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Background: Androgen deprivation therapy (ADT) with docetaxel (D) and/or antiandro-
gen receptor therapies (ARTs) are the standard therapies in metastatic hormone-
sensitive prostate cancer (mHSPC). Alterations in the tumor suppressor genes (TSGs)
RB1, PTEN, and TP53 are associated with an aggressive evolution and treatment resis-
tance in castration-resistant prostate cancer (CRPC).
Objective: To study the clinical implications of TSGmRNA expression inmHSPC patients.
Design, setting, and participants: This is a multicenter retrospective biomarker study in
mHSPC patients. TSGlow status was defined when two or more out of the three TSGs pre-
sented low RNA expression by nCounter in formalin-fixed paraffin-embedded samples
and TSGwt for the remaining cases. The microarray data from the CHAARTED trial were
analyzed as an independent validation cohort.
Outcome measurements and statistical analysis: Molecular data were correlated with
CRPC-free survival (CRPC-FS) and overall survival (OS) by the Kaplan-Meier method
and multivariate Cox analysis.
lsevier B.V. on behalf of European Association of Urology. This is an open access article
org/licenses/by/4.0/).
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Results and limitations: A total of 226 patients were included, of whom 218 were eligi-
ble: 93 were treated with ADT and 125 with ADT + D; 75.7% presented de novo stage IV
and 67.9% high-volume disease. TSGlow (19.2%) was independently correlated with
shorter CRPC-FS (hazard ratio [HR] 1.8, p = 0.002) and OS (HR 2, p = 0.002). In the
CHAARTED trial, TSGlow was independently correlated with lower CRPC-FS (HR 2.2,
p = 0.02); no differences in clinical outcomes according to treatment were observed in
TSGlow patients, while a significant benefit was observed for ADT + D in the TSGwt group
for CRPC-FS (HR 0.4, p < 0.001) and OS (HR 0.4, p = 0.001). However, no interaction was
observed between TSG signature and treatment in either series. Study limitations are the
retrospective design, small sample size, and lack of inclusion of patients treated with
ADT + ART.
Conclusions: TSGlow expression correlates with adverse outcomes in patients with
mHSPC. The investigation of new therapeutic strategies in these patients is warranted.
Patient summary: The low RNA expression of tumor suppressor genes in the tumors is
correlated with adverse outcomes in patients with metastatic hormone-sensitive pros-
tate cancer.
� 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Prostate cancer is ranked as second in cancer incidence and
the fifth cause of cancer death in men [1]. Androgen depri-
vation therapy (ADT) with docetaxel (D) or antiandrogen
receptor therapies (ARTs) are the standard upfront treat-
ments in metastatic hormone-sensitive prostate cancer
(mHSPC) [2–8]. Moreover, the addition of ARTs to
ADT + D, with either darolutamide or abiraterone, has also
shown survival benefits in patients with synchronous
mHSPC regardless of the risk and volume of disease [9–
11]. However, treatment selection remains a challenge
and biomarkers are needed.

Alterations in the tumor suppressor genes (TSGs) RB1,
PTEN, and TP53 have been associated with the development
of aggressive variant prostate cancer and neuroendocrine
(NE) dedifferentiation in castration-resistant prostate can-
cer (CRPC) [12]. These variants usually appear after antian-
drogen therapies, are defined by distinct clinical features
and androgen receptor (AR)-independent progression, and
are associated with reduced response to conventional ther-
apies, poor prognosis, and more sensitivity to platinum [13].

The role of TSG alterations in mHSPC is less well defined.
In this context, exome mutations at least in one gene can be
detected in about 30% of patients [14,15]. Moreover, geno-
mic alterations in two or more TSGs in men with HSPC
and CRPC are associated with poor clinical outcomes [13].

The transcriptional profile of primary tumors may deter-
mine a distinct clinical evolution and treatment benefit of
mHSPC patients. A subanalysis of the CHAARTED clinical
trial [2], which compared ADT + D versus ADT alone treat-
ments in mHSPC, identified that patients with a luminal B
molecular subtype benefited from the addition of D to
ADT, in contrast to the basal subtype. More recently, a
molecular analysis of the ADT-treated patient cohorts with
or without abiraterone from the STAMPEDE trial identified
several prognostic transcriptional signatures, as low mRNA
expression of PTEN or TP53 [16].

In a prior study in mHSPC patients treated with ADT + D,
we found that the low TSG expression signature correlated
e Herreros, Ò. Reig et al., D
static Hormone-sensitive Pr
with lower overall survival (OS). Moreover, patients with
lowest tertile expression of at least two TSGs presented
shorter CRPC-free survival (CRPC-FS) and OS [17].

In the current study, we define and further validate a
TSGlow signature in a larger series of mHSPC patients with
extended follow-up, and explore its potential value for
treatment selection. Additionally, we independently vali-
date these results through an in silico analysis of molecular
data from patients included in the phase 3 CHAARTED trial
[18].

2. Patients and methods

Complete details are given in the Supplementary material.

2.1. Design, patients, and samples

We present a multicenter retrospective biomarker study in
patients with mHSPC from ten hospitals in Spain. The key
inclusion criteria were as described previously [17]. The
study was conducted according to the principles of the Dec-
laration of Helsinki, and it was approved by the institutional
ethics committees of all participating centers. Informed
consent was obtained from all patients. Treatment for
mHSPC was ADT alone (ie, luteinizing hormone-releasing
hormone analogs) or ADT in combination with D (75 mg/
m2 every 21 d for six cycles).

The primary endpoint was to correlate TSG mRNA
expression with CRPC-FS. The secondary endpoints were
to correlate TSG mRNA expression and OS, to study the cor-
relation between loss-of-function exome mutations with
mRNA expression and immunohistochemistry (IHC), and
to explore the impact of the determination of TSGs through
different techniques on clinical outcomes.

2.2. Gene expression panel design

We configured a gene expression nCounter panel (Nanos-
tring Technologies, Seattle, WA, USA) of 184 genes [17].
Here, we present the data focused on the TSG signature
and also explore the expression of the full-length AR.
evelopment and Independent Validation of a Prognostic Gene Expression
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2.3. Bioinformatics and statistical analysis

Tertiles were applied to transformed (z score) nCounter
gene expression data from an exploratory series to establish
the cutoff for RB1, PTEN, and TP53 expression, and catego-
rize the samples as high-, mid-, or low-expression groups
for each gene. These cutoffs were then applied to the trans-
formed (z score) gene expression data from the other
cohorts described in the Results section and the microarray
data from CHAARTED trial patients [18]. Low term was
assigned for the lower tertile, and wt for the mid and high
tertiles of each gene. TSGlow was considered when two or
more out of the three TSGs presented low expression and
TSGwt for the remaining cases.

CRPC-FS and OS, calculated from the date of start of ADT
to the time of developing CRPC, and to the time of death or
last follow-up visit, respectively, were analyzed by the
Kaplan-Meier method and compared by log-rank test.
CRPC-FS definition, treatment response criteria, and pro-
gressive disease definitions followed the Prostate Cancer
Working Group 2 criteria [19]. Univariate and multivariate
analyses of variables of interest were performed by a Cox
regression analysis. Analyses were performed with R soft-
ware (version 3.6.3; R Foundation for Statistical Computing,
Vienna, Austria).
3. Results

3.1. Patients, samples, and TSG expression signature

A total of 226 patients were enrolled in the study: 218 were
eligible and eight were excluded due to insufficient tumor
sample (n = 4) or RNA quantity (n = 4). Of the eligible
Table 1 – Characteristics of patients from the global cohorta

Global cohort ADT +

Patients, n (%) 218 125 (5
Age (yr)
Median (range) 66.4 (46.3–84.6) 66.6 (4
Tumor origin, n (%)
Primary 203 (93.1) 117 (9
Metastatic 15 (6.9) 8 (6.4)

Stage at diagnosis, n (%)
<IV 42 (19.3) 9 (7.2)
IV 165 (75.7) 116 (9
NA 11 (5) –

Gleason sum at diagnosis, n (%)
�7 53 (24.3) 22 (17
�8 158 (72.5) 102 (8
NA 7 (3.2) 1 (0.8)

Presence of visceral metastases, n (%)
Yes 33 (15.1) 25 (20
No 181 (83) 100 (8
NA 4 (1.9) –

Disease volume, n (%)
High 148 (67.9) 97 (77
Low 65 (29.8) 27 (21
NA 5 (2.3) 1 (0.8)

ECOG performance status score, n (%)
0 93 (42.7) 54 (43
1 or 2 114 (52.3) 69 (55
NA 11 (5.0) 2 (1.6)

ADT = androgen deprivation therapy; D = docetaxel; ECOG = Eastern Cooperative
a The p values are based on Fisher exact test and Wilcoxon Mann-Whitney U tes
(p < 0.05) are bold indicated.

b Five patients were excluded from survival analysis due to lack of complete fol
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patients, 125 were treated with ADT + D and 93 with ADT
alone (Table 1). Most formalin-fixed paraffin-embedded
(FFPE) samples were obtained from the primary tumor
(93.1%). The median follow-up was 46.3 (range 6.7–223.5)
mo. As shown in Figure 1A, 24.4%, 30.5%, and 23.9% of
patients were considered RB1low, PTENlow, and TP53low,
respectively. According to our criteria, 19.2% of patients
were TSGlow. Moreover, we explored whether there were
differences in AR expression between TSGlow and TSGwt

groups, observing that ARmRNA levels were lower in TSGlow

(p = 0.002; Fig. 1B).
Overall, there were no differences in clinical characteris-

tics between TSGlow and TSGwt (Supplementary Tables 1–6).
Regarding individual TSG RNA levels, low PTEN expression
correlated with de novo stage IV disease in the global series
(p = 0.022) and the ADT + D cohort (p = 0.004), and with vis-
ceral metastases in the ADT + D cohort (p = 0.049). More-
over, RB1 (p = 0.017) and TP53 (p = 0.047) expression
correlated with visceral metastases in the ADT cohort (Sup-
plementary Fig. 1–3).
3.2. Comparison between TSG determination by nCounter
and other techniques

In 60 patients, TSG mRNA was determined by both nCoun-
ter and RNA-Seq, observing a high correlation of mRNA
levels of each gene by both techniques (Supplementary
Fig. 4).

A targeted TSG mutation analysis was performed in 54
patients treated with ADT + D. Mutations in at least one
TSG were present in 30 patients (55.6%); RB1 was mutated
in 11 (20.4%), PTEN in 18 (33.3%), and TP53 in 19 (35.2%)
patients, whereas 14 (25.9%) presented mutations in more
D cohort ADT cohort p value

7.3) 93 (42.7)b

6.3–83.4) 66.1 (51–84.6) 0.467

3.6) 86 (92.5) 0.791
7 (7.5)

33 (35.5) <0.001
2.8) 49 (52.7)

11 (11.8)

.6) 31 (33.3) 0.004
1.6) 56 (60.2)

6 (6.5)

) 8 (8.6) 0.034
0) 81 (87.1)

4 (4.3)

.6) 51 (54.8) 0.002

.6) 38 (40.9)
4 (4.3)

.2) 39 (41.9) 0.777

.2) 45 (48.4)
9 (9.7)

Oncology Group; n = number of cases; NA = not available.
t for categorical and continuous variables, respectively. Significant p values

low-up data.
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Fig. 1 – (A) Venn diagram of the RB1low, PTENlow, and TP53low patients with complete follow-up in the global (ADT ± D) cohort. (B) Boxplot of androgen
receptor (AR) RNA expression levels (z score) according to TSG expression in the global (ADT ± D) cohort (Wilcoxon test; p value). (C) Kaplan-Meier curves
representing CRPC-FS and OS according to TSG expression and forest plots representing the univariate analysis in the ADT + D exploratory cohort.
ADT = androgen deprivation therapy; CI = confidence interval; CRPC = castration-resistant prostate cancer; CRPC-FS = CRPC-free survival; D = docetaxel;
LDH = lactate dehydrogenase; m: median months; OS = overall survival; TSG = tumor suppressor gene. Significant p values (p < 0.05) are bold indicated.
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than two TSGs and four (7.4%) in all three genes. Most of the
pathogenic variants were missense (46.9%) or nonsense
mutations (46.7%). Details of pathogenic mutations found
in each TSG are shown in Supplementary Table 7.

A significant correlation was observed between the pres-
ence of mutations in PTEN and low PTEN RNA levels
(p = 0.026; Supplementary Fig. 5A). The mutational status
of none of the individual TSGs was associated with clinical
outcomes (Supplementary Fig. 5B and 5C). The presence of
two or more TSG mutations (TSGmut) was correlated with
shorter CRPC-FS (hazard ratio [HR] 2, 95% confidence inter-
val [CI] 1.1–4, p = 0.036; Supplementary Fig. 5D).

IHC was carried out in tumor samples from 73 patients
from the ADT + D cohort with available tumor for IHC.
Finally, 48 (65.8%) samples were assessable for RB1, 52
(71.2%) for PTEN, and 56 (76.7%) for TP53. Thirty-eight
(79.2%) samples presented alterations in RB1, 26 (50%) in
PTEN, and 28 (50%) in TP53. Altered IHC for RB1 and PTEN
correlated significantly with low levels of RNA expression
(p = 0.007 and p < 0.001, respectively; Supplementary
Fig. 6A). The alteration by IHC of none of the individual TSGs
correlated with clinical outcomes, nor having two or more
altered TSGs (in 34 [66.7%] patients; Supplementary
Fig. 6B–D).

3.3. TSG mRNA expression signature in an exploratory
cohort

The series of 54 patients from the ADT + D cohort, with both
mutational and nCounter expression data, was considered
the exploratory cohort (Supplementary Table 8). In this
cohort, TSGlow correlated with shorter CRPC-FS (HR 2.8,
95% CI 1.4–5.4, p = 0.002; Fig. 1C). Moreover, the model that
included the TSG assessed by mRNA expression (Akaike
Information Criterion [AIC] score: 275.8) fitted better than
the one that included their mutational status (AIC: 279.8).

3.4. TSG mRNA expression signature validation in patients
treated with ADT + D

Internal validation of the results was performed in the addi-
tional 71 patients treated with ADT + D (Supplementary
Table 8), where TSGlow correlated with lower CRPC-FS (HR
2.4, 95% CI 1.1–5.3, p = 0.033) and OS (HR 3.2, 95% CI 1.4–
7.3, p = 0.006). Moreover, TSGlow was independently associ-
ated with shorter CRPC-FS (HR 4.1, 95% CI 1.6–10.4,
p = 0.003) and OS (HR 3.7, 95% CI 1.6–8.7, p = 0.003; Fig. 2).

3.5. TSG mRNA expression signature in patients treated with
ADT alone

The established cutoffs were also analyzed in a cohort of 93
patients treated with ADT alone (Table 1). In this cohort,
TSGlow was not associated with either CRPC-FS (HR 1.4,
95% CI 0.8–2.3, p = 0.23) or OS (HR 1.6, 95% CI 0.9–2.7,
p = 0.091; Fig. 3).

3.6. Exploring TSG mRNA expression as a predictor of
treatment benefit

To explore whether TSGmRNA expression was a predictor of
treatment benefit, we analyzed together the patients treated
with ADT + D and those treated with ADT (global cohort;
Please cite this article as: N. Jiménez, M. Garcia de Herreros, Ò. Reig et al., De
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Table 1). TSGlow patients had shorter CRPC-FS (HR 1.9, 95%
CI 1.3–2.7, p = 0.001) and OS (HR 1.8, 95% CI 1.2–2.7,
p = 0.002) than TSGwt patients. Moreover, TSGlow correlated
independently with shorter CRPC-FS (HR 1.8, 95% CI 1.3–2.7,
p = 0.002) and OS (HR 2, 95% CI 1.3–3.1, p = 0.002; Fig. 4).
However, no interaction between TSG expression and treat-
ment was observed regarding CRPC-FS (p = 0.11) or OS
(p = 0.45).

3.7. Independent series validation

In the microarray data from the CHAARTED trial [18], 27.5%
of the patients were classified as TSGlow patients. In the
multivariate analysis, TSGlow was independently correlated
with shorter CRPC-FS (HR 2.2, 95% CI 1.1–4.3, p = 0.02;
Fig. 5A).

Analyzing TSGlow and TSGwt populations separately
according to treatment, we found that there were no signif-
icant differences in CRPC-FS (p = 0.3) or OS (p = 0.5) between
TSGlow patients treated with ADT + D or ADT alone. More-
over, TSGwt patients treated with ADT + D had the longest
CRPC-FS (HR 0.4, 95% CI 0.2–0.6, p < 0.001) and OS (HR
0.4, 95% CI 0.3–0.7, p = 0.001), compared with ADT-treated
patients. However, as observed in our series, no interaction
between the TSG expression and treatment was observed
regarding CRPC-FS (p = 0.116) or OS (p = 0.051; Fig. 5B
and 5C).

3.8. Individual assessment of TSG

In the global cohort, RB1low (HR 1.6, 95% CI 1.2–2.2,
p = 0.006) and PTENlow (HR 1.8, 95% CI 1.3–2.5, p < 0.001)
correlated with CRPC-FS. Moreover, RB1low (HR 1.6, 95% CI
1.1–2.2, p = 0.018), PTENlow (HR 1.7, 95% CI 1.2–2.3,
p = 0.003), and TP53low (HR 1.5, 95% CI 1.1–2.2, p = 0.023)
correlated with OS (Supplementary Fig. 7). In the multivari-
ate analysis, RB1low correlated with CRPC-FS (HR 1.5, 95% CI
1–2.1, p = 0.03), PTENlow correlated with CRPC-FS (HR 1.6,
95% CI 1.2–2.3, p = 0.003) and OS (HR 1.5, 95% CI 1.1–2.2,
p = 0.018), and TP53low correlated with OS (HR 1.6, 95% CI
1.1–2.4, p = 0.013; Supplementary Fig. 8).

The multivariate analysis including TSGlow was the best
accurate model for both CRPC-FS and OS compared with
those that included the low expression from an individual
gene (Supplementary Table 9).

4. Discussion

In this study, we show that the mRNA expression of the
TSGlow signature (low expression of two or more of the TSGs
RB1, PTEN, and TP53) is independently associated with
lower CRPC-FS and OS in mHSPC patients. The prognostic
value of the TSG signature was validated independently in
the molecular dataset from patients included in the
CHAARTED trial [2,18]. Besides, we found that the lower
expression of any of the individual genes was also indepen-
dently associated with an adverse prognosis, although the
TSGlow signature was a better model for CRPC-FS and OS
prediction. We also explored whether the TSG signature
could be useful to predict treatment benefit. We found that
in the CHAARTED series, when analyzing TSGlow and TSGwt
velopment and Independent Validation of a Prognostic Gene Expression
ostate Cancer Patients, Eur Urol Oncol (2024), https://doi.org/10.1016/j.
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FS = CRPC-free survival; D = docetaxel; LDH = lactate dehydrogenase; m = median months; OS = overall survival; TSG = tumor suppressor gene. Significant p
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populations separately according to treatment, there were
no significant differences in CRPC-FS and OS between
TSGlow patients treated with ADT alone or ADT + D. More-
over, TSGwt patients treated with ADT + D presented longer
CRPC-FS and OS than those treated with ADT alone. How-
ever, no interaction was observed between the TSG signa-
ture and treatment in either our study or the CHAARTED
series. Thus, we may not conclude that TSGlow patients do
not benefit from adding D to ADT.

As one of the established standards of care for mHSPC is
ADT + ART, it will be relevant to test the TSG signature in
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patients receiving this treatment strategy, as well as in
those treated with ADT + ART + D [9–11], in order to eluci-
date whether they would benefit from D addition.

While most of the previous studies have focused on
studying TSG genomic alterations or IHC protein expression,
just a few of them have analyzed TSG RNA expression. Both
IHC and next-generation sequencing (NGS) have been
proved to be able to correlate TSG alterations with clinical
outcomes, but they have not been compared rigorously
[12,15]. One study conducted in tumor-derived xenografts,
which studied TSG alterations by IHC, RNA expression, and
evelopment and Independent Validation of a Prognostic Gene Expression
ostate Cancer Patients, Eur Urol Oncol (2024), https://doi.org/10.1016/j.

https://doi.org/10.1016/j.euo.2023.12.012
https://doi.org/10.1016/j.euo.2023.12.012


B A 
19.8 m 
12.1 m 

Log-rank p < 0.001 Log-rank p = 0.002 

53.5 m 
38.6 m 

0.1 1 10
Treatment (ADT vs ADT+D)

Disease volume
Visceral metastases

Gleason at diagnosis
Stage at diagnosis

TSGlow p = 0.001

CRPC−FS univariate analysis

p = 0.005

 TSGlow

Hazard ratio (95% CI)
0.1 1 10

Treatment (ADT vs ADT+D)
Disease volume

Visceral metastases
Gleason at diagnosis

Stage at diagnosis
TSGlow p = 0.002

OS univariate analysis

p = 0.009

 TSGlow

p < 0.001

Hazard ratio (95% CI)

0.1 1 10
Treatment (ADT vs ADT+D)

Disease volume
Visceral metastases

Gleason at diagnosis
Stage at diagnosis

TSGlow p = 0.002

CRPC−FS multivariate analysis

p = 0.002

 TSGlow

p = 0.029

Hazard ratio (95% CI)
0.1 1 10

Treatment (ADT vs ADT+D)
Disease volume

Visceral metastases
Gleason at diagnosis

Stage at diagnosis
TSGlow p = 0.002

OS multivariate analysis
 TSGlow

p < 0.001

Hazard ratio (95% CI)

Time (mo) Time (mo)

Fig. 4 – Kaplan-Meier curves representing (A) CRPC-free survival (CRPC-FS) and (B) overall survival (OS) according to TSG expression and forest plots
representing the univariate and multivariate analyses in the global (ADT ± Docetaxel [D]) cohort. ADT = androgen deprivation therapy; CI = confidence
interval; CRPC = castration-resistant prostate cancer; m = median months; TSG = tumor suppressor gene. Significant p values (p < 0.05) are bold indicated.

Log-rank p = 0.23 

17.8 m 
17.1 m 

Log-rank p = 0.089 

43.8 m 
43.1 m 

Time (mo) Time (mo)

Fig. 3 – Kaplan-Meier curves representing CRPC-FS and OS according to TSG expression in the ADT cohort. ADT = androgen deprivation therapy;
CRPC = castration-resistant prostate cancer; CRPC-FS = CRPC-free survival; m = median months; OS = overall survival; TSG = tumor suppressor gene.

E U R O P E A N U R O L O G Y O N C O L O G Y X X X ( X X X X ) X X X – X X X 7

Please cite this article as: N. Jiménez, M. Garcia de Herreros, Ò. Reig et al., Development and Independent Validation of a Prognostic Gene Expression
Signature Based on RB1, PTEN, and TP53 in Metastatic Hormone-sensitive Prostate Cancer Patients, Eur Urol Oncol (2024), https://doi.org/10.1016/j.
euo.2023.12.012

https://doi.org/10.1016/j.euo.2023.12.012
https://doi.org/10.1016/j.euo.2023.12.012


Log-rank p < 0.001 

6.2 m 
9.1 m 

14.8 m 
29.4 m 

Log-rank p = 0.007 

40.7 m 
29.8 m 
32.9 m 
57.4 m 

A 

Log-rank p < 0.001 

29.4 m 
9.1 m 

Log-rank p = 0.3 

14.8 m 
6.2 m 

Log-rank p = 0.5 

32.9 m 
40.7 m 

Log-rank p = 0.001 

57.4 m 
29.8 m 

B 

C 

0.1 1 10
Treatment (ADT vs ADT+D)

Disease volume
Prior local therapy

ECOG 1-2
Age

TSGlow p = 0.02

CRPC−FS multivariate analysis

p < 0.001

 TSGlow

Hazard ratio (95% CI)
0.1 1 10

Treatment (ADT vs ADT+D)
Disease volume

Prior local therapy
ECOG 1-2

Age
TSGlow

OS multivariate analysis

p = 0.024

 TSGlow

p = 0.019

Hazard ratio (95% CI)

Time (mo) Time (mo) Time (mo)

Time (mo)Time (mo)Time (mo)

Fig. 5 – (A) Forest plots representing the multivariate analysis of TSG expression of microarray data from the CHAARTED trial for CRPC-free survival (CRPC-FS)
and overall survival (OS). Kaplan-Meier curves representing (B) CRPC-FS and (C) OS according to TSG expression in the CHAARTED trial segregated by
treatment: ADT + docetaxel (D) arm and ADT arm. ADT = androgen deprivation therapy; CI = confidence interval; CRPC = castration-resistant prostate cancer;
ECOG = Eastern Cooperative Oncology Group; m = median months; TSG = tumor suppressor gene. Significant p values (p < 0.05) are bold indicated.

E U R O P E A N U R O L O G Y ON C O L O G Y X X X ( X X X X ) X X X – X X X8
DNA sequencing, found a good genotype-to-phenotype cor-
relation [20]. Here, we have studied TSG alterations by DNA,
RNA, and IHC in a subset of patients. We have observed a
correlation between mRNA expression of PTEN and PTEN
mutations, and between mRNA and IHC expression of PTEN
and RB1. For TP53, we could not find a strong association
between IHC patterns, mutations, and RNA expression. As
prostate tumor tissues show low basal expression of TP53,
IHC cannot detect TP53 loss that results from nonsense, fra-
meshift, or indel alterations that may also lead to low RNA
expression [21,22]. Moreover, there is a lack of standardized
criteria for TSG determination by IHC in prostate cancer.

Focusing on DNA-RNA discordance, cases with lower RNA
expression without any genetic alteration may be explained
by post-transcriptional alterations, changes in methylation
Please cite this article as: N. Jiménez, M. Garcia de Herreros, Ò. Reig et al., D
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patterns, or interactions with noncoding RNA that can affect
mRNA expression without the presence of a mutation [23].
Moreover, some genetic variants such as copy number alter-
ations or large deletions are often not detected by NGS con-
ventional assays. In our study, mRNA expression of TSG was
a better outcome predictor than genomic alterations.

TP53, PTEN, and RB1 are recurrently altered in CRPC. In
this context, the presence of two or more TSG alterations
(mainly defined by genomic loss or mutations or altered
protein expression by IHC) is associated with aggressive
clinical features, resistance to conventional therapies,
aggressive evolution, and NE dedifferentiation [12,24–26].
A gene expression signature reflecting TP53/RB1 loss is asso-
ciated with diminished responses to AR antagonists and
reduced survival [27].
evelopment and Independent Validation of a Prognostic Gene Expression
ostate Cancer Patients, Eur Urol Oncol (2024), https://doi.org/10.1016/j.
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It is known that molecular alterations of primary pros-
tate cancer may differ from those of CRPC. Mateo et al.
[15] studied genomic aberrations in matched hormone-
naïve and CRPC biopsies from 61 patients who developed
mCRPC, and found differences in TP53, RB1, and PI3K/AKT
mutational status between same-patient samples. Further-
more, cell plasticity–related changes that occur as a result
of ARTs [24,28] may not be present in treatment-naïve pri-
mary tumors. Notably, in one study, 40% of TP53/RB1-
deficient tumors were classified as AR-active adenocarcino-
mas; therefore, NE differentiation is not a necessary conse-
quence of TP53/RB1 inactivation [26]. Similarly, in a prior
study in mHSPC, we did not find a correlation between
TSG and NE markers mRNA expression [17]. Thus, the
absence of NE markers expression in mHSPC does not
exclude the presence of TSG alterations. Moreover, we
found in the present study that lower TSG expression corre-
lated with lower AR expression. Thus, TSG alterations in
noncastrated tumors may preclude the development of NE
dedifferentiation and androgen-independent progression
during CRPC progression [29].

Several studies addressed the clinical implications of TSG
genomic alterations in mHSPC patients. In a large massively
parallel targeted sequencing study, where patients with
altered TSG were defined by harboring any copy number
loss or deleterious mutation of one or more TSGs, authors
found that patients with prostate tumors with compound
TSG mutations had poorer outcomes [13]. A meta-analysis
and systematic review of 11 studies including 1682 mHSPC
patients found that high-volume and de novo mHSPC were
enriched with TP53 alterations [30]. We found in the pre-
sent study that lower PTEN levels correlated with de novo
mHSPC in the global and ADT + D series and the presence
of visceral metastases in the ADT + D series, and that lower
RB1 and TP53 expression correlated with visceral metas-
tases in the ADT series. However, analyzing together, we
did not find differences in clinical characteristics between
TSGlow and the rest of the patients, and notably, the TSGlow

signature was an independent adverse prognostic factor for
CRPC-FS and OS [17]. This may suggest that this molecular
signature may be more accurate than clinical characteristics
in predicting the outcome in mHSPC patients.
5. Conclusions

In conclusion, our study shows the adverse prognostic fac-
tor of the TSGlow signature in mHSPC patients. The investi-
gation of this signature in patients receiving ADT + ART or
the triple therapy with ADT, ART, and D may be of interest
in order to determine the benefit of D addition according
to the TSG status. Overall, the adverse clinical implications
of having TSG alterations support the investigation of new
therapeutic strategies in metastatic prostate cancer patients
with these molecular alterations.
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