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ABSTRACT Amplicon-based 16S ribosomal RNA sequencing remains a widely used 
method to profile microbial communities, especially in low biomass samples, due to its 
cost-effectiveness and low-complexity approach. Reference databases are a mainstay 
for taxonomic assignments, which typically rely on popular databases such as SILVA, 
Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). 
However, the inconsistency of the nomenclature across databases and the presence 
of shortcomings in the annotation of these databases are limiting the resolution of 
the analysis. To overcome these limitations, we created the GSR database (Greengenes, 
SILVA, and RDP database), an integrated and manually curated database for bacterial and 
archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this 
database creation pipeline includes a taxonomy unification step to ensure consistency 
in taxonomical annotations. The database was validated with three mock communities, 
two real data sets, and a 10-fold cross-validation method and compared with exist­
ing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and 
MetaSquare. Results showed that the GSR database enhances taxonomical annotations 
of 16S sequences, outperforming current 16S databases at the species level, based 
on the evaluation of the mock communities. This was confirmed by the 10-fold cross-
validation, except for Greengenes 2. The GSR database is available for full-length 16S 
sequences and the most commonly used hypervariable regions: V4, V1–V3, V3–V4, and 
V3–V5.

IMPORTANCE Taxonomic assignments of microorganisms have long been hindered 
by inconsistent nomenclature and annotation issues in existing databases like SILVA, 
Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. 
To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), 
accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike 
previous approaches, our innovative pipeline includes a unique taxonomy unification 
step, ensuring consistent and reliable annotations. Our evaluation analyses showed that 
GSR-DB outperforms existing databases in providing species-level resolution, especially 
based on mock-community analysis, making it a game-changer for microbiome studies. 
Moreover, GSR-DB is designed to be accessible to researchers with limited computa­
tional resources, making it a powerful tool for scientists across the board. Available for 
full-length 16S sequences and commonly used hypervariable regions, including V4, V1–
V3, V3–V4, and V3–V5, GSR-DB is a go-to database for robust and accurate microbial 
taxonomy analysis.

KEYWORDS database, 16S rRNA, microbiome, taxonomy

1 6S rRNA gene amplicon-based (16S) sequencing is a widespread method that has 
profoundly impacted the human microbiome characterization, revealing important 

insights into the complex interactions between microorganisms and their hosts. This 

February 2024  Volume 9  Issue 2 10.1128/msystems.00950-23 1

Editor Nicola Segata, Universita degli Studi di Trento, 
Trento, Italy

Address correspondence to Chaysavanh Manichanh, 
cmanicha@gmail.com.

Leidy-Alejandra G. Molano and Sara Vega-Abellaneda 
contributed equally to this article. Author order was 
determined by tossing a coin.

The authors declare no conflict of interest.

See the funding table on p. 15.

Received 8 September 2023
Accepted 27 November 2023
Published 8 January 2024

Copyright © 2024 Molano et al. This is an open-
access article distributed under the terms of the 
Creative Commons Attribution 4.0 International 
license.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

1 
Fe

br
ua

ry
 2

02
4 

by
 8

4.
88

.7
4.

3.

https://crossmark.crossref.org/dialog/?doi=10.1128/msystems.00950-23&domain=pdf&date_stamp=2024-01-08
https://doi.org/10.1128/msystems.00950-23
https://creativecommons.org/licenses/by/4.0/


approach has allowed us to associate altered microbial profiles with diseases, includ­
ing gut-associated conditions, inflammatory bowel disease, metabolic diseases, and 
colorectal cancer (1, 2).

16S analysis involves various upstream steps, including quality control, read trimming, 
and taxonomic classification. Previous studies have reported the impact of bioinformatic 
pipelines in the microbial profiling of biological samples, highlighting the importance 
of reference databases for taxonomic prediction (3). Currently, the most widely used 
databases are Greengenes (4), Genome Taxonomy Database (GTDB) (5), SILVA (6), and 
Ribosomal Database Project (RDP) (7). However, discrepancies between these databa­
ses have been acknowledged. Robeson et al. (8) found that Greengenes, SILVA, and 
GTDB presented sequence similarities but were taxonomically different, leading to a 
low proportion of taxonomic labeling shared among databases at all ranks below 
the domain level. Moreover, outlier sequences were found in the length distribution 
across databases, probably corresponding to partial or untrimmed 16S sequences, which 
are recommended to be discarded to avoid biases in the analysis. Additionally, SILVA 
and Greengenes exhibited an immense amount of unannotated or unknown labeled 
sequences at genus and species level (∼80%), which might introduce taxonomic noise 
during assignment (8).

To overcome these limitations and enhance classification performance, we created 
the GSR database for bacterial and archaeal 16S-based taxonomic profiling by integrat­
ing and manually curating the Greengenes, SILVA, and RDP databases. The taxonomic 
nomenclature of the GSR database has been unified to guarantee the coherence of 
annotations. Its performance has been compared with Greengenes, Greengenes2 (9), 
GTDB, SILVA, and RDP databases and other existing integrated databases, including 
ITGDB (10) and MetaSquare (11). The GSR database is available for full-length 16S 
sequences and the most commonly used hypervariable regions: V4, V1–V3, V3–V4, and 
V3–V5. It can be downloaded from the link https://manichanh.vhir.org/gsrdb/.

MATERIALS AND METHODS

Creation of GSR database

Creation of the GSR full-16S database

A full-length 16S database, the GSR-DB (Greengenes-SILVA-RDP database), was created 
by merging three already existing databases: Greengenes (version 13_8, 99%) (4), SILVA 
(version 138, 99%) (6), and RDP (train set no. 18) (7). A data set with vaginal-related 
species was also included to ensure species detection for vaginal samples. The num­
ber of original entries of the Greengenes, SILVA, and RDP was 203,452, 436,681, and 
21,194, respectively (more information regarding the construction of these databases 
can be found in the supplemental material). Before the integration, taxonomy filtering 
and formatting were performed on each original database. Only Bacteria and Archaea 
kingdoms were retained from the databases, excluding Eukaryota and Virus kingdoms in 
the SILVA database. Additionally, a manual curation process was applied to ensure the 
removal of potential redundancies for the subsequent merging of the original databases. 
After this process, the percentage of retained entries was 10.05%, 17.08%, and 95.08% for 
Greengenes, SILVA, and RDP, respectively. The vaginal data set was created with the 16S 
NCBI sequences proposed by Fettweis et al. (12) to create a vaginal reference database. 
Sequences and nomenclature corresponding to GenBank IDs provided in the study were 
retrieved from the NCBI. Sequences without exact species names or those corresponding 
to non-16S sequences were excluded. Once all original databases were preprocessed 
correctly, they were merged using the forthcoming algorithm.

Manual curation of the GSR-DB

The curation process for the GSR-DB included several steps to ensure the quality 
and accuracy of the data. These steps involved manual identification and removal of 
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patterns associated with unknown species (entries unannotated or with unknown labels, 
such as “uncultured,” “unidentified,” and “candidate”). Additionally, sequences that only 
provide information at the kingdom and species levels were discarded, particularly if 
they refer to rare bacteria from non-characterized environments (e.g., k_Bacteria,…, 
s_bacterium_Te63R). Lastly, taxonomic nomenclature was carefully reviewed during the 
integration of databases, using the Python module ETE toolkit (version 3.0) (13) to 
retrieve synonyms from the NCBI database. The NCBI taxonomy database (14) was 
chosen as the reference for taxonomic annotation as it enables the identification of 
synonyms for all the taxonomic annotations in the databases and provides a stand­
ardized nomenclature. This procedure is capable of ensuring consistency and identi­
fying misannotated organisms. One specific example mentioned is the identification 
of misannotated entries from the SILVA database, where certain entries labeled as 
bacteria are actually eukaryotic species, such as the annotation d_Bacteria; p_Proteobac­
teria; c_Gammaproteobacteria; o_Burkholderiales; f_Comamonadaceae; g_Paucibacter; 
s_Cenchrus_americanus, which is a plant species. This suggests that thorough steps were 
taken to ensure the accuracy and reliability of taxonomic information in the GSR-DB.

Merging algorithm

The algorithm used to merge the Greengenes, SILVA, RDP, and vaginal processed 
databases was based on the integration algorithms proposed by Hsieh et al. (10). The 
algorithm took two databases as inputs and integrated them as follows (Fig. 1A). First, 
one database was assigned as the reference database (R) and the other as the candidate 
database (C). Then, for each entry in the candidate database, it checked whether the 
candidate taxon (TC) was already present in the reference database. The candidate entry 
(sequence and taxon) was added to the data set if not present. If TC was present, the 
algorithm compared the candidate sequence (SC) to all the sequences in the reference 
data set (SR) with the same nomenclature as TC. No integration was performed if SC was 
identical or present as a substring in any of the SR. On the other hand, if SC was not found 
in the reference data set, the candidate entry (taxon and sequence) was added to the 
data set. The RDP data set was chosen as the first reference data set for its taxonomic 
consistency, then the remaining data sets were added in the following order: SILVA, 
Greengenes, and vaginal (Fig. 1B). The resulting data set is the GSR full-16S database.

Creation of 16S variable region databases

Variable region extraction

The full-length GSR 16S database was used to create region-specific databases contain­
ing the most commonly used hypervariable regions in 16S analysis (V4, V3–V4, V1–V3, 
and V3–V5). The sequences for each region were extracted from the full-length GSR 16S 
database using the extract-reads function implemented in the QIIME 2 feature-classifier 
plugin (15) and the corresponding primers (3). QIIME 2 RESCRIPt plugin (8) was also used 
to dereplicate the resulting databases to remove redundant entries. These steps were 
also performed on the databases [Greengenes, Greengenes 2 (version 2022.10), GTDB 
(version 207.0), ITGDB, SILVA, and RDP) used in the validation analysis step.

Clustering

Upon extracting the variable region sequences from the full-length 16S database, we 
encountered numerous identical sequences that do not correspond to the same species. 
The region-specific GSR databases underwent clustering via CD-HIT (16, 17) at a 100% 
identity threshold to host unique sequences and improve species detection. Taxonomic 
designations of these clustered sequences were merged into a unified taxonomic name, 
as shown in the subsequent example.

Nomenclatures to be clustered:
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1. k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; 
g__Limosilactobacillus; and s__Limosilactobacillus_fermentum.

2. k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; 
g__Limosilactobacillus; and s__Limosilactobacillus_oris.

3. k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; 
g__Lactobacilus; and s__Lactobacillus_crispatus.

Clustered nomenclature: k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; 
f__Lactobacillaceae; g__Lactobacillus-Limosilactobacillus; and s__Lactobacillus_crispa­
tus:Limosilactobacillus_fermentum-oris.

Clustered rank nomenclatures containing more than 10 taxonomic names were 
substituted with “Unknown” to prevent wordy nomenclatures, as we perceive them to 
lack informativeness. We intend to provide information on these sequence taxonomies 
on the GSR web server in the future.

FIG 1 Creation of the GSR database. (A) Merging algorithm to create the GSR database. The algorithm takes as an input a 

Reference database (R) and a Candidate database (C). Entries from the Candidate database are susceptible to being added 

to the Reference database after being evaluated. (B) Database merging workflow to obtain the GSR full-length 16S database. 

It has a final size of 90,408 entries with the following source composition: 22.29% RDP, 58.15% SILVA, 19.41% Greengenes, 

and 0.15% NCBI. Merging steps were performed using the merging algorithm described in panel A. (C) Sequence length 

distribution of the GSR databases. Databases for the variable regions are clustered at 100% identity.
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Phylogeny construction

To build the phylogenetic tree, we used the pre-trained model for WoL marker genes 
and ASV data of DEPP software. This framework allows the positioning of the GSR-DB 
sequences onto the WoL species backbone tree via a convolutional neural network. The 
resulting tree is made available in both Newick and QIIME2 formats (Fig. S1).

In silico mock community data sets

To assess the performance of the newly built database, three different mock commun­
ities (mockrobiota, vagimock, and gutmock) were constructed in silico. The vagimock 
and gutmock data sets simulate the relative abundance and species of biological 
samples from two different body sites. They were built from our GSR database 
with species commonly found in the human vagina and gut. The mockrobiota data 
sets were constructed using sequences obtained from the mockrobiota repository, a 
public resource for microbiome Bioinformatics benchmarking. From this repository, we 
recovered full-length 16S sequences provided only by data sets 3, 4, 5, and 12–23 (18).

Each in silico mock community data set contained five samples, with given microbial 
abundance profiles, and taxonomic and sequence information. The taxonomic informa­
tion of the sequences was unified using the ncbi_taxonomy python module from the 
ETE toolkit (version 3.0) (13). Each mock community has a different level of complexity, 
which is crucial to reveal possible database issues (3). The composition of the mock 
communities at the species level can be found in Table S1.

Validation

Validation data sets

To evaluate the classification performance of the full-length and region-specific 
databases, we adapted the sequence length of the mock communities accordingly. For 
regions shorter than 460 nt (V3–V4 and V4), MiSeq Illumina reads were simulated using 
ART (19), using paired-end and single-end for V3–V4 and V4 regions, respectively. The 
corresponding parameters for each region were: V3-V4) -ss 'MSv1' -amp -na -nf 0 -l 250 
-c 1 -rs 123 --minQ 25 -p -m 450; V4) -ss 'MSv1' -amp -na -nf 0 -L 200 -c 1 -rs 123 --minQ 
25. Subsequently, the DADA2 module (20), implemented in QIIME2, was used to denoise 
the reads and construct representative sequences (rep-seqs). To recover the expected 
nomenclature of rep-seqs, rep-seqs were mapped to their corresponding community 
sequences using a convolution method, as performed in the TAX CREdiT framework (15). 
For regions larger than 460 nt (full-16S, V1–V3, and V3–V5), sequences were directly 
treated as rep-seqs, due to software restrictions in simulating MiSeq (or PacBio) reads 
larger than 250 nt.

Classifier training and taxonomy assignment

It is known that some classifiers are strongly affected by parameter configurations. 
Therefore, different parameters for classifier training and taxonomy assignment steps 
were tested to find the optimal configuration. The sequences and taxonomy of each 
database were used to train the multinomial naive Bayes classifier implemented 
in q2-feature-classifier QIIME2 module (15). During this training, the n-gram-range 
parameter was tested with the values [6,6] and [7,7] (default), as its developers have 
already reported these ranges as optimal. Then, these classifiers were used to perform 
the taxonomy assignment of rep-seqs for each region. During the taxonomy assignment, 
the confidence threshold for limiting taxonomic depth was tested with the values 
“disable,” 0.5, 0.7 (default), 0.9, and 0.98. Evaluating two n-gram-range values and five 
confidence thresholds generated 10 different taxonomic profiling for each database.
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Parameter comparison

To compare the performance of the 10 possible parameter configurations for each 
database, we calculated the average F1 scores across mock communities for each 
taxonomic level. The configuration with higher scores was retained for subsequent 
benchmarking of the databases.

Database benchmarking

The performance of the GSR database was compared with widely used databases, 
such as Greengenes, Greengenes 2, GTDB, SILVA, and RDP, but also with other avail­
able databases, such as ITGDB. Two independent approaches were used to assess 
the performances: the multi-class confusion matrix and the Bray-Curtis distances. The 
multi-class confusion matrix was used to evaluate the performance of a machine 
learning classification (e.g., naive Bayes classifier) by comparing the expected sequence 
taxonomy versus the classified (Table 1). This confusion matrix allowed us to obtain 
validation metrics such as accuracy, precision, recall, and F1 score by using the following 
equations:

(1)Accuracy = TP + TN
TP + FP + TN + FN (2)Precision = TP

TP + FP (3)Recall = TP
TP + FN (4)s = i = 1

n aisi
where TP is true positive, FP is false positive, TN is true negative, and FN is false 

negative.
The four metrics were measured at each taxonomic level as follows: a match was 

called when two taxonomic names (ID) were identical between the expected (E) and the 
assigned (A) name or, in the case of assignments with clustered databases, a match was 
called when one name was included in the other one (for instance, A = Amylolactobacil­
lus amylophilus-Lactobacillus iners; E = Lactobacillus iners). For each taxonomic ID (Ti), (i) 
TP was considered when Ti matched both A (assigned taxonomic ID) and E (expected 
taxonomic ID). (ii) FP was defined when Ti matches A but not E. (iii) FN was defined when 
Ti matches E but not A. (iv) TN was defined when neither A nor E matches Ti.

Finally, validation metrics for all taxonomic IDs were integrated using a weighted 
mean, taking the corresponding expected abundance as weight, using the following 
equation:

(5)s = i = 1
ni aisi

where s = weighted mean score of the validation metric (precision, recall, F1 score or 
accuracy) for all taxonomies of a mock community, si = score of the validation metric for 

TABLE 1 Example of a multi-class confusion matrix for Ti = Lactobacillus inersa

Expected taxon (E)

Lactobacillus iners Lactobacillus
jensenii

Lactobacillus 
crispatus

Assigned 
taxonomy (A)

Lactobacillus iners TP FP
Lactobacillus jensenii

FN TNLactobacillus 
crispatus

aTPs were all the Lactobacillus iners classified as Lactobacillus iners. FPs were all taxa classified as Lactobacillus iners 
that were not actual Lactobacillus iners. FNs were actual Lactobacillus iners not classified as Lactobacillus iners. TNs 
are other taxonomies different from Lactobacillus iners correctly classified as non-Lactobacillus iners.
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taxonomic ID Ti, ai = expected relative abundance of taxonomic ID Ti (weight), n = total 
number of taxonomic IDs included in the mock community.

Bray-Curtis distances were calculated between the expected and assigned composi­
tion for each sample in R (version 4.2.1) using the vegan package (version 2.6-4).

To discover significant differences in performance metrics, F1 scores and Bray-Curtis 
distances were compared among the GSR, Greengenes 2, ITGDB, and SILVA databases 
using the Wilcoxon test (P-values adjusted by the Benjamini-Hochberg method).

Additionally, since different databases might use different taxonomic nomenclature, 
in order to consider synonyms of scientific names as correct matches, taxonomy 
unification (ETE toolkit v.3.0) was applied to each taxonomic classification before 
comparisons.

FIG 2 Database evaluation with 10-fold cross-validation. (A) Average n-gram parameter performance 

in 10-fold cross-validation. N-gram-range with value [6,6] shows a better performance in the 10-fold 

cross-validation data sets. (B) Tenfold cross-validation results. Average accuracy of classification at family, 

genus, and species level. Error bars are the standard deviations. Wilcoxon test was conducted between 

accuracy scores of GSR, Greengenes2, ITGDB, and SILVA databases. ns, not significant; *Padj < 0.05; **Padj < 

0.01; and ***Padj < 0.001.
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Tenfold cross-validation

We conducted a 10-fold cross-validation to validate the results obtained with the mock 
communities. Train and test data sets for each database were built using the scikit-learn 
Python module (v0.24.1). These training data sets were used to train a naive Bayes 
classifier in QIIME2, setting the n-gram-range parameter to [6,6], as it yielded globally 
better classification results (Fig. 2A). These classifiers were used to assign the taxonomic 
nomenclature to the test data sets, with QIIME2 using the default parameters. Accuracy 
was assessed following the methodology outlined by Edgar (21).

Gut and vaginal microbial data sets

To further validate our database performance, we performed a case study using actual 
biological data from human gut samples (22) and human vaginal samples (23). These 
data sets contained V4 amplicon sequences. Taxonomic assignments were performed 
in both data sets using QIIME2 naive Bayes feature classifier, with the following V4 
databases as reference: Greengenes, Greengenes 2, GSR, GTDB, ITGDB, MetaSquare, 
SILVA, and RDP. The n-gram-range parameter was set to [7, 7] and the confidence 
threshold to “disable,” as these were the parameters found to perform best in the 
validation step.

Computational benchmarking

Furthermore, we also tested the computational cost of obtaining a taxonomic profile 
with the QIIME2 naive Bayes classifier with each of the V4 reference databases employed 
in this case study. We measured the time and memory consumption of the classifier 
training and the taxonomic assignment processes. Time was measured with the Python 
built-in time module, and memory consumption was tracked using the memory_profiler 
module. These analyses were run on a computer with an Intel Xeon Gold 6238 processor 
with 44 CPUs and 187 GB of RAM, and Ubuntu 18.04.4. Classifier training was run 
with default settings. Taxonomy assignment was performed by setting the confidence 
threshold to “disable” and using 10 threads.

RESULTS

GSR database

To optimize the prokaryotic taxonomic assignment, we created the GSR database by 
integrating and manually curating Greengenes (v13_8, 99%), SILVA (v138, 99%), and RDP 
(train set no. 18) data sets (Fig. 1A and B). The integrated full-length 16S GSR database 
has a total size of 90,408 sequences, with the following source composition: 22.29% RDP, 
58.15% SILVA, 19.41% Greengenes, and 0.15% NCBI (vaginal-specific sequences). The 
source composition and total size of the variable region databases are shown in Table 
2. The V1–V3 and V4 databases are those with fewer available sequences. The sequence 
length distributions of the GSR databases are presented in Fig. 1C.

TABLE 2 Source composition of GSR databasesa

Database Region Cluster Source database

RDP SILVA Greengenes NCBI Total

GSR V1–V3 100% 6,707 (24.96%) 14,595 (54.31%) 5,521 (20.54%) 51 (0.19%) 26,874
V3–V4 100% 15,401 (30.79%) 22,621 (45.23%) 11,949 (23.89%) 45 (0.09%) 50,016
V3–V5 100% 16,659 (29.43%) 26,239 (46.35%) 13,655 (24.12%) 53 (0.09%) 56,606
V4 100% 12,670 (32.65%) 16,186 (41.72%) 9,916 (25.56%) 29 (0.07%) 38,801
Full-16S None 20,151 (22.29%) 52,570 (58.15%) 17,548 (19.41%) 139 (0.15%) 90,408

aNumber of entries in each GSR database that were recovered from each source database.
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QIIME2 parameters impact taxonomic assignment performance

The 16S rRNA analysis pipeline of QIIME2 (24) includes training a naive Bayes classifier 
with a reference database and a subsequent taxonomic assignment of the rep-seqs (15). 
In these two steps, we tested different values of n-gram-range and confidence threshold 
parameters for each database (full-length 16S and specific 16S regions) as it is known 
to affect the classifier’s performance. Fig 3A and B summarizes the performance of the 
aforementioned parameters across tested databases and regions. Two n-gram-range 
values were tested: [6,6] and [7,7]. The Wilcoxon test showed that [7,7] performed better 
than [6,6] (P < 0.0001) (Fig. 3A). Confidence threshold values show significant differences 
in F1 score (Fig. 3B, P < 0.0001 for all comparisons in a pairwise manner), precision, and 

FIG 3 Database evaluation with mock communities. (A and B) Benchmarking of n-gram-range (A) and confidence threshold (B). The median F1 score is shown at 

each taxonomic level across all tested databases, regions, and validation data sets. Error bars represent the interquartile range (N = 900). Full data for the family, 

genus, and species level are available in Tables S2 to S4. (C and D) Database benchmarking at genus (C) and species (D) levels using validation metrics. The mean 

F1 score across the five metagenomic samples is shown for each evaluated region and data set. Error bars are the standard deviation. Database benchmarking 

results at the family level are available in Fig. S2. Precision and recall metrics are available in Tables S5 to S7 for family, genus, and species levels, respectively. 

Wilcoxon test was conducted between F1 scores of Greengenes2, GSR, ITGDB, and SILVA databases. ns, not significant; *Padj < 0.05; **Padj <0.01; and ***Padj < 

0.001.
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recall at both genus and species levels (Tables S2 to S4). Setting the confidence threshold 
to “disable” provided the best classification results at the species level, suggesting that 
setting a confidence threshold for the QIIME2 classifier notably restricts the predictions 
at the species level without improving the predictions at higher levels. Therefore, the 
n-gram-range of [7,7] and “disable” confidence threshold were further used to bench­
mark the GSR database with other already existing databases.

GSR outperforms most existing databases across all tested regions

To assess the performance of the newly created database, we benchmarked the GSR 
database with the other existing databases (Greengenes, Greengenes2, SILVA, RDP, 
ITGDB, and MetaSquare), using two different approaches: validation metrics (F1 score 
shown in Fig. 3C and D; Fig. S2, precision and recall shown in Tables S5 to S7) and 
Bray-Curtis distances (Fig. S3; Table S8). In order to increase the robustness of the 
results, we defined the combination of the F1 score and the Bray-Curtis distance as the 
validation scores. The database with the best validation scores will achieve the highest F1 
score and the shortest Bray-Curtis distance.

At the family level, the Greengenes2, GSR, ITGDB, and SILVA databases reached, in 
most cases, the best validation scores across regions in all the validation data sets (Fig. 
S2 and S3A; Tables S5 and S8). At genus level (Fig. 3C; Fig. S3B; Tables S6 and S8), GSR 
achieved significantly better validation scores across almost all regions in the gutmock 
data set, followed by Greengenes2, ITGDB, and SILVA databases. In the mockrobiota data 
set, ITGDB and SILVA achieved the best validation scores across regions, sharing similar 
values with GSR and for V1–V3 and V3–V4. Finally and most importantly, at the species 
level (Fig. 3D; Fig. S3C; Tables S7 and S8), except for the full-16S region where ITGDB had 
the best validation score, the GSR database presented the best scores for almost all the 
regions and validation data sets. Overall, these results indicate that whereas the database 
performance remains relatively stable up to the family level, substantial differences were 
observed at the genus and species level, with GSR showing the best performance results 
among the tested databases.

The Greengenes database performed worst in all tested environments, except for the 
vagimock data set at the genus level, for which it performed similarly to the other 
databases. On the other hand, the RDP, GTDB, and SILVA databases yielded better 
results across all environments and regions. Previous studies have already pointed out 
the increased accuracy of SILVA and RDP databases in comparison to Greengenes (3), 
mainly due to the fact that, in the last few years, SILVA and RDP have been updated 
more frequently than Greengenes. The better performance of Greengenes in identifying 
genus-level classifications within the vagimock data set could be attributed to the low 
complexity of this mock community. It has been observed that database limitations may 
not be as apparent when analyzing mock communities with limited characteristics (3).

Results from the 10-fold cross-validation showed that Greengenes2, GSR, and ITGDB 
databases presented significantly better performance than the other databases in almost 
all levels and regions, which is consistent with the results obtained in the mock 
community validation (Fig. 2). At the species level, Greengenes 2 outperformed GSR, 
with the exception of the region V1–V3.

Case study: vaginal and gut data sets

In methodological benchmarking studies, it is crucial to contextualize the benchmarking 
outcomes using actual biological data. Therefore, 10 vaginal and 10 gut microbiome 
samples were analyzed from Vargas et al. (23) and Yáñez et al. (22) data sets, con­
taining 2,089 and 31,885 V4 representative sequences, respectively. These data sets 
allowed us to assess the consistency of taxonomic nomenclature among our newly 
built database and other existing databases, including Greengenes, Greengenes2, GTDB, 
ITGDB, RDP, and SILVA. Additionally, the analysis of real data sets allowed us to compare 
the computational cost of taxonomy profiling among the aforementioned reference 
databases.
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GSR annotation enhances taxonomic nomenclature consistency

Each database uses different synonym terms for the same NCBI taxonomy ID, as 
shown in Fig. 4. For instance, in Fig. 4A, Greengenes, GSR, and RDP use exclusively 
the term Bacteroidetes for NCBI:txid976, SILVA, Greengenes2, and GTDB use the 
synonym Bacteroidota, and ITGDB uses both of them. Similarly, for NCBI:txid201174, 

FIG 4 Relative abundance of gut and vaginal samples at phylum (A) and order (B) levels. Only relevant taxa are displayed. The 

remaining taxa are included in the label “Others.” Family level is available in Fig. S4.
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Greengenes, GSR, and RDP use the term Actinobacteria, SILVA, Greengenes2, and GTDB 
use the synonym Actinobacteriota, and ITGDB uses both of them. In addition, GTDB 
and Greengenes2 split the phylum Firmicutes into several clusters, namely Firmicutes, 
Firmicutes_A, Firmicutes_B, Firmicutes_C, and, Firmicutes_D. At the order level, another 
example can be found in Fig. 4B. For NCBI:txid186802, Greengenes and RDP use the 
term Clostridiales, and GSR uses the synonym Eubacteriales. SILVA, Greengenes2, GTDB, 
and ITGDB use several non-NCBI terms such as Clostridia, Lachnospirales, and Oscillopir­
ales. Moreover, ITGDB also uses the accepted term Clostridiales. Finally, other taxonomy 
inconsistencies can be found at the family level (Fig. S4). For NCBI:txid216572, whereas 
Greengenes uses the term Ruminococcaceae and GSR uses its synonym Oscillospiraceae, 
SILVA, GTDB, and ITGDB use both aforementioned terms, and SILVA and ITGDB also 
use the synonym Hungateiclostridiaceae. Taken together, these results indicate that 
Greengenes, RDP, and GSR databases have robust taxonomic nomenclatures, using 
exclusive terms for one NCBI taxonomy id. In contrast, SILVA, Greengenes2, GTDB, and 
ITGDB databases use several terms to refer to the same taxon, some of which are 
non-NCBI terms.

Computational benchmarking

The benchmarking was performed in two steps in which the databases were involved: 
classifier training and taxonomic assignment. A naive Bayes classifier was trained in 
QIIME2 using the V4 region of each reference database. Training time and memory 
usage for each classifier are shown in Table 3. The most computationally efficient 
classifier training was obtained using the RDP, GSR, or Greengenes databases. These 
three classifiers were trained within 3 minutes and required less than 7 GB of RAM. ITGDB, 
Greengenes2, and GTDB classifiers show an increased computational cost, doubling the 
time and memory usage of the aforementioned ones. The SILVA classifier required a 
significantly higher amount of computational resources, taking up to 40 minutes and 
25 GB of RAM to be trained. The MetaSquare (version 1.0.2) classifier was the most 
computationally expensive to train, being time-consuming and memory-intensive.

The trained classifiers were then used to perform a taxonomy profiling of the 
intestinal and vaginal data sets, with the confidence threshold set to “disable” and 
multithreading used with 10 threads. The benchmarking results for this step are 
presented in Table 4. Resource consumption resembled the pattern seen in the classifier 
training step. Greengenes classifier was the most computationally inexpensive, followed 
by GSR and RDP, which are still affordable. ITGDB and GTDB almost double the required 
resources, and SILVA and Greengenes2 were the most resource consuming. MetaSquare 
classifier was also tested, but its taxonomy assignment could not be completed due to a 
lack of computational resources.

TABLE 3 Benchmarking results for the classifier training stepa

Database Elapsed time Classifier size 
(MB)

Memory usage peak 
(GB)

Memory usage mean 
(GB)

RDP 0:01:23 20.85 4.46 2.6
GSR 0:02:28 25.61 6.3 4.06
Greengenes 0:02:51 28.14 3.52 2.43
ITGDB 0:06:38 44.92 14.88 8.79
GTDB 0:06:42 49.0 14.6 9.24
Greengenes2 0:11:11 47.77 15.2 9.53
SILVA 0:40:07 106.55 23.54 16.75
Metasquare 1 day 21:27:39 589.99 175.92 125.98
aA QIIME2 naive Bayes classifier was trained with each one of the reference databases using the default 
parameters.

Research Article mSystems

February 2024  Volume 9  Issue 2 10.1128/msystems.00950-2312

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

1 
Fe

br
ua

ry
 2

02
4 

by
 8

4.
88

.7
4.

3.

https://doi.org/10.1128/msystems.00950-23


DISCUSSION

In this study, we generated a new 16S database for prokaryotic and archaea organisms: 
the GSR database. The performance of the GSR database was assessed in conjunction 
with six other existing 16S databases: Greengenes, Greengenes2, GTDB, ITGDB, SILVA, 
and RDP. Our attempt to evaluate the MetaSquare database was hampered due to 
its extremely high demand for computational resources compared with other existing 
databases (Table 3). We believe these requirements are unreasonable and impractical. 
Therefore, we discarded MetaSquare for subsequent analysis and cannot rationally 
advise its use.

Before database comparisons, we first explored the best parameter configuration 
for each of the five databases, as previous studies have pointed out the impact of 
n-gram-range and confidence threshold parameters on classifier performances (15). 
The n-gram-range value of [7,7] performed better than [6,6], whereas the confidence 
threshold value of “disable” significantly outperformed at the species level. These 
results suggest that confidence threshold value plays an essential role in the taxonomic 
resolution and should be consistently reported in studies. Based on our results, we 
recommend using the n-gram-range of [7,7] and confidence threshold “disable” values in 
microbial profiling studies that utilise the GSR database.

Regarding database performance, GSR outperformed GTDB, SILVA, RDP, and 
Greengenes databases in almost all tested environments and regions. ITGDB database 
presented a comparable performance to the GSR database, performing better in the 
mockrobiota data set. However, the ITGDB database has some significant shortcom­
ings, not detected in the GSR database, such as taxonomical discrepancies and lower 
computational efficiency. Based on the most unbiased experimental evaluation, GSR was 
only outperformed by Greengenes 2, with the exception of the region V1–V3.

The case study performed with gut and vaginal sample data sets exposed the 
consequences of not unifying the taxonomy when merging databases with differ-
ent taxonomic annotations. ITGDB database presented multiple cases of taxonomical 
inconsistencies (Fig. 4), where several synonym terms were used to refer to the same 
taxonomic clade. A similar behavior is also noticeable in SILVA but to a lesser extent. 
The lack of a consistent taxonomy might severely interfere with microbial taxonomy 
analyses, impacting diversity metrics or differential composition analyses. In this regard, 
it is worth noting that the GSR database does not suffer from taxonomic consistency 
issues and can provide more reliable and robust results. Furthermore, this case study 

TABLE 4 Benchmarking results for the taxonomy assignment stepa

Data set Database Elapsed time Memory usage peak 
(GB)

Memory usage mean 
(GB)

Gut Greengenes 0:00:17 7.09 3.11
RDP 0:00:46 18.21 6.97
GSR 0:01:08 18.55 5.11
ITGDB 0:01:28 33.62 11.74
Greengenes2 0:01:31 49.46 16.72
GTDB 0:01:44 37.47 13.46
SILVA 0:02:17 48.93 16.36

Vagina Greengenes 0:00:09 5.64 2.55
GSR 0:00:29 14.85 4.33
RDP 0:00:29 12.56 4.28
Greengenes2 0:00:53 42.86 9.2
ITGDB 0:01:00 26.59 6.83
GTDB 0:01:07 30.12 7.83
SILVA 0:01:30 37.86 9.28

aGut and vaginal datasets were taxonomically profiled using previously trained classifiers of each reference 
database. MetaSquare classifier was also tested but no results were obtained due to a lack of computational 
resources (>187 GB RAM).
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revealed that the computational resources used by QIIME2 differ depending on which 
reference database is employed. ITGDB database made QIIME2 consume twice as many 
computational resources as GSR (Tables 3 and 4), making GSR a more suitable alternative 
for obtaining high-resolution taxonomy profiles at lower computing costs.

Despite the described results, several limitations need to be considered. First, the 
lack of testing on non-human samples, such as soil and water samples, raises concerns 
about the generalizability of the database to different contexts. Without this information, 
we cannot fully understand how well our database will perform in these environments. 
Second, the GSR database only contains sequences from known species, excluding 
unclassified organisms or organisms labeled as uncultured. While this may be detri­
mental for the analysis of environments containing a large amount of unknown or 
uncultured species (8), we demonstrated that it improves species detection in well-
described environments, such as human body sites. Additionally, the utilization of a 
single classification software (QIIME2 naive Bayes) precludes the ability to extrapolate 
the performance of our database to alternative classification methods, as the use of 
different software may yield different results. Finally, another limitation is the restricted 
testing conducted in human-like environments. Although gut and vagina samples have 
been examined in this study, the database usefulness could be more comprehensively 
evaluated by extending the analysis to other human environments, such as skin and 
saliva. Overall, the GSR database demonstrates potential, but it is crucial to acknowledge 
and address the aforementioned factors to obtain a thorough understanding of its 
applications and potential drawbacks.

While 16S amplicon-based sequencing has limitations, its low cost and simplified 
methodology still make it a valuable tool for analyzing the microbiome composition, 
especially for low-biomass samples. The vast amount of data generated during the 
last decade can not only help to answer pressing questions about microbiome-disease 
relationships in larger epidemiological studies but also can be used along with shotgun 
metagenomic sequencing data to explore new clinical applications (25). Therefore, the 
GSR database offers several advantages for microbial taxonomic classification using 16S 
sequencing. It integrates three of the main reference databases, ensuring a comprehen­
sive and accurate taxonomic annotation. The taxonomy consistency allows for reliable 
analysis, which is crucial for the robustness of microbiome studies. GSR database also 
demonstrates an improved performance with microbial communities containing mainly 
known species, enhancing its utility in various applications. Finally, its usage is not 
computationally expensive, making it accessible to researchers with limited computa­
tional resources. Overall, these features make the GSR database a valuable resource for 
the scientific community to further investigate microbial communities.

Upcoming versions of GSR-DB will prioritize keeping integrated databases current 
with the latest versions and consistently updating the taxonomy to align with the most 
recent NCBI taxonomy release. Additionally, we have the intention to expand the web 
server’s functionalities, allowing users to navigate through the database.

ACKNOWLEDGMENTS

This work was supported by the Instituto de Salud Carlos III/FEDER (PI20/00130). Funding 
for open access charge was provided by Instituto de Salud Carlos III/FEDER.

L.-A.G.M. and S.V.-A. were involved in conceptualization, formal analysis, methodol­
ogy, software, validation, and writing of the original draft. C.M. conceptualized and 
supervised the study, acquired funding, and reviewed and edited the manuscript.

AUTHOR AFFILIATIONS

1Microbiome Lab, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona 
Hospital Campus, Passeig Vall d’Hebron, Barcelona, Spain
2Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain

Research Article mSystems

February 2024  Volume 9  Issue 2 10.1128/msystems.00950-2314

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

1 
Fe

br
ua

ry
 2

02
4 

by
 8

4.
88

.7
4.

3.

https://doi.org/10.1128/msystems.00950-23


AUTHOR ORCIDs

Leidy-Alejandra G. Molano  http://orcid.org/0000-0003-0069-6098
Sara Vega-Abellaneda  http://orcid.org/0009-0007-0051-8554
Chaysavanh Manichanh  http://orcid.org/0000-0002-2287-4003

FUNDING

Funder Grant(s) Author(s)

MEC | Instituto de Salud Carlos III (ISCIII) PI20/00130 Leidy-Alejandra Molano

Sara Vega-Abellaneda

AUTHOR CONTRIBUTIONS

Leidy-Alejandra G. Molano, Conceptualization, Data curation, Formal analysis, Methodol­
ogy, Validation, Visualization, Writing – original draft, Writing – review and editing | 
Sara Vega-Abellaneda, Conceptualization, Data curation, Formal analysis, Methodology, 
Validation, Visualization, Writing – original draft, Writing – review and editing.

DATA AVAILABILITY

The database and the validation data are available at the following link: https://
manichanh.vhir.org/gsrdb/.

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Fig. S1 (mSystems00950-23-s0001.tiff). Visualization of the phylogenetic tree for 
GSR-DB, rendered using Empress.
Fig. S2 (mSystems00950-23-s0002.tiff). Database benchmarking at the family level 
using validation metrics.
Fig. S3 (mSystems00950-23-s0003.tiff). Database benchmarking using Bray-Curtis 
distances between expected and observed composition at family, genus, and species 
levels.
Fig. S4 (mSystems00950-23-s0004.tiff). Relative abundance of gut and vaginal samples 
at the family level.
Supplemental Material (mSystems00950-23-s0005.docx). Databases.
Supplemental Legends (mSystems00950-23-s0006.docx). Legends for supplemental 
tables and figures.
Supplemental Tables (mSystems00950-23-s0007.pdf). Tables S1 to S8.

REFERENCES

1. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. 
2020. Role of gut microbiota in type 2 diabetes pathophysiology. 
EBioMedicine 51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051

2. Lavelle A, Nancey S, Reimund J-M, Laharie D, Marteau P, Treton X, Allez 
M, Roblin X, Malamut G, Oeuvray C, Rolhion N, Dray X, Rainteau D, 
Lamaziere A, Gauliard E, Kirchgesner J, Beaugerie L, Seksik P, Peyrin-
Biroulet L, Sokol H. 2022. Fecal microbiota and bile acids in IBD patients 
undergoing screening for colorectal cancer. Gut Microbes 14:2078620. 
https://doi.org/10.1080/19490976.2022.2078620

3. Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, 
Baumbach J, List M, Neuhaus K. 2021. Primer, pipelines, parameters: 
issues in 16S rRNA gene sequencing. mSphere 6:e01202-20. https://doi.
org/10.1128/mSphere.01202-20

4. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber 
T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a chimera-checked 

16S rRNA gene database and workbench compatible with ARB. Appl 
Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

5. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz 
P. 2022. GTDB: an ongoing census of bacterial and archaeal diversity 
through a phylogenetically consistent, rank normalized and complete 
genome-based taxonomy. Nucleic Acids Res 50:D785–D794. https://doi.
org/10.1093/nar/gkab776

6. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, 
Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: 
improved data processing and web-based tools. Nucleic Acids Res 
41:D590–D596. https://doi.org/10.1093/nar/gks1219

7. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier 
for rapid assignment of rRNA sequences into the new bacterial 
taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.
1128/AEM.00062-07

Research Article mSystems

February 2024  Volume 9  Issue 2 10.1128/msystems.00950-2315

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

1 
Fe

br
ua

ry
 2

02
4 

by
 8

4.
88

.7
4.

3.

https://manichanh.vhir.org/gsrdb/
https://doi.org/10.1128/msystems.00950-23
https://doi.org/10.1016/j.ebiom.2019.11.051
https://doi.org/10.1080/19490976.2022.2078620
https://doi.org/10.1128/mSphere.01202-20
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1093/nar/gkab776
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1128/msystems.00950-23


8. Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, 
Bokulich NA. 2021. RESCRIPt: reproducible sequence taxonomy 
reference database management. PLOS Comput Biol 17:e1009581. https:
//doi.org/10.1371/journal.pcbi.1009581

9. McDonald D, Jiang Y, Balaban M, Cantrell K, Zhu Q, Gonzalez A, Morton 
JT, Nicolaou G, Parks DH, Karst SM, Albertsen M, Hugenholtz P, DeSantis 
T, Song SJ, Bartko A, Havulinna AS, Jousilahti P, Cheng S, Inouye M, 
Niiranen T, Jain M, Salomaa V, Lahti L, Mirarab S, Knight R. 2023. 
Greengenes2 unifies microbial data in a single reference tree. Nat 
Biotechnol. https://doi.org/10.1038/s41587-023-02026-w

10. Hsieh Y-P, Hung Y-M, Tsai M-H, Lai L-C, Chuang EY. 2022. 16S-ITGDB: an 
integrated database for improving species classification of prokaryotic 
16S ribosomal RNA sequences. Front Bioinform 2:905489. https://doi.
org/10.3389/fbinf.2022.905489

11. Liao C-C, Fu P-Y, Huang C-W, Chuang C-H, Yen Y, Lin C-Y, Chen S-H. 2022. 
MetaSquare: an integrated metadatabase of 16S rRNA gene amplicon 
for microbiome taxonomic classification. Bioinformatics 38:2930–2931. 
https://doi.org/10.1093/bioinformatics/btac184

12. Fettweis JM, Serrano MG, Sheth NU, Mayer CM, Glascock AL, Brooks JP, 
Jefferson KK, Vaginal Microbiome Consortium (additional members), 
Buck GA. 2012. Species-level classification of the vaginal microbiome. 
BMC Genomics 13:S17. https://doi.org/10.1186/1471-2164-13-S8-S17

13. Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and 
visualization of phylogenomic data. Mol Biol Evol 33:1635–1638. https://
doi.org/10.1093/molbev/msw046

14. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, 
Leipe D, Mcveigh R, O’Neill K, Robbertse B, Sharma S, Soussov V, Sullivan 
JP, Sun L, Turner S, Karsch-Mizrachi I. 2020. NCBI taxonomy: a compre­
hensive update on curation, resources and tools. Database (Oxford) 
2020:baaa062. https://doi.org/10.1093/database/baaa062

15. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, 
Huttley GA, Gregory Caporaso J. 2018. Optimizing taxonomic 
classification of marker-gene amplicon sequences with QIIME 2’s q2-
feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/
s40168-018-0470-z

16. Li W, Godzik A. 2006. Cd-hit: A fast program for clustering and 
comparing large sets of protein or nucleotide sequences. Bioinformatics 
22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158

17. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: Accelerated for clustering 
the next-generation sequencing data. Bioinformatics 28:3150–3152. 
https://doi.org/10.1093/bioinformatics/bts565

18. Bokulich NA, Rideout JR, Mercurio WG, Shiffer A, Wolfe B, Maurice CF, 
Dutton RJ, Turnbaugh PJ, Knight R, Caporaso JG. 2016. Mockrobiota: a 
public resource for microbiome bioinformatics benchmarking. 
mSystems 1:e00062-16. https://doi.org/10.1128/mSystems.00062-16

19. Huang W, Li L, Myers JR, Marth GT. 2012. ART: a next-generation 
sequencing read simulator. Bioinformatics 28:593–594. https://doi.org/
10.1093/bioinformatics/btr708

20. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 
2016. DADA2: high-resolution sample inference from Illumina amplicon 
data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

21. Edgar RC. 2018. Accuracy of taxonomy prediction for 16S rRNA and 
fungal ITS sequences. PeerJ 6:e4652. https://doi.org/10.7717/peerj.4652

22. Yáñez F, Soler Z, Oliero M, Xie Z, Oyarzun I, Serrano-Gómez G, 
Manichanh C. 2021. Integrating dietary data into microbiome studies: a 
step forward for nutri-metaomics. Nutrients 13:2978. https://doi.org/10.
3390/nu13092978

23. Vargas M, Yañez F, Elias A, Bernabeu A, Goya M, Xie Z, Farrás A, Sánchez 
O, Soler Z, Blasquez C, Valle L, Olivella A, Muñoz B, Brik M, Carreras E, 
Manichanh C. 2022. Cervical pessary and cerclage placement for 
preterm birth prevention and cervicovaginal microbiome changes. Acta 
Obstet Gynecol Scand 101:1403–1413. https://doi.org/10.1111/aogs.
14460

24. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, 
Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. 2019. Reproducible, 
interactive, scalable and extensible microbiome data science using 
QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-
019-0209-9

25. Liang H, Jo J-H, Zhang Z, MacGibeny MA, Han J, Proctor DM, Taylor ME, 
Che Y, Juneau P, Apolo AB, McCulloch JA, Davar D, Zarour HM, Dzutsev 
AK, Brownell I, Trinchieri G, Gulley JL, Kong HH. 2022. Predicting cancer 
immunotherapy response from gut microbiomes using machine 
learning models. Oncotarget 13:876–889. https://doi.org/10.18632/
oncotarget.28252

Research Article mSystems

February 2024  Volume 9  Issue 2 10.1128/msystems.00950-2316

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

1 
Fe

br
ua

ry
 2

02
4 

by
 8

4.
88

.7
4.

3.

https://doi.org/10.1371/journal.pcbi.1009581
https://doi.org/10.1038/s41587-023-02026-w
https://doi.org/10.3389/fbinf.2022.905489
https://doi.org/10.1093/bioinformatics/btac184
https://doi.org/10.1186/1471-2164-13-S8-S17
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.1093/database/baaa062
https://doi.org/10.1186/s40168-018-0470-z
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.1128/mSystems.00062-16
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.7717/peerj.4652
https://doi.org/10.3390/nu13092978
https://doi.org/10.1111/aogs.14460
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.18632/oncotarget.28252
https://doi.org/10.1128/msystems.00950-23

	GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis
	MATERIALS AND METHODS
	Creation of GSR database
	Creation of 16S variable region databases
	Phylogeny construction
	In silico mock community data sets
	Validation

	RESULTS
	GSR database
	QIIME2 parameters impact taxonomic assignment performance
	GSR outperforms most existing databases across all tested regions
	Case study: vaginal and gut data sets

	DISCUSSION


