
loss of potentially critical information.

Finally, the lack of consensus and methodological
alignment and harmonisation in identifying and naming
multimorbidity patterns poses a significant challenge to
understanding the complex relationships between chronic
conditions and developing appropriate management strat-
egies.'® Inconsistencies in the application of clustering
techniques and identification of overexpressed diseases
result in variations in the number, size, and composition of
the identified patterns, making it difficult to compare
findings and draw meaningful conclusions.'® Furthermore,
it is important to note that the process of reporting and
naming patterns presents challenges in itself. In some cases,
cluster names may become overly simplistic, leading to loss
of important information. Conversely, names that are too
broad may list all the conditions comprising the pattern
without specifically identifying the overexpressed or
leading conditions. Striking the right balance when re-
porting patterns is crucial to accurately capture the essence
of the findings while ensuring clarity and meaningful
interpretation.

Strengths and limitations

The strengths of this review include the quality assessment of
included studies and its explicit focus on EHRs from primary
care as the data source, addressing the heterogeneity in data
sources and disease classification highlighted in previous
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Table 4. Methodological limitations and solutions in studying multimorbidity patterns in primary care.

Methodological limitation Problem

Solution

Lack of adjustment/stratification for Heterogeneity and correlation between
chronic conditions and sociodemographic
factors may be obscured in non-stratified

sociodemographic factors (e.g.
age and/or sex)
analyses

Accuracy and comprehensiveness
of diagnoses chronic disease bu