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Abstract
Analysis of bone marrow aspirates (BMAs) is an essential step in the diagnosis of hematological disorders. This analysis is usually performed 
based on a visual examination of samples under a conventional optical microscope, which involves a labor-intensive process, limited by 
clinical experience and subject to high observer variability. In this work, we present a comprehensive digital microscopy system that enables 
BMA analysis for cell type counting and differentiation in an efficient and objective manner. This system not only provides an accessible and 
simple method to digitize, store, and analyze BMA samples remotely but is also supported by an Artificial Intelligence (AI) pipeline that 
accelerates the differential cell counting process and reduces interobserver variability. It has been designed to integrate AI algorithms with 
the daily clinical routine and can be used in any regular hospital workflow.
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Introduction
Morphological analysis of cells in samples of bone marrow as-
pirates (BMAs) is a crucial part of hematological diagnosis that 
can guide disease management. Visual inspection of samples 
through light microscopy has been traditionally used for mor-
phological assessment, ensuring accuracy of the diagnosis and 
thus the subsequent management of the disease affected by a 
number of factors, including the experience and capabilities 
of the personnel performing the visual examination of samples. 
The examination of BMA and peripherical blood smears by 
Artificial Intelligence (AI) represents a clear opportunity to 
automate, standardize, and quantify cytomorphological ana-
lyses (Fan et al., 2022; The Lancet Haematology, 2022).

In particular, the analysis of BMA samples is a common and 
essential process for several hematological diseases (acute leuke-
mias, plasma cell disorders, myelodysplastic syndromes, etc.) 

(Arber et al., 2016; Swerdlow et al., 2016), and despite current 
technological advances, it still heavily rely on traditional optical 
microscopes and clinical expertise and the subjectivity of 
hematologists.

As has been stated in several studies, BMA analysis shows a 
high level of interobserver variability (Bentley, 1990; 
Fuentes-Arderiu & Dot-Bach, 2009; Font et al., 2015; Choi 
et al., 2017). Furthermore, the International Council for 
Standardization in Hematology guideline for the standardiza-
tion of bone marrow (BM) specimens and reports suggests ex-
tending the number of cells to be counted to more than 500, or 
even comparing the results with those of another sample and 
asking another observer to evaluate the sample independently, 
especially when a disease is suspected. In short, the differential 
cell count (DCC) in BMA samples has proved to be a time- 
consuming and error-prone procedure (Hodes et al., 2019) 
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that requires a highly specialized professional in cytology 
(hematologists or hematopathologists) to ensure reliable re-
sults (WHO, 2017).

Recent studies have proposed AI-based tools to assist pro-
fessionals in detecting and classifying nucleated cells in BMA 
samples. Traditional machine learning techniques based on 
handcrafted features from cell images have been proposed; 
however, these methods may be limited by the labor-intensive 
feature extraction process, the subjectivity of feature selection 
(Theera-Umpon & Dhompongsa, 2007; Liu et al., 2019), and 
low robustness. To address these limitations, more recent ap-
proaches have turned to convolutional neural networks 
(CNNs) to perform a morphological examination of BMA 
samples. The following have been proposed: the use of dual- 
stage CNNs to classify nucleated cells in BMA samples 
(Choi et al., 2017), Faster R-CNNs (Liu et al., 2022) together 
with VGG16 CNN (Chandradevan et al., 2020) and Xception 
CNN (Eckardt et al., 2022) for cell classification, ResNet50 net-
works (Wang et al., 2022a, 2022b), ResNetXt-50 to classify 
BMA cells in an extensive expert-annotated dataset (Matek 
et al., 2021), Mask R-CNN for cell detection and segmentation 
(Ouyang et al., 2021), DenseNet to automatically select appro-
priate regions for BMA cytology together with YOLO network 
to detect and classify cellular and noncellular object in the sam-
ple (Tayebi et al., 2022), semisupervised deep learning models 
to overcome the need for large labeled datasets for training 
(Nakamura et al., 2022), CNNs specially designed to tackle 
the class imbalance problem (Guo et al., 2022), CoAtNet for 
BMA morphology classification merging CNNs and transform-
ers models (Tripathi et al., 2022), and a YOLOX-s model for 
cell detection together with a specific CNN that utilizes multi-
level features for cell classification (Wang et al., 2023).

However, despite all this effort, most prior studies rely on 
the need for complex and expensive commercially available 
scanners to digitize BMA whole-slide images, also failing in 
considering how these tools are proposed to be implemented 
in an actual clinical practice that allows interaction between 
professional and suggested results by AI.

In this work, we aimed to develop and evaluate an integrated 
microscopy digital system to cover the entire process, from 
BMA sample digitization without the need for complex digitiza-
tion devices to DCC facilitated by human–AI interaction. The 
proposed system is based on a simple three-dimensional (3D) 
printed device that couples a smartphone to a conventional op-
tical microscope, allowing standardized and easy acquisition of 
microscopy images. It also includes a web-based telemedicine 
platform that integrates the analysis from AI algorithms. By 
taking advantage of this holistic digital system, it could be pos-
sible to implement the solution in any hematology department 
in the world without incorporating specific and complex med-
ical electronic devices into the clinical workflow.

Materials and Methods
System
The workflow of the AI-assisted digital DCC system is pre-
sented in Figure 1. The pipeline is as follows: first, the user digi-
tizes a BMA sample using a 3D-printed microscopy arm that 
allows attaching a smartphone to a conventional optical micro-
scope. The user uses a specific mobile app and digitizes at least 
20 different fields (which always will contain at least 500 cells 
for differential counting) of the sample using a 100× objective. 
It should be noted that this system can also be easily used for the 
digitization of a larger number of fields and therefore the ana-
lysis of a larger number of cells, which can lead to a much 
more accurate DCC. In order to accelerate the process that lasts 
a few minutes and make image acquisition easier, the user uses a 
foot pedal that triggers the image capture, so that both users’ 
hands are free to operate the microscope. The acquired images 
are automatically uploaded through the mobile app to a web 
telemedicine platform, where they are subsequently processed 
by an AI algorithm that automatically detects and differentiates 
all nucleated cells in the sample into six possible cell lineages. 
The user can review AI predictions and confirm or edit them 
in case they disagree with the AI model. Last, cell series propor-
tions are calculated by generating the DCC.

Fig. 1. A workflow of the system, composed of three main components: (1) digitization, (2) AI algorithms, and (3) a cloud visualization platform.
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Digitization
To digitize BMA samples, the system includes a 3D-printed de-
vice that allows coupling and aligning a smartphone’s camera 
with a conventional optical microscope’s eyepiece lens. In this 
way, this device converts any optical microscope into a digital 
one and can be used to obtain digital images of BMA samples 
without the need for additional and expensive devices for cap-
turing BMA images. The smartphone uses a mobile app devel-
oped to acquire patient metadata, which was previously 
customized specifically for fast, standardized, and easy digit-
ization of BMA microscopy images (Fig. 2). The system com-
plies with privacy regulations and follows all requirements 
from General Data Protection Regulation. In addition, high- 
security industry standards have been implemented, and all 
data collected through the mobile app can be encrypted and 
anonymized.

Users employed this digitization system to acquire photo-
graphs of 20 microscope fields for each BMA sample, ensuring 
that more than 500 cells were digitized. All acquired images 
were uploaded from the mobile app to a web-based telemedi-
cine platform that allowed a remote visualization and analysis 
of BMA images. Patient data such as age and previous diagno-
sis were also collected through the mobile app and transferred 
to the telemedicine platform.

BMA samples used for training the AI algorithm were digi-
tized using a BQ Aquaris X2 smartphone model, while sam-
ples used for the evaluation of the entire AI-assisted digital 
DCC system were digitized using two different smartphone 
models (BQ Aquaris X2 and Xiaomi Redmi Note 8T), to in-
crease the variability in terms of mobile models and reduce 
the possible bias of this variable. All images were acquired at 
an image resolution of 12 megapixels. The smartphones were 
attached with the 3D-printed device to the ocular of a light 
microscope (Leica DM 2000 LED) and using a 100× objective 
(1,000× total magnification).

AI Algorithm
The AI algorithm was developed for the automatic identifica-
tion and differentiation of nucleated cells in BMA images 
into seven different classes or lineages: myeloid, erythroid, 

monocytic, lymphoid, blasts (myeloblasts, monoblasts, and 
megakaryoblasts), plasma cells, and artifacts (cells without 
optimal cytologic characteristics). Examples of each cell class 
are shown in Figure 3. The algorithm consisted of a two-stage 
cell detection and lineage classification deep learning–based 
model. First, it detects all nucleated cells without regard to 
the cell lineage. The detected cells are subsequently introduced 
into the classification model, which can distinguish between 
different cell lineage classes. More detailed information about 
each algorithm for cell detection and differentiation can be 
found in the Development and Training of AI Algorithms 
subsection.

Once an entire image representing a microscope field of 
view is processed by the AI algorithm, cell series proportions 
are calculated automatically for all the six lineage classes 
under study. The proportion of the “artifact” class was not re-
ported, as it has no clinical relevance.

AI-assisted Web Telemedicine Platform
All acquired images with the mobile app are transferred to the 
cloud telemedicine platform, where images can be visualized 
in an easy-to-use dashboard, allowing scrolling and zooming 
of the images. This platform also allows image labeling, which 
experts can use to digitally analyze BMA samples. In addition, 
these manually generated labels can be used for training the 
algorithms.

On the other hand, the developed AI algorithm is embedded 
into the platform, so that all uploaded images are processed by 
the model, and AI annotations are visualized. The platform in-
cludes a review terminal, which is designed for experts to re-
view results produced by the AI and confirm or edit AI 
suggestions in case they disagree with them by either reclassi-
fying misdifferentiated cells in the image or labeling new un-
detected cells. A comparison between AI predictions and 
reviewed classification can be performed to assess AI model 
performance and usability of the system. This process is de-
signed to speed up the diagnosis process as the user must 
only review and modify those cells with which they disagree, 
rather than manually differentiating and counting the required 
500 cells per sample.

Fig. 2. A sample digitization system. (a) A three-dimensional–printed microscopy adapter arm. (b, c) Screenshots of the mobile app for standardized BMA 
image acquisition, which allows collecting metadata associated to each BMA sample.
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Study Design and Sample Collection
Two different datasets were collected for this study. The first 
one was collected for the development of an AI algorithm 
for the automatic identification and classification of hemato-
poietic stem cells in BMA samples. This dataset consisted of 
101 BMA randomly selected samples that were retrospectively 
extracted between 2019 and 2021 at the Haematology Service 
of the University Hospital 12 de Octubre (Madrid, Spain). The 
age of included patients ranged from 1 to 87 (mean 57.5 years 
old).

Second, we validated the entire AI-based digital system for 
assisting hematologists to perform a DCC. For this purpose, 
a second dataset was collected, which was composed of 16 
BMA samples that were extracted between December 2021 
and February 2022 at the same center, with an age range 
from 2 to 82 years old (mean of 55.5 years). The BMA samples 
were selected considering that different hematological diseases 
should be represented to validate the algorithm. Patient char-
acteristics of both study cohorts are presented in Table 1.

All BMA samples were prepared according to standard pro-
tocols and using May–Grünwald–Giemsa staining. We as-
sessed sample preparation quality to discard those BMA 
samples without proper quality staining, those with insuffi-
cient lumps, or those with a certain level of dysplasia.

The ethical approval for the study was obtained from the 
Hospital 12 de Octubre Ethics Committee for Research with 
medicinal products (Num. Ref. 20/430). This study was con-
ducted in accordance with the Declaration of Helsinki; all 
BMA samples used in this study were anonymized according 
to local guidelines, and informed consent was obtained from 
all subjects.

Development and Training of AI Algorithms
The cell labeling process for training the AI algorithms was 
performed using the web-based telemedicine platform, where 
expert hematologists manually annotated individual cells us-
ing a point-based annotation tool by placing a label point cor-
responding to one of the seven possible classes (six different 

cell lineages and artifact class) in the center of each cell. 
These annotated images were used for training and validating 
the classification algorithm. Additionally for training the cell 
detection algorithm, cells were annotated without regard to 
the cell class by manually drawing a bounding box around 
all cells present in a given image (microscope field). Figure 4
shows an example of an annotation procedure for both cases 
(bounding boxes for training the cell detection algorithm and 
point-based labels for training the cell classification algo-
rithm), and both of these training activities were performed 
in the web telemedicine platform.

For training the classification algorithm, a total of 61,344 
cells were identified and classified with one of the classes under 
study by a panel of 3 different hematologists (randomly 

Fig. 3. Examples of seven different morphological classes of BMA cells stained with May–Grünwald–Giemsa and digitized at 100× magnification.

Table 1. Patient Characteristics of the Study Cohort.

Development of the 
AI Algorithm

System 
Evaluation

Age
Mean ± SD (years) 57.56 ± 15.71 55.5 ± 19.89

Gender
Female 57 (60.64%) 9 (56.25%)
Male 37 (39.36%) 7 (43.75%)

Diagnosis
Acute lymphoblastic 
leukemia

6 (6.38%) 2 (12.5%)

Acute myeloid leukemia 20 (21.28%) 4 (25%)
Chronic lymphocytic 
leukemia

2 (2.13%) 1 (6.25%)

Chronic myeloid leukemia 5 (5.32%) 1 (6.25%)
Diffuse large B-cell 
lymphoma

4 (4.26%) 1 (6.25%)

Follicular lymphoma 5 (5.32%) —
Multiple myeloma and 
other plasma cells 
dyscrasias

33 (35.11%) 5 (31.25%)

Other lymphomas 7 (7.45%) 1 (6.25%)
Reactive bone marrow 5 (5.32%) —
Others 7 (7.45%) 1 (6.25%)
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selected from the 6 who participated in the study) according to 
7 different classes: myeloid, erythroid, monocytic, lymphoid, 
blasts, plasma cells, and artifact (cells without optimal cyto-
logic characteristics). From these labels and in order to train 
the algorithm only with those cells with full agreement among 
observers, we discarded 4,171 cells, and thus, we only used 
57,173 labels for training the algorithm, with the following 
distribution: myeloid (n = 13,497), erythroid (n = 7,164), 
monocytic (n = 1,055), lymphoid (n = 2,793), blasts (n = 2,444), 
plasma cells (n = 1,105), and artifact (n = 29,115). From these 
57,173 total labels, 80% were used for training the classification 
algorithm, while the remaining 20% was used for a preliminary 
assessment of AI performance.

On the other hand, a total of 13,494 cells annotated in the 
form of bounding boxes were used for training (n = 4,358) 
and validating (n = 9,136) the detection algorithm.

The proposed algorithm for cell detection was based on the 
single-shot detection (SSD) (Liu et al., 2016) architecture to-
gether with the MobileNet V2 (Sandler et al., 2018) backbone 
network. The SSD constitutes a powerful object detection 
technique that employs a feed-forward CNN to predict object 
classes and their corresponding bounding boxes simultan-
eously, eliminating the need for region proposal networks 
found in other two-stage object detection approaches such 
as Faster R-CNN. This results in a faster and more efficient de-
tection pipeline while maintaining high accuracy levels. On the 
other hand, MobileNet V2, serving as the backbone network, 
is based on depthwise separable convolutions, which factorize 
standard convolutions into separate operations handling spa-
tial and channel-wise correlations. Further enhanced by the 
introduction of intermediate expansion layers and linear 
bottleneck layers, MobileNet V2 provides improved accuracy 
and efficiency compared with standard convolutional net-
works. Both networks have been designed to be lightweight 
and computationally efficient, and their combination is 
well-suited for embedding into real-time clinical tools.

The detection network detected all cells appearing in a given 
image (microscope field) without regard to the cell lineage. 
The detected cells were subsequently processed by a 

classification algorithm for assigning them to one of the seven 
possible classes.

For cell differentiation, small image patches of size 200 ×  
200 pixels (approximately equivalent to 16 × 16 µm2) were 
extracted around the center of each detected cell’s bounding 
box. These patches were then classified using the Xception 
convolutional network architecture (Chollet, 2017), which is 
built upon the core idea of depthwise separable convolutions 
similar to MobileNet V2, but with structural differences that 
enable improved feature learning and representation. To 
strengthen the classification algorithm’s robustness and im-
prove accuracy, data augmentation techniques were applied. 
These included rotation, horizontal, and vertical flips to ac-
count for variations in cell orientation and perspective. 
Moreover, brightness, contrast, and color modifications 
were introduced to mimic potential discrepancies arising 
from different microscope and smartphone setups used for 
sample digitization, as well as variations in sample staining 
procedures. No additional preprocessing step was performed 
in images to train the algorithms.

All algorithms were implemented in Python (version 3.8.10) 
using the TensorFlow framework (version 2.11), and training 
was conducted in a workstation equipped with an NVIDIA 
Tesla T4 16GB GPU.

Evaluation of the System
For comparative purposes and to evaluate the entire 
AI-assisted digital DCC system, all 16 BMA samples were an-
alyzed in the telemedicine platform by 4 different expert hem-
atologists. For each sample preparation, one hematologist 
performed the digital analysis of the sample in a blinded fash-
ion without the assistance of the AI (i.e., labeling and perform-
ing the DCC from scratch), while the other three 
hematologists analyzed the same sample assisted by the AI al-
gorithm. All hematologists were asked to analyze and count at 
least 500 nucleated cells on each aspirate smear, following 
international recommendations on the diagnosis of hematol-
ogy disorders (WHO, 2017; Acosta et al., 2022).

Fig. 4. Screenshots of a web telemedicine platform for image labeling. (a) Manually placed bounding boxes around all cells in a given image for training the 
detection algorithm. (b) Point-based annotations for training the classification algorithm.
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Hematologists who were assisted by the AI were presented 
with the predictions made by the algorithm and were asked 
to review each of the classified cells and relabel those incorrect-
ly classified or undetected. The platform only displays the pre-
dictions of those cells that have been detected by the first 
detection algorithm and that were subsequently classified by 
the classification algorithm as a class other than an artifact. 
The user can always add a label to a cell that has not been la-
beled by the AI. Those hematologists who did not have the as-
sistance of AI manually labeled from scratch at least 500 cells 
from each preparation.

The selection of the hematologists who were assisted by the 
AI and who performed the blinded analysis was done on a ro-
tating basis.

The relative percentages of each cell series for all prepara-
tions were calculated and compared for both methods (digital 
DCC and AI-assisted DCC).

The time needed to complete the analysis of a BMA sample 
when AI assistance was used and when the analysis was 
performed in a blinded fashion was measured. Analysis 
times were compared to assess whether the AI-assisted system 
could reduce DCC diagnosis time. Additionally, as each of the 
BMA samples was analyzed by four experienced hematolo-
gists, we also quantified the interobserver variability by meas-
uring the agreement in the cell classification among different 
experts.

Last, we also assessed the performance of the AI algorithm 
on these 16 BMA-independent samples by comparing the AI 
predictions against a consensus labeling defined as the major-
ity among the 4 experts for each cell.

Results
From the 61,344 cells manually identified and classified along 
the 101 BMA samples collected for algorithm development, 
a total of 5,144 cells were separated for preliminary 

performance evaluation (20% of the available images). Cells 
annotated as artifact were not included in this analysis.

On the other hand, each of the 16 BMA samples for evalu-
ating the entire system was analyzed by 4 different experienced 
hematologists. Each expert identified and classified at least 
500 cells for each sample. Experts placed 7,840, 7,922, 
7,908, and 8,375 labels, respectively, among the 16 BMA sam-
ples. From these labels, only 4,401 corresponded to the same 
cell, so that each of these cells was classified by the 4 experts, in 
addition to the AI algorithm.

Performance of the AI Algorithm
The detection algorithm achieved a high overall accuracy for 
detecting BM nucleated cells in microscopy images, with a sen-
sitivity of 91.6% (95% CI 90.6–92.7%) and a precision of 
91.3% (95% CI 90.2–92.3%).

Two data sets were used to evaluate the performance of the 
classification model. First, the performance was evaluated on 
the validation set (20% of the training set), which included 
the above-mentioned 5,144 cells. The algorithm was also eval-
uated on an independent test set obtained from the 16 BMA 
samples used for evaluating the entire system comprising 
4,401 cells classified by 4 different experts, where the ground 
truth was established using the majority voting rule (consen-
sus) among the 4 experts. The total validation set consisted 
of 9,545 cells. Table 2 shows the average performance of the 
model in the total validation set as well as detailed perform-
ance of each cell lineage class for both validation sets inde-
pendently. The confusion matrix for the total validation set 
(9,545 cells) is shown in Figure 5. The overall accuracy was 
92.97%, although it is worth noting the decrease in perform-
ance in those classes with fewer training images, such as mono-
cytic and plasma cells. However, this fact is easily remedied by 
increasing the number of training images for these classes.

Table 2. Performance of the AI Algorithm for Detecting and Classifying Cells in BMA Samples.

20% Validation Set
Independent Validation 

Set Total Validation

Accuracy n Accuracy n Accuracy (95% CI) n

Lymphoid 86.56 424 86.82 258 86.66 (84.10–89.21) 682
Erythroid 96.18 1,284 92.43 1,030 94.51 (93.58–95.44) 2,314
Myeloid 98.17 2,565 98.25 2,286 98.21 (97.83–98.58) 4,851
Monocytic 56.10 205 67.63 139 60.76 (55.60–65.92) 344
Blasts 87.42 469 82.60 638 84.64 (82.52–86.77) 1,107
Plasma cells 79.70 197 58.00 50 75.30 (69.93–80.68) 247
Average 93.35 5,144 92.52 4,401 92.97 (92.46–93.48) 9545

n, number of cells used for evaluating the performance. 
Average values across the different cell lineages are highlighted in bold.

Fig. 5. Performance evaluation of the AI algorithm. A confusion matrix comparing ground truth and AI predictions.
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Evaluation of the System

Interobserver Variability
The BMA analysis presents a high level of interobserver variabil-
ity when differentiating hematopoietic stem cell lineages. 
Cohen’s kappa score was used to evaluate interobserver agree-
ment in the classification of cell lineages. The agreement was per-
formed on 4,401 BM cells from the 16 cases used for evaluation 
annotated by 4 experts. Table 3 presents the kappa results for all 
pairs of observers as well as for the agreement between each ob-
server and the AI predictions. The mean interobserver agreement 
was 0.895. A similar agreement was found when comparing ex-
perts and AI predictions, with a mean kappa score of 0.871.

On the other hand, to assess whether the assistance of the AI 
can reduce the interobserver variability among hematologists 
when analyzing BMA samples, we have computed interob-
server agreement on those samples that were analyzed in a 
blinded fashion, as well as on samples where hematologists 
were assisted by the AI. Table 4 shows the comparison between 
both interobserver agreement values (blinded and AI-assisted 
analysis), and, as it can be seen, the interobserver agreement 
is considerably increased when AI is used, from 0.88 to 0.93. 
The difference in interobserver agreement between both meth-
ods is statistically significant (p-value < 0.0001).

Analysis Time
To assess whether AI assistance can reduce analysis time, we 
have measured the time needed to complete a BMA analysis 
when users were assisted by AI and when they had to perform 
the analysis from scratch (i.e., without the assistance of AI).

Table 5 summarizes the average time needed to analyze a sin-
gle cell for each of the 4 involved hematologists, as well as the 
time needed to complete an entire BMA analysis, which usually 
comprises the identification of at least 500 cells. As derived 
from the table, it is shown that when users used the AI assist-
ance, the analysis time was reduced by a factor of 18.75%.

Usability Assessment
As part of the objectives of this work, we wanted to evaluate the 
usability of the proposed AI-assisted digital DCC system. For 

this purpose, we designed an anonymized usability survey that 
was completed by the four hematologists who used the proposed 
system. The participants showed a high level of satisfaction in 
using the system (average score of 4.59 out of 5) and considered 
it a useful tool in their daily work. Additionally, the results de-
rived from the usability survey show that the automatic hemato-
poietic stem cell lineage percentages predicted by the AI 
algorithm were sufficiently reliable, even though some cells 
were misclassified and had to be modified in the review process.

Discussion
The use of AI in the field of hematology has the potential to im-
prove the way hematological disorders are diagnosed and 
treated. The ability of AI-based algorithms to analyze large 
amounts of data quickly and accurately can greatly improve 
diagnostic accuracy and efficiency, which can ultimately lead 
to better patient outcomes. In this context, the digitization 
of hematology is crucial to take full advantage of AI’s capabil-
ities, by providing a large amount of data that can be used for 
developing and training AI-based algorithms and easy access 
to the data for analysis and follow-up.

In this work, we presented a digital microscopy system that 
allows counting cell types from BMAs that integrate AI algo-
rithms with the clinical practice in a regular hospital workflow. 
The proposed system not only provides an accessible and simple 
way to digitize, store, and label BMAs remotely but also is sup-
ported by an AI pipeline that speeds up the time required for the 
analysis and reduces the interobserver variability.

Digitizing BMAs has some direct implications as it is possible 
to easily examine the samples remotely, to share them for se-
cond opinions, or to analyze samples from the same patient 
over time. Furthermore, it allows precise quantitative analysis 
and research of cell types and morphologies, as well as testing 
new clinical hypotheses. Some clinical interpretations (clinical 
remissions and response to treatment) rely on an expert analysis 
of a limited number of fields or cells, and with the proposed 

Table 5. Comparison of the Time Needed to Complete an Analysis of a Single Cell (Left) and a Whole BMA Sample (Right) When the User Used the AI 
Assistance and When the Analysis Was Performed in a Blinded Fashion.

Time/Cell (s) Time/BMA Sample (500 Cells) (mm:ss)

Time Reduction (%)Blinded AI-Assisted Blinded AI-Assisted

Obs 1 3.0 2.7 Obs 1 25:15 22:47 10.00
Obs 2 4.0 2.8 Obs 2 33:18 23:18 30.00
Obs 3 2.8 2.5 Obs 3 23:24 20:40 10.71
Obs 4 2.9 2.5 Obs 4 23:49 20:40 13.79
Mean 3.2 2.6 Mean 26:26 21:52 18.75

mm, minutes; s/ss, seconds.

Table 3. Cohen’s Kappa Score Representing Interobserver Agreement 
and Agreement Between Observers and AI Predictions.

Obs 1 Obs 2 Obs 3 Obs 4 AI

Obs 1 — 0.920 0.892 0.892 0.865
Obs 2 — 0.897 0.895 0.856
Obs 3 — 0.876 0.889
Obs 4 — 0.873
Average 0.895 0.871

Table 4. Interobserver Agreement When BMA Samples are Analyzed in a 
Blinded Fashion (Left) and When Hematologists Are Assisted by AI (Right).

Observers
Blinded AI-Assisted

p-ValueKappa (95% CI) Kappa (95% CI)

1 versus 2 0.91 (0.90–0.93) 0.93 (0.91–0.94) <0.0001****
1 versus 3 0.88 (0.87–0.90) 0.89 (0.88–0.91) <0.0001****
1 versus 4 0.88 (0.87–0.90) 0.91 (0.89–0.92) <0.0001****
2 versus 3 0.88 (0.86–0.90) 0.91 (0.90–0.92) <0.0001****
2 versus 4 0.86 (0.84–0.88) 0.92 (0.90–0.93) <0.0001****
3 versus 4 0.86 (0.83–0.87) 0.89 (0.88–0.91) <0.0001****
Mean 0.88 (0.85–0.92) 0.93 (0.89–1) <0.0001****

****indicates statistical significance.
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system working in an optimized manner, it will be possible to 
analyze a higher number of cells without increasing the time 
of analysis, hence being able to measure with more precision.

The study presented in this work has required the creation of 
an extensive database for training an algorithm able to classify 
different cell types. It is worth mentioning that all the samples 
used come from one single hospital, and though the bias depend-
ing on sample preparation is limited, further multicentric valid-
ation is suggested to understand the bias introduced by the 
variability of the preparation. It is also worth pointing out that 
the digitization process enabled by mobile phones has standar-
dized acquisition parameters available in any android smart-
phone and results in no difference between smartphones. It is 
essential to acknowledge the potential impact of smartphone 
camera quality on the performance of AI models, particularly 
in capturing fine details of cellular structures and textures. A 
lower quality camera may compromise the ability to discern 
fine features, potentially affecting predictive accuracy. In light 
of this consideration, we emphasize that our study utilized 
smartphones with a resolution of 12 megapixels, which, while 
considered medium-low by contemporary standards, represents 
a common and widely available imaging technology. Despite the 
prevalence of higher resolution cameras, our results demonstrate 
the robustness of our AI model even under these conditions, 
showcasing its adaptability to standard and more affordable 
smartphone cameras commonly found in the market.

Digitalization of microscopy samples based on a smart-
phone without the requirement of scanners and complex 
equipment lowers barriers to scale all the benefits of digitaliza-
tion of BMAs including accuracy, the possibility to share and 
do remote analysis, and reproducibility.

Efforts to digitize BMA samples and develop AI-based ana-
lysis systems have been made (Choi et al., 2017; Liu et al., 
2022; Chandradevan et al., 2020; Eckardt et al., 2022; 
Wang et al., 2022a; Wang et al., 2022b; Matek et al., 2021; 
Ouyang et al., 2021; Tayebi et al., 2022; Nakamura et al., 
2022; Guo et al., 2022; Tripathi et al., 2022; Wang et al., 
2023); however, they faced challenges, often relying on complex 
and expensive scanners. In this context, our approach employs a 
cost-effective 3D-printed adapter coupled with smartphones to 
digitize BMA samples. This innovative setup converts conven-
tional microscopes into smart digital platforms, ensuring acces-
sibility across various settings and lowering barriers to scale all 
the benefits of digitalization of BMAs, including accuracy, the 
possibility to share and do remote analysis, and reproducibility. 
Unlike many previous works, this study also addresses the prac-
tical integration of AI into clinical practice. We emphasize the 
critical human–AI interaction, recognizing the need for seamless 
collaboration between healthcare professionals and the AI sys-
tem for effective implementation in real-world scenarios.

By digitizing data and considering real-life systems that go 
beyond AI algorithms that work in isolation, we show a sys-
tem with all the required components: in this case not only a 
two-stage algorithm but also a visualization and interaction 
tool to integrate human and AI support. The current challenge 
in the field of AI in the medical field revolves around the inte-
gration of AI systems into clinical workflows. To address this 
challenge, technologists should design systems that optimize 
clinical outcomes, emphasizing the inherently multidisciplin-
ary nature of these projects.

It is worth noting that the majority of the AI models previous-
ly proposed in the literature used to analyze BMA samples are 
designed to classify not only cell lineages but also cell types at 

different stages of maturation. Future work should include im-
proving the accuracy of the AI pipeline to include new cell types 
as well as the ability to distinguish and identify cases with dys-
plasia, adding other biomarkers, and the unsupervised discov-
ery of relevant patterns and cell morphologies correlated with 
other types of analysis including genetic data. From a technical 
perspective, we could foresee an algorithm with higher levels of 
precision, which would be contingent upon the sufficiency of 
the training data, allowing near-complete automation of the 
counting process. From cell counting to disease prediction, 
digitalization can be key to unlocking a big potential for hema-
tology. With the arrival of large language models in AI (Brown 
et al., 2020; Kung et al., 2023), which can interpret the latest 
scientific research together with multimodal patient data 
(Acosta et al., 2022), we envision a future where data from cy-
tomorphological samples, genetic analyses, and other datasets 
are combined, and an AI assistant supports hematologists to 
take the best decision at each moment. Such a system will 
also require further research on how to create systems that inte-
grate human knowledge with insights obtained by AI, resulting 
in human–AI feedback loops.
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