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A whirl of radiomics-based biomarkers in
cancer immunotherapy, why is large scale
validation still lacking?

Check for updates
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The search for understanding immunotherapy response has sparked interest in diverse areas of
oncology, with artificial intelligence (AI) and radiomics emerging as promising tools, capable of
gathering large amounts of information to identify suitable patients for treatment. The application of AI
in radiology has grown, driven by the hypothesis that radiology images capture tumor phenotypes and
thus could provide valuable insights into immunotherapy response likelihood. However, despite the
rapid growth of studies, no algorithms in the field have reached clinical implementation, mainly due to
the lack of standardized methods, hampering study comparisons and reproducibility across different
datasets. In this review, we performed a comprehensive assessment of published data to identify
sources of variability in radiomics study design that hinder the comparison of the different model
performance and, therefore, clinical implementation. Subsequently, we conducted a use-case meta-
analysis using homogenous studies to assess the overall performance of radiomics in estimating
programmed death-ligand 1 (PD-L1) expression. Our findings indicate that, despite numerous
attempts to predict immunotherapy response, only a limited number of studies share comparable
methodologies and report sufficient data about cohorts andmethods to be suitable formeta-analysis.
Nevertheless, although only a few studies meet these criteria, their promising results underscore the
importance of ongoing standardization and benchmarking efforts. This review highlights the
importance of uniformity in study design and reporting. Such standardization is crucial to enable
meaningful comparisons and demonstrate the validity of biomarkers across diverse populations,
facilitating their implementation into the immunotherapy patient selection process.

Cancer immunotherapy, particularly immune checkpoint inhibitors (ICI),
has emerged as the gold standard for treating various cancers, including
lung, renal, andmelanoma1–4. The remarkable success achievedwith ICI has
generated optimism for its potential application in treating numerous other

types of cancer. However, the variability in patient responses makes it
necessary to identify biomarkers capable of predicting individual responses
to ICI. This crucial step is instrumental in enhancing patient stratification,
maximizing treatment efficacy, detecting treatment resistance and thus
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minimizing potential harm for those who may not benefit. Various tissue-
based predictive biomarkers have been proposed, such as microsatellite
instability (MSI)5,6, tumor mutational burden (TMB)7, programmed death-
ligand 1 (PD-L1) expression8, and tumor-infiltrating lymphocyte (TIL)
count9. However, these biomarkers often require invasive procedures to
obtain tumor tissue for analysis, and their accuracy in identifying suitable
candidates for immunotherapy remains suboptimal10. Radiomics analysis,
in combination with machine learning (ML) methods, efficiently extracts
meaningful information from medical images, enabling three-dimensional
evaluation of tumors throughout the entire body, and repeated assessments
over the course of cancer treatment11. In particular, extracting radiomics
features from standard-of-care CT images, a widely used imaging technique
for cancer staging and follow-up, offers a valuable tool with potential for
developing predictive biomarkers in the context of immunotherapy12–15.
This is especially pertinent in cancer immunotherapy, where treatmentmay
occur after the initial diagnosis, in pretreated patients with evolving tumors
and non-reachable lesions16,17. The non-invasive nature of radiomics
applications thus becomes highly valuable.

In fact, the emergence of encouraging radiomics signatures for pre-
dicting response to immunotherapy has caused a boom in research
endeavors in this field. Nevertheless, the absence of standardized protocols
and benchmarking studies of biological validation of such signatures poses a
significant challenge for the application of these signatures in clinical
practice. Despite numerous radiomics studies predicting response across
various tumor types, inconsistencies persist in data selection, model con-
struction, and outcome definition. To assess the reliability of predictive
radiomics studies, standardization research criteria such as the Radiomics
Quality Score (RQS)11 and the CLEAR checklist18 have been introduced19.
However, lowRQShave been reported inmost published radiomics studies,
indicating poor documentation practices and limited reproducibility20.
Efforts are emerging to develop PRISMA-AI guidelines21 that will define
standardized frameworks, comprehensive method descriptions, and data-
sharing practices in radiomics-based studies, as well as, allow study com-
parison, validation, and meta-analysis efforts in this domain.

In this review,weprovide anoverviewof the current state of radiomics-
based biomarkers to guide the use of immunotherapy through a

comprehensive examination. It encompasses the potential biases and var-
iations in the currently developed radiomics pipelines that challenge the
comparison of studies through meta-analysis. Additionally, we present a
short case study featuring ameta-analysis of studies predicting PD-L1 status
from CT imaging, comparing radiomics ML and deep learning (DL)
models. By examining the existing literature and conducting a meta-ana-
lysis, we aim to offer valuable insights and perspectives on the efficacy and
reliability of radiomics as immunotherapy biomarkers.

Results
Uncovering potential sources of variability in radiomics
study design
We conducted a systematic review encompassing all studies utilizingML or
DL techniques in CT imaging for predicting either direct response to
immunotherapy or any surrogate biomarker of response. Our findings
highlight the significant diversity in study design among publications
aiming to create similar predictive models (Fig. 1). This variability in
methodology presents a challenge when attempting to compare the per-
formance of these models through meta-analysis. In this section, we aim to
summarize all these studies and the differences among them.

Cohort setting. The characteristics that define the tumor phenotype and
make it more responsive to immunotherapy can encompass tumor-
specific aspects or those that can be expressed and captured across
multiple tumor types. Consequently, researchers have pursued two
approaches in the development and validation of radiomics-based bio-
markers. One approach being tumor specific, aiming to create validated
biomarkers within each type. While the other approach addresses this
challenge by incorporating multiple tumor types and considering the
location of metastatic disease when feeding the models.

Todate, themajority of radiomics studieson immunotherapy response
prediction have focused on non-small cell lung cancer (NSCLC), benefiting
from the availability of larger datasets and a higher degree of treatment
responses in this tumor type. In fact,most of the studies exploring radiomics
to predict direct response or surrogates of response to immunotherapy (i.e.,
biological and molecular markers used as predictors of a patient’s response

Fig. 1 | Potential sources of variability in radiomics study design including features
related to the cohort setting (specific signature for a single tumor type or pan-
cancer), end-point (for clinical outcome such as response yes/no or for predicting

molecular surrogate biomarkers such as programmed death-ligand 1 [PD-L1]
expression), number of lesions, imaging timepoints and region of interest. n: number
of lesions.
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such as PD-L1) have been done in NSCLC populations. Other tumor types
including melanoma, gastric, head and neck, bladder and kidney cancers
have been investigated to a lesser extent and only few studies have developed
predictive radiomics models in pan-cancer settings12,14. Despite the
increasing number of lung cancer and melanoma patients receiving
immunotherapy as part of standard care, it is noteworthy that only around
30% of the articles included cohorts larger than 200 patients, and merely
22% reported the utilization of external validation cohorts (Supplementary
Table 1).

The development of tumor type-specific radiomics signatures allows
finding radiomics featuresunique to that population; however, it reduces the
generalization of themethods to other tumor types that are less common or
rarely treated with immunotherapy. On the other hand, pan-cancer
approaches require the use of larger cohorts for the model to comprehend
the inherent heterogeneity of the population, thereby reducing the bias
towards the response probability of each tumor type.

Outcome evaluation. Studies focusing on predictive radiomics sig-
natures and immunotherapy can be categorized into two types: those
aiming to directly predict clinical outcome and those focused on pre-
dicting known surrogate biomarkers. However, the lack of standardiza-
tion regarding outcome definition poses a significant challenge,making it
difficult to compare and assess the predictive capabilities of the resulting
radiomics signatures.

One major challenge is the wide range of clinical endpoints used to
assess treatment response. The most relevant measure for evaluating the
benefit of immunotherapy treatment in patients is overall survival (OS).
While certain radiomics studies have considered OS as the clinical
endpoint13,15,22–33, most studies rely on tumor size changes by the Response
Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1)16. From the
RECIST assessment, multiple measurements can be computed and used as
endpoints, includingprogression-free survival (PFS)29–32,34–38, disease control
(which gathers complete response (CR), partial response (PR), and stable
disease (SD))14,22,28,34,35,39–46 or objective response rate (ORR)23,47–50. However,
it is important to note that these response evaluations are considered sur-
rogate endpoints for OS, and their reliability is hindered by their inherent
subjectivity and variability, challenging the development of reproducible
models51,52. Furthermore, the wide range of response evaluation criteria
derived from RECIST53,54 (e.g., PFS, ORR, disease control) also limits the
direct comparison of radiomics signatures across studies.

Similarly, when predicting molecular surrogate biomarkers (such as
PD-L1 expression), many studies tend to discretize the target variable and
transform it into a classification problem. However, these biomarker
cutoffs are subjected to the primary tumor biology or the type of treat-
ment.Therefore, the lack of standardized cutoff values further complicates
the comparison of radiomics signatures for predicting surrogate bio-
markers in immunotherapy. In addition to the heterogeneity in endpoint
definitions, it is important to consider that the performance of radiomics
signatures predicting surrogate biomarkers will be inherently limited by
the predictive capacity of the surrogate biomarker itself. This implies that
the effectiveness of the radiomics signatures in predicting treatment
response will be constrained by the predictive capabilities of the surrogate
biomarker being used.

Study design regarding number of lesions, region of interest and
time-points. Another relevant point in the study design for immu-
notherapy radiomics signatures is the selection of target lesions for
analysis. Many radiomics studies rely on delineating and extracting
features from a single selected tumor (~63% of the studies found in the
review), often the primary or largest lesion, arguing that the single chosen
lesion can represent the whole disease. However, in patients with
metastases atmultiple sites, heterogeneous immunophenotypes candrive
different immune responses55,56. Therefore, analyzing only one lesion per
patient may not fully capture the tumor heterogeneity and limit the
predictive capacity of the model. To partially overcome this limitation,

feature aggregation methods such as average, volume-weighted average,
or attention-based multiple instance learning (MIL) are commonly
used14,41,49,57. Additionally, the analysis of inter- and intra-lesion hetero-
geneity through radiomics studies to capture thewholemetastatic disease
has also been considered as a potential indicator of immunotherapy
response58.

Moreover, with the aim of providing the model with all the potential
relevant data and knowing the effect of surrounding tumor micro-
environment for immunotherapy response, certain studies have also
explored the value of incorporating peritumoral area information into
predictive models for predicting response to immunotherapy22,50. Never-
theless, the models obtained more relevant information from the intratu-
moral features. Some studies have also shown that intratumoral 3D
radiomics features provide more informative insights compared to using
only 2D radiomics features28.

Finally, regarding the imaging time-points, the majority of studies in
radiomics research have focused on the development of predictive bio-
markers using baseline scans, which refer to the scans obtained just before
initiating treatment. This approach facilitates improved patient selection for
treatment decision-making. However, some studies have demonstrated
enhanced outcomes by analyzing changes in the radiomics tumor pheno-
type between baseline and early follow-up time points, commonly known as
early readouts or delta radiomics signatures13,15,22,29,43,47,59. Such approaches
enable the capture of response or progression patterns that may go unno-
ticed by radiologists, thereby potentially preventing patients to stay longer
under ineffective treatment. Some of these studies have shown that tracking
these changes in CT scans provides better prognostic value compared to the
current standard of care, RECIST13,60. It is important to note, however, that
these early readouts do not represent true predictive biomarkers per se, but
rather serve as indicators of early response, and should be thought of as
alternative response criteria themselves, rather than predictive biomarkers.
This is because at the time these early readouts are assessed, treatment
decisions have already been made, and the patient is already receiving
immunotherapy.

Radiomics feature selection and model implementation. Fifty per-
cent of the pipelines implemented for hand-crafted radiomics analysis
correspond to Least Absolute Shrinkage and SelectionOperator (LASSO)
for feature selection (implemented in 40% of the studies), followed by a
logistic regression for classification (implemented in 25% of the studies).
Multiple studies have highlighted the benefits of utilizing LASSO as the
feature selection method due to its efficacy in high-dimensional data
regression, thereby mitigating the risk of overfitting30,49. In terms of
classification method, several studies have explored the performance of
different classification algorithms for predicting response (such as sup-
port vector machine (SVM), Random Forest (RF), decision tree and
k-nearest neighbor) (Supplementary Figure 1). All of them showed that
logistic regression had similar or slightly better performance than other
more complex classifiers28,38,50,61.

Only a few studies have used more advanced DL methods to predict
response to immunotherapy13,32,45,46. These methods are data-hungry and
need large cohorts of patients, as well as reliable and objective annotations,
to achieve good performance. However, gathering this amount of data
regarding immunotherapy treatment response is still challenging. For that
reason,most of theCT-basedDLmodels currently developedare focusedon
predicting surrogates of response such as PD-L1 status32,62–64.

Case-study: meta-analysis for predicting PD-L1 status from CT
imaging comparing DL vs classical ML
In order to get a better understanding of the overall performance of the
radiomics signatures as predicting biomarkers for immunotherapy, we
conducted a meta-analysis of all the studies that implemented CT-based
radiomics with classicalML orDL to predict PD-L1 status. Figure 2 shows a
flow chart illustrating the systematic review conducted in PubMed, out-
lining the predefined inclusion and exclusion criteria.
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We identified a total of 56 articles developing CT-based predictive
signatures in patients treated with immunotherapy; 34 for predicting direct
response and 22 predicting surrogate molecular biomarkers (Supplemen-
tary. Detailed results systematic review). In Supplementary Table 1, all
included papers are listed. We reviewed the CLEAR guidelines for all these
studies (Supplementary Table 2). However, we could not include harmo-
nized image preprocessing techniques or feature selection methods.
Accounting for the previously described variability in the methods of
radiomics signatures and with the aim of investigating the most standar-
dized models, we found seven comparable studies to perform the meta-
analysis. All of them predicted PD-L1 expression assessed as tumor pro-
portion score (TPS) ≥ 1%, using the area under the curve (AUC) as the
evaluation metric and implementing either logistic regression (n = 4)61,64–66

or DL (n = 3)62,64,67 as the predictivemodel. External validation performance
was also explored in three studies applying logistic regression methods and
one DL modeling.

The includedpapers showedvaryingperformance inpredictingPD-L1
expression, with AUROCs ranging from 0.76 to 0.96 in both logistic
regression andDLmethods. In the internal validation, the logistic regression
models showed a pooledAUCof 0.86 (95%CI 0.77–0.94, i²= 94%)while the
DLmethod exhibited a pooledAUROCof 0.86 (95%CI 0.79–0.92, i²= 89%),
using randomeffectsmodel (Fig. 3). Interestingly, ourfindings revealed that
the performance across different studies for logistic regression remained
comparable in the external validation set, yielding an estimated AUROC of
0.80 (95%CI 0.78–0.82, i²= 0%) (Fig. 4). These findings indicate low het-
erogeneity between studies in the external validation performance in con-
trast to the higher heterogeneity in the internal set. There was not enough
data from DL studies to evaluate the heterogeneity in the external set.
Notably, studies utilizing logistic regression andDLmethods demonstrated
similar results in the internal set,with a combined estimatedAUROCof 0.86
(95% CI 0.80–0.91), despite DL models having access to a larger dataset
compared to logistic regression studies.

Discussion
Theapplicationof artificial intelligence (AI) to improvepatient stratification
towards better treatment selection is of growing interest in both radiology
and oncology fields. Numerous studies have focused on uncovering radi-
ological features of tumors that could predict response patterns to immu-
notherapy. However, the lack of standardized and homogeneous
frameworks employed in these studies, aswell as scarce data sharing, present
challenges when comparing results and validating radiomics models, ulti-
mately, hindering their integration into clinical practice. In this review, we
aimed to shed light on the factors that contribute to the variability in
radiomics studies, rendering the available models incomparable. Addi-
tionally, we conducted a comprehensive literature review specifically tar-
geting studies that investigated CT-based radiomics signatures for
predicting response to immune checkpoint inhibitors (ICI) and surrogate
biomarkers of response to ICI.

Remarkably, our findings revealed that despite the abundance of stu-
dies predicting direct response to immunotherapy, only a limited number of
these studies employed similar methods, making them unsuitable formeta-
analysis. This significant variability in methodology poses challenges in
terms of study comparisons and reproducibility across different datasets.
Similar challenges have arisen in the development of other potential pre-
dictive biomarkers based on biological samples such as PD-L1 expression or
TMB, highlighted in debates surrounding the heterogeneous distribution of
these markers in tumor samples, variations in staining techniques, and
establishment of appropriate thresholds, among other issues68–70. Addres-
sing these challenges requires benchmarking studies that facilitate the
comparison of established methods with novel techniques across diverse
cohorts, thereby promoting advancement and standardization in the field.

Nonetheless, some studies investigating the development of radiomics
signatures forpredictingprogrammeddeath-ligand1 (PD-L1) expression in
tumorsmet thenecessary criteria formeaningful pooling andmeta-analysis.
Consequently, our meta-analysis exclusively focused on studies examining

Fig. 2 | Referred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) flow diagram for study illustrating the number of records screened in the
review and articles included and excluded, outlining the predefined inclusion and
exclusion criteria. In total, 56 articles were included in the review and 35 articles were

excluded, reasons for exclusion were reported. Seven studies exploring CT-based
radiomics models for predicting programmed death-ligand 1 (PD-L1) expression
were included in the meta-analysis.
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CT-based radiomics for predicting PD-L1 status. This case study high-
lighted thepromisingperformanceof the reportedmodels inpredictingPD-
L1 expression, with area under the receiver operating characteristic curve
(AUROC) values ranging from 0.7 to 0.9. While these models have
demonstrated positive outcomes and exhibited limited heterogeneity in
accuracy during external validation, questions persist regarding the lack of
widespread adoption in clinical practice. One potential contributing factor
could be the absence of a reported correlation between PD-L1 prediction
and treatment response. Furthermore, it is important to acknowledge the
potential influence of publication bias, which may result in a prevalence of
positive results, possibly overshadowing scientifically crucial findings from
studies that may not achieve high accuracy despite employing sound
methodologies.

Developing multi-center studies is essential to demonstrate the
applicability of these methods across large and heterogeneous datasets,
ensuring reliability and fairness by encompassing diverse populations and
machines from various institutions. Concerns regarding data privacy and
patient datamonetization have slowed down the development of large-scale
multi-center models. Nevertheless, efforts have been made in this field to
provide more secure methods of data sharing and decentralized model
training, such as federated learning71,72, where models can be trained on
multi-institutional data without leaving the respective institutions, thus
safeguarding data privacy. Moreover, some studies have highlighted
potential improvements of predictive models through multimodal
approaches that combine radiomics with histopathology or genomics73,74.
Still, this requires representative heterogeneous data ideally from multiple

Fig. 4 |Meta-analysis results: External validation performance of the reported studies that implemented CT-based radiomics with machine learning (ML) or deep learning
(DL) for predicting programmed death-ligand 1 (PD-L1) expression.

Fig. 3 |Meta-analysis results: Internal validation performance of the reported studies that implemented CT-based radiomics with classical machine learning (ML) or deep
learning (DL) for predicting programmed death-ligand 1 (PD-L1) expression.
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centers, including all sources of information, which has been a notable
limitation thus far. Finally, integration of radiomics-based biomarkers into
clinical practice hinges on the critical aspects of explainability and trust-
ability, ensuring that healthcare professionals can comprehend and rely on
these complex data-driven insights tomake informedpatient care decisions.

Moreover, the path to integrating radiomics into clinical practice, even
when all the previous limitations are considered, still relies on biological
translation of the predictive models. Certain studies have made substantial
progress in this direction by correlating radiomics predictions with biolo-
gical and molecular markers like PD-L130, cellular pathways39 or cytotoxic
immunophenotype14.Other studieshave focusedondevelopingmodels that
aim to predict directly the molecular properties of the tumor from surgical
resections or biopsies75. However, ongoing investigation in this direction is
needed to enhance the reliability and applicability of these models for
seamless integration into routine clinical practice.

In conclusion, the journey towards establishing radiomics-based bio-
markers is challenging, requiring technical development of imaging assays
and computational methods, validation encompassing sensitivity, specifi-
city, and reproducibility evaluations, biological validation, aswell as proving
clinical relevance ideally through embedding them in prospective clinical
trials. Despite the considerable interest and expectations from the scientific
community, as well as the abundance of papers exploring imaging pheno-
types derived from radiomics as potential biomarkers of response to
immunotherapy, these tools have yet to be implemented in clinical practice.
To make a substantial impact on clinical trials and medical practice, larger
prospective studies with appropriate external validation datasets, focusing
on the clinical applicability of these signatures, are crucial.

Fortunately, changes are underway in thefield that should facilitate the
exploration of these novel biomarkers and their potential applicability in the
clinic. The imaging scientific community, through collaborative efforts and
consortia supported by the EU commissioner, is working to bridge the gap
between research and real-world application. Among the most significant
initiatives is the EUCAIM project, which is dedicated to establish an
infrastructure for over 60 million cancer images from over 100,000 cancer
patients with the goal to develop and benchmark trustworthy AI tools.
Together, we strive to pave the way for the true integration of radiomics-
based biomarkers into clinical decision-making, ultimately improving the
care of cancer patients.

Methods
Detaileddescriptionof theof thesystematic reviewmethodology
Search strategy. A search was conducted in the PubMed electronic
database for potential articles published at date October 1st, 2022. The
search strategy used was (((“Radiomics” OR “CT based biomarker” OR
“imaging based biomarker” OR “imaging marker” OR “imaging bio-
marker”) AND (“Immunotherapy”[Mesh] OR “ipilimumab” OR “treme-
limumab” OR “CTLA-4” OR pembrolizumab” OR nivolumab” OR
“Immuno Checkpoint Inhibitors”[Mesh] OR “cemiplimab” OR “atezoli-
zumab” OR “immune checkpoint blockade” OR “avelumab” OR “durva-
lumab” OR “PD-L1” OR “PD-1”)) AND (((“Tomography, X-Ray
Computed” [Mesh] OR “Computed Tomography” OR “CT”) NOT “Posi-
tron Emission Tomography”) NOT “PET”). Our search terms did not
include specific cancer types or outcome types. Finally, we also con-
sidered any articles referred to us by experts, identified during the prior
scoping search, or found in the references section of the full-text articles
we evaluated.

Instead of only assessing studies based on hand-crafted radiomics
applied to classical machine learning (ML) models, studies that employed
deep learning (DL) techniques were also examined. Articles were evaluated
systematically on title and full-text level, and reasons for exclusion were
noted. All studies which were potentially relevant for the paper were
included in a data extraction table.

Study selection and eligibility criteria. According to the inclusion
criteria, we focused exclusively on systemic treatments involving immune

checkpoint inhibitors (ICI) alone. Articles were included if they were (i)
primary studies that investigated (ii) response to ICIs alone by using (iii)
classical ML or DL on (iv) human tumor lesions and (v) written in the
English language.

We excluded studies of ICI in combination with other therapies. If the
study included patients who received immunotherapy, chemotherapy and/
or radiotherapy, we only included them in case the results for immu-
notherapy were assessed separately. Other forms of immunotherapy, such
as monoclonal antibodies, vaccines, immune system modulators, or T-cell
transfer therapy, were beyond the scope of our review. Predicting hyper-
progression, toxicity andmethylation patterns were also considered outside
the scope of this review.

The included articles were divided in two different categories, based on
the type of predicted outcome; prediction of end-to-end ICI response or
biomarkers for response. Then, for every outcome category, we divided the
studies basedon the appliedmethods: conventionalMLandDLapproaches.
From each article, we reported the used methods, main results and the
reported conclusions and limitations. Regarding the methods, we collected
the feature aggregation and selection, and the implementedML algorithm.
We filtered the results from some studies with additional experiments
regarding other endpoints, as defined in the exclusion criteria.

Statistical analysis. To obtain an overall estimation, the area under the
curve (AUC) with 95% confidence interval (CI) was calculated for each
study. No p-values were reported for pooled AUCs. Heterogeneity esti-
mation was assessed and reported in all analyses using means of I2 and a
statistical test to evaluate the similarity of results across studies (homo-
geneity test). Both fixed and random effects models were applied
regardless of the homogeneity test outcome. When the p-value was
greater than 0.05 (indicating no significant heterogeneity), the fixed
effects model was used, assuming a common effect size. Conversely, the
random effects model, employing the DerSimonian-Laird method, was
utilized to account for heterogeneity. Due to limited statistical power in
detecting heterogeneity, the random effects model was employed for
subgroup analysis.

Internal validation results, accounting for cross-validation and internal
split, were used for the meta-analysis. External validation was also analyzed
when applicable in an additional experiment. All the analyses were imple-
mented using R v(4.2.2) and package metafor.
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