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Structural and functional changes of the brain are assumed to contribute to excessive cocaine intake, craving, and relapse in
cocaine use disorder (CUD). Epigenetic and transcriptional changes were hypothesized as a molecular basis for CUD-associated
brain alterations. Here we performed a multi-omics study of CUD by integrating epigenome-wide methylomic (N = 42) and
transcriptomic (N = 25) data from the same individuals using postmortem brain tissue of Brodmann Area 9 (BA9). Of the N=1 057
differentially expressed genes (p < 0.05), one gene, ZFAND2A, was significantly upregulated in CUD at transcriptome-wide
significance (q < 0.05). Differential alternative splicing (AS) analysis revealed N = 98 alternatively spliced transcripts enriched in axon
and dendrite extension pathways. Strong convergent overlap in CUD-associated expression deregulation was found between our
BA9 cohort and independent replication datasets. Epigenomic, transcriptomic, and AS changes in BA9 converged at two genes,
ZBTB4 and INPP5E. In pathway analyses, synaptic signaling, neuron morphogenesis, and fatty acid metabolism emerged as the most
prominently deregulated biological processes. Drug repositioning analysis revealed glucocorticoid receptor targeting drugs as most
potent in reversing the CUD expression profile. Our study highlights the value of multi-omics approaches for an in-depth molecular
characterization and provides insights into the relationship between CUD-associated epigenomic and transcriptomic signatures in

the human prefrontal cortex.
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INTRODUCTION

Cocaine use disorder (CUD) is a globally prevalent substance use
disorder (SUD) with around 4.2 million people worldwide being
diagnosed with CUD [1]. Individuals suffering from CUD present
with compulsive cocaine use patterns, strong cocaine craving, and
high rates of relapse even after prolonged time of abstinence [2].
Currently, there is no FDA-approved pharmacotherapy for CUD
and treatment is mainly focused on symptom reduction [3].
Neurobiological alterations in the brain are assumed to contribute
to the observed clinical symptoms in CUD [4]. This is supported by
neuroimaging studies that have shown profound structural and
functional alterations in the brain in individuals with CUD [5, 6]. In
addition to striatal brain regions involved in reward processing [7],
frontal cortical areas that are neuroanatomically connected with

limbic structures, are implicated in addiction due to their
importance for inhibitory control [5, 6, 8].

Dynamic changes in epigenetics and gene expression were
hypothesized as a molecular basis of CUD-associated brain
changes [9, 10]. So far, the majority of studies investigating brain
tissue focused on rodent models of cocaine addiction, identifying
specific genomic loci to be differentially methylated in brain
regions such as the prefrontal cortex (PFC) [11] and nucleus
accumbens (NAc) [12]. The prefrontal cortex with subregions, such
as Brodmann Area 9 (BA9) is of particular interest in studying SUDs
as it's involved in executive control and, hence, plays a major role
in the preoccupation/anticipation stage in the neurocircuitry of
addiction [8]. Gene expression levels are tightly regulated by
epigenetic mechanisms and DNA methylation (DNAm) changes
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especially in gene promoter regions were shown to alter transcript
abundance [13]. In line with this, differential gene expression in
rodent models of cocaine addiction was reported in multiple brain
regions where transcription factors of the immediate early gene
(IEG) family such as Egri, Nr4al, and Fos were found to be
differentially expressed [14-17]. At the transcriptome-wide scale,
differentially expressed genes were consistently enriched in
biological processes related to neurotransmission and ion channel
activity, but also metabolic alterations related to lipid metabolism
and ATP homeostasis were found [14].

Few studies have been performed investigating genome-wide
DNAm or transcriptomic changes in CUD in human postmortem
brain tissue. Two epigenome-wide studies using reduced repre-
sentation bisulfite sequencing (RRBS) in a cohort of N=25
individuals with CUD and N =25 control individuals identified
N=145 and N=173 CUD-associated differentially methylated
regions (DMRs) in the NAc [18] and in the caudate nucleus (CN)
[19], respectively. Investigating the same brain regions in a
different cohort (N=25 CUD cases, N=20 controls), another
study characterized transcriptome-wide gene expression changes
and reported on the upregulation of synaptic transmembrane
transporter genes while immune processes were downregulated
[20]. The largest study in the human PFC investigating CUD-
associated transcriptomic changes (N=19 CUD, N =17 controls)
identified N =883 nominally significant (p <0.05) differentially
expressed genes (DEGs) in neuronal nuclei from the Brodmann
Area 46 subregion [21]. CUD-associated co-expression networks
were enriched for GTPase signaling and neurotransmitter secre-
tion. Regarding epigenomic alterations in the PFC, we were
previously able to identify 20 CUD-associated DMRs in Brodmann
Area 9, a subregion of the PFC, and further detected that co-
methylation networks in CUD were enriched for synaptic signaling
processes [22]. Although epigenetics represents an important
regulatory mechanism for transcription, the co-regulation of
DNAm and gene expression in the same brain samples has not
yet been investigated in CUD, limiting the comparability of results
between epigenetic and gene expression studies.

In addition to epigenetics and transcription, alterations of
alternative splicing might contribute to the neurobiological
changes in the CUD brain, as shown in other SUDs. Previous
studies using postmortem human brain tissue from individuals
with alcohol use disorder (AUD) [23-25] and opioid use disorder
(OUD) [26] detected differential alternative splicing in transcripts
of genes implicated in neuropsychiatric disorders, such as BINT,
FLOTI, and ELOVL7 suggesting RNA splicing alterations to be a
further molecular mechanism in the neurobiology of SUDs. While
a recent study using a cocaine self-administration model in mice
showed widespread changes in alternative splicing in multiple
brain regions [27], no systematic evaluation of splicing alterations
in human CUD was performed so far.

In the present study, we aimed to characterize the molecular
underpinings of CUD in the human prefrontal cortex by applying
a multi-omics analysis approach. We investigated differentially
expressed genes in postmortem brain tissue from deceased CUD
cases compared to well-matched controls and integrated them
with the results of our epigenome-wide DNAm analysis from the
same individuals of the BA9 subregion of the human PFC [22].
Further, we characterized differential alternative splicing in BA9.
We then performed replication analysis of CUD-associated DEGs
in two other independent RNA-seq datasets of human dIPFC.
Gene expression data, including alternative splicing results, and
DNA methylation data were then integrated and put into a
biological context. Finally, we addressed the urgent need for
novel therapeutic approaches, by performing a drug reposition-
ing analysis based on the CUD-associated transcriptional profile
in BA9.

Collectively, our multi-omics study design represents an
integrated analysis of DNAm and gene expression data together
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with alternative transcript splicing that highlights the role of
synaptic and metabolic alterations in CUD and the glucocorticoid
receptor as a pharmacological candidate target.

METHODS

Postmortem human brain tissue

The sample of human postmortem brain tissue of BA9 was obtained from the
Douglas Bell Canada Brain Bank (DBCBB). Inclusion criteria were age >18 and
a diagnosis of cocaine dependence based on DSM-IV. Throughout this study,
we will nevertheless use the more recent terminology from DSM-5 i.e.,
cocaine use disorder. Individuals were excluded from the study if they were
diagnosed with severe neurodevelopmental or psychiatric disorders other
than depressive disorders or had received additional diagnoses of substance
use disorders other than alcohol use disorder. All included subjects were
male and of European American descent. Demographic information for the
cohort of N=42 BA9 tissue donors is described in Table ST and for the
subset of N =25 individuals with RNA-seq data in Table 1.

DNA methylation data generation

DNA extraction was performed as described in [22]. In brief, DNA was
extracted from the full set of N =42 BA9 samples using the DNeasy Blood
and Tissue Kit (Qiagen, Hilden, Germany). The epigenome-wide DNAm
profile was determined using the lllumina MethylationEPIC BeadChip v1
(850k) (lllumina, San Diego, CA, USA). During sample processing and
analysis of DNAm levels, randomization was applied based on CUD status
and known comorbidities such as AUD and depressive disorders.

Table 1. Demograpic data for the N =25 Brodmann Area 9
postmortem human brain tissue donors with RNA-seq data.
Variable cub No CUD p value
N 13 12 -
Age (years(SD)) 449 52.6 0.10
(11.3) (10.7)
Sex (male/female) 13/0 12/0 -
pH (SD) 6.49 6.28 0.05
(0.27) (0.22)
PMI (hours(SD)) 55.63 55.90 0.98
(23.00) (20.91)
RIN (SD) 7.63 7.36 0.51
(0.79) (1.18)
Depressive disorder (MDD, 5 (38.5) 2 (16.7) 0.44
NOS), yes (%)
Alcohol use disorder, yes (%) 3 (23.1) 2 (16.7) 1.00
Cause of death
Accidental 2 (15.4) 4 (33.3) 0.56
Natural 2 (15.4) 7 (58.3) 0.07
Suicide 9 (69.2) 1(8.33) 7.01e-03
Toxicology at death
Cocaine or metabolites at 10 (76.9) 0 (0) 4.41e-04

death, yes (%)

Alcohol, yes (%) 4 (30.7) 1(8.33) 0.37
Opioids, yes (%) 1 (7.69) 0 (0) 1.00
Methamphetamine and 2 (15.4) 0 (0) 0.50
metabolites, yes (%)

Cannabinoids, yes (%) 1(7.69) 1(8.33) 1.00

1 (7.69) 0 (0) 1.00
2(154) 4 (33.3) 0.56
1(7.69) 1(8.33) 1.00

SD standard deviation, PMI post-mortem interval, RIN RNA integrity
number, MDD major depressive disorder, NOS depressive disorder not
otherwise specified, p value, derived from CUD/no CUD comparison using
a t test for continuous and chi-squared test for categorical variables.

Benzodiazepines/GHB, yes (%)
Antidepressants, yes (%)
Antipsychotics, yes (%)
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Generation of gene expression data

Using the miRNeasy Tissue/Cells Advanced Micro Kit (Qiagen, Hilden,
Germany), total RNA was extracted from the N =42 BA9 samples using
~5mg of frozen tissue per sample. The RNA integrity number (RIN)
was measured using a TapeStation 4200 (Agilent, Santa Clara, CA, USA)
resulting in a total of N=25 samples remaining for RNA sequencing
(RIN >5.5). Following ribosomal RNA (rRNA) depletion, libraries
were prepared using the NEBNext Ultra Il Directional RNA Library
Prep Kit (New England Biolabs, Ipswich, MA, USA) followed by
sequencing with an average of 60 million read pairs (2x100bp) per
sample. RNA sequencing was performed using an lllumina NovaSeq
6000 device.

Statistical analyses

All statistical analyses in the R programming environment were performed
using R version 4.2.1. If not otherwise stated, adjustment for multiple
testing was performed using the Benjamini-Hochberg (FDR) procedure
[28]. An analysis workflow for the multi-omics study of DNA methylation
and gene expression in CUD is shown in Supplementary Fig. S8.

DNA methylation analysis

Methylation data was analyzed as part of the Poisel, Zillich [22] study
where a detailed description of the analysis pipeline can be found in
the methods section. In brief, DNA methylation levels were preprocessed
using an in-house quality control (QC) pipeline based on CPACOR [29].
The neuronal cell fraction was estimated based on the Houseman
algorithm [30] using a dIPFC reference dataset [31]. Quantile-normalized
beta values were derived from raw-intensities, followed by logit-
transformation to M values of methylation. An epigenome-wide
association study (EWAS) was performed using a linear regression model
while adjusting for covariates that have a known effect on DNA
methylation such as age, postmortem interval (PMI), pH of the brain
tissue, neuronal cell fraction, comorbid depressive and/or alcohol use
disorder, and technical factors. Downstream analyses based on the
results of the EWAS included the identification of differentially
methylated regions (DMRs), a gene ontology enrichment analysis using
CUD-associated CpG sites (Passoc<0.001), and a network analysis in
WGCNA to evaluate CUD-associated co-methylation modules.

Gene expression analysis

Sequencing quality metrics were inspected using FastQC v.0.12.1
confirming all 25 fastq files to be used in further analysis. Reads were
mapped to the GRCh38 genome primary assembly using STAR v.2.7.10b
[32]. Quantification of features was performed using the featureCounts
implementation in the R package Rsubread v.2.12.3 [33] with the genome
annotation gtf-file v.43 from GENCODE (https://www.gencodegenes.org).
The raw count matrix was imported in DESeq2 v.1.38.3 [34] and
differential expression (DE) testing was performed while adjusting for
the covariates age, PMI, brain pH and RIN resulting in the following
DESeq2 design formula: mRNA ~ CUD + age + PMI + pH + RIN. Fold-
change cut-offs for DEGs were an absolute log2 fold change of larger
than 0.07, corresponding to a 5% change in transcript abundance.
Statistical significance cut-offs were p < 0.05 for nominal significance and
q<0.05 for a 5% FDR-adjusted significant association with CUD. All
covariates included in the DESeq2 model are known to influence the
gene expression profile and were confirmed in a variance partition
analysis in our dataset using the R package variancePartition v.1.28.7
(Supplementary Fig. S1a). Variables characterized by median variance
explanation (var.exp) larger than 0.01 across all transcripts were included
as covariates into the statistical model. As comorbid MDD and AUD
explained only minimal variance in the expression data (median
var.exp=0) and only 25 of the 42 samples were available in the
expression analysis, MDD and AUD were not included as covariates in the
statistical model. A sensitivity analysis was performed including MDD and
AUD as covariates (Supplementary Fig. S1b) confirming a strong
correlation between the log2 fold-changes of the nominally significant
results.

Cell type deconvolution analysis
Based on reference signatures of gene expression derived from single-cell
studies, the distribution of cell types in bulk expression data can be
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inferred using cell type deconvolution algorithms such as CIBERSORT [35].
We used a curated set of cell type-specific marker genes of the human
prefrontal cortex based on a study from Yu and He [36] where a gene was
required to have a 10-fold stronger expression in a specific cell type
compared to all other cell types to be considered a marker gene. DESeq2-
normalized counts of the BA9 expression dataset were used and cell type
deconvolution was performed using the CIBERSORT R script v1.04. To test
for significant differences in cell type distribution in samples from
individuals with and without CUD, we performed a Bayesian estimation
of the difference in means and evaluated the 95% high-density interval.
The Bayesian testing was based on BEST [37] as implemented in the R
package BayesianFirstAid v.0.1. Further, an overlap analysis of DEGs in cell
type markers was performed in GeneOverlap v.1.34.0 [38] using the 10-fold
marker gene list from [36] in a Fisher test.

Functional enrichment analysis

To characterize altered biological functions related to the observed gene
expression differences, we performed a gene set enrichment analysis
(GSEA) for Gene Ontology (GO) terms using the gseGO function from the R
package clusterProfiler v.4.6.2 [39]. The DESeq2 Wald statistic defined as
the log2FC divided by its standard error was used for ranking of the results.
A significance threshold of q < 0.05 (5% FDR) was considered statistically
significant. Results of the GSEA were visualized using the emapplot
function in enrichplot v.1.18.3.

Weighted gene co-expression network analysis

To identify CUD-associated co-expression patterns, we constructed co-
expression modules using network analysis in weighted gene co-
expression network analysis (WGCNA) (R package v.1.72.1 [40] and related
them to CUD and other phenotypic variables available in the DBCBB
cohort. Using the input matrix of normalized and variance stabilization
transformed (vst) gene counts from DESeq2, a soft power threshold of 9
was estimated to achieve the criterion of scale free topology (R? > 0.85).
For the construction of networks, we used the parameters minModule-
Size = 10, mergeCutHeight = 0.25, and maxBlockSize=36 000. The Pearson
correlation of the module eigengene derived from each of the resulting
n =27 co-expression modules with the phenotypes of interest including
CUD was calculated to identify significant associations of the modules with
phenotypes (Fig. S3A). Downstream analyses of modules significantly
associated with CUD included a GO enrichment analysis using the genes
assigned to the modules using the full genome as the background. Next,
module genes were ranked by the product of gene significance*module
membership to identify hub genes. The top 10% of module hub genes
were further investigated by constructing protein-protein interaction (PPI)
networks. For this, Cytoscape v.3.9.1 [41] with stringApp v.1.7.0 [42] was
used. A detailed description of the PPI visualization settings in Cytoscape is
found in [22].

Replication analysis of differential expression results

Replication analysis of CUD-associated DEGs was performed in two
independent datasets where RNA-seq data from postmortem human
brain tissue of the prefrontal cortex from individuals with and without CUD
was available. As the first replication dataset, BA9 bulk RNA-sequencing
data from N =7 individuals with CUD and N =14 control individuals
originating from the National PTSD Brain Bank (NPBB) [43] was used.
Phenotypic information for the BA9 replication cohort is shown in
Table S17. RNA-seq data sequenced and pre-processed as described
in [44] was analyzed for CUD-associated differential gene expression in
DESeq2 using donor age, sex, PMI, and RIN as covariates. A comparative
overview on variance explanation by covariates used in the analysis of
discovery and replication cohorts is provided in Supplementary Fig. S4. The
second replication cohort was based on a neuronal-specific RNA-
sequencing dataset (GEO accession number: GSE99349) as described in
[21]. In this study, neuronal nuclei were isolated from postmortem human
brain tissue of the Brodmann Area 46 subregion of the dIPFC that is
laterally adjacent to BA9. Here, bulk RNA-seq data was generated from
N =19 individuals with CUD and N =17 without CUD from a male mixed
ancestry cohort originating from the University of Miami Brain Bank (MBB).
Raw sequencing data from the replication cohort was downloaded from
GEO and processed using the same analysis pipeline as in the BA9
discovery sample: 1) mapping using STAR, 2) quantification using
featureCounts, and 3) DE analysis in DESeq2. For the replication analysis
in MBB data, we used the same statistical model as in the discovery
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analysis with differential expression testing for CUD while adjusting for
donor age, RIN, pH, and PMI. To explore the results, we first performed an
overlap analysis of nominally significant CUD-associated DEGs (p < 0.05)
identified in the three datasets. Second, a targeted look-up of effect sizes
(log2FC) and association p-values was performed for overlapping DEGs
across datasets and for the top findings from the BA9 discovery sample,
ZBTB4 and INPP5E. As an additional replication approach, we performed
rank-rank hypergeometric overlap (RRHO) using the R package RRHO2
v.1.0 [45] to evaluate convergent and divergent expression patterns at the
transcriptome-wide scale between studies. RRHO scores were generated
based on full differential expression statistics from discovery and
replication datasets followed by the evaluation of overlapping signatures
between studies using the hypergeometric testing procedure as imple-
mented in RRHO2.

Signature-based drug repositioning analysis

With the top 150 upregulated and downregulated genes ranked by the
DESeq2 test statistic from the differential expression analysis, the maximum
input size in the Connectivity Map (CMap) query tool (https://clue.io/query,
software version 1.1.1.43) was used to evaluate the connectivity of
expression signatures (Table S8). CMap query uses the L1000 assay from
the NIH LINCS project (https://lincsproject.org/) as a drug-gene expression
relationship database. In L1000, expression changes for a representative set
of 978 landmark transcripts are measured in response to treatment with a
perturbagen such as a pharmaceutical drug [46]. In addition to the
connectivity scores for individual perturbagens, CMap also provides
information on perturbagen classes and a GSEA output for pathways and
drug targets. Normalized connectivity scores and FDR-adjusted p-values for
perturbagens and GSEA results were obtained from the CMap query tool
and visualized as waterfall plots in R using ggplot2 v.3.4.2.

Differential splicing analysis

Alternative splicing was evaluated using the annotation-free quantification
approach of RNA splicing in LeafCutter v.0.2.9 [47]. The intron-centered
approach of LeafCutter allows for differential splicing analyses in short-
read sequencing datasets that have been difficult to access with previous
alternative splicing analysis methods. First, raw sequencing data were
aligned to the GRCh38 reference genome using STAR with an adapted
2-pass mapping procedure. For this, the first mapping step was performed
using a regular gtf-file-derived genome index. The resulting splice
junctions (SJ_out.tab-files) from the N =25 samples were combined and
filtered so that non-canonical junctions, junctions that were supported by
less or equal than 2 uniquely mapping reads, annotated junctions already
covered by the gtf-file, and duplicated junctions were removed. Using the
filtered splice junction output, a modified genome index was derived using
STAR in genomeGenerate mode. This extended genome index containing
information on gene annotation and splice junctions was used in the
second mapping step resulting in the final bam-file output after mapping.
Generation of junc-files, intron clustering, and differential intron excision
analysis was performed as outlined by the authors of leafCutter (https://
davidaknowles.github.io/leafcutter/) while including age, PMI, pH, and RIN
as covariates into the Dirichlet-Multinomial generalized linear model.
Default settings were used in the leafcutter_ds.R script i.e. maximum
cluster size =10, minimum samples per intron = 5, minimum samples per
group = 3, and a minimum coverage of 20 reads. The differential intron
excision analysis results in an estimate for the change in the percent
spliced in measure (APSI) for each intron in a cluster and an FDR-adjusted
p-value for the cluster in which the differential splicing events were
detected. Differential splicing events in clusters with |[dPSI|> 0.025 and an
FDR-adjusted g-value < 0.05 were considered statistically significant [26].
Visualizations for the differentially spliced clusters and genes were created
using the leafviz extension in leafCutter. GO enrichment analysis for genes
containing differentially alternatively spliced intron clusters was performed
using the enrichGO function with GO “BP” ontology terms in clusterProfiler.

Integrative gene locus analysis

Integrated visualization of functional genomics data was performed using
SparK v.2.6.2 [48]. Summary statistics from a meta-analysis GWAS of
cocaine dependence (CD) in an EA population (N = 6378) [49] was used to
cover SNPs that are associated with CD. The EWAS summary statistics from
[22] were used as the DNAm dataset. To prioritize the association results
for visualization, SNPs and CpG sites with nominal significant association
p-value (p < 0.05) were filtered from the GWAS and EWAS results. ChIP-seq
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datasets for different activating and repressing chromatin marks were
downloaded from ENCODE [50] as deposited in the Human Reference
Epigenome Matrix for dorsolateral PFC in males: ENCFF241REN (H3K4me1),
ENCFF752EVS (H3K4me3), ENCFF866IWY (H3K27ac), ENCFF149DDW
(H3K36me3), ENCFF784SSN (H3K9me3), ENCFF167ASN (H3K27me3). Big-
Wig files were converted to BedGraph using the UCSC bigWigToBedGraph
tool. Bam-files from the RNA-seq analysis were indexed using samtools
v.1.5 [51] and then converted to BedGraph using the bamCoverage
function from deeptools v.3.5.3 [52]. For the genetic dataset, we performed
an additional gene-based association analysis using Multi-marker Analysis
of GenoMic Annotation (MAGMA) [53]. Here, we aimed to quantify the
combined association of all SNPs annotated to a gene of interest with CUD
as the phenotype.

Multi-omics factor analysis

Multi-omics factor analysis (MOFA) [54] was used to jointly analyze the
DNAm and gene expression datasets in BA9 aiming for the identification of
CUD-associated factors. The factor analysis framework enables an improved
characterization of gene and pathway alterations across different omics
datasets by investigating the contribution of each omics view such as
DNAm or gene expression to a learned factor. Downstream analyses such as
GSEA enable the analysis of biological functions that are associated with a
factor based on the factor loading of features such as genes that contribute
to the biological pathway. As the DNAm input dataset for MOFA (R package
v.1.3.1), we used methylation M-values from the 20,000 most variant
promoter CpG sites (TSS200 and TSS1500 annotations) under the
assumption of their prominent role in regulating transcription levels of
nearby genes. Methylation data was extracted for the individuals that also
had expression data available (N = 25). For the expression dataset, we used
normalized and variance stabilization transformed counts from the 20,000
most variant genes to obtain an equal number of features in each view. The
MOFA model was trained on the matched DNAm and expression data from
N =25 individuals using default model options with a total of 10 factors
and the training options convergence_mode = “slow”, seed =42, and
maxiter = 10 000. Association of factors with phenotypes was evaluated
using the correlate_factors_with_covariates function. GSEA was performed
on negative and positive weights individually using the run_enrichment
function based on the ¢5.go.bp.v2023.1.Hs.symbols.gmt gene set reference
file from MSigDB [55]. Functional characterization of DNAm weights was
performed by subsetting the top 2.5% of CpG sites from both sides of the
weight distribution on factor 9 resulting in N = 500 CpG sites with strongest
positive and negative weights on factor 9, respectively. Next, GO
enrichment analysis was performed in missMethyl v.1.33.1 [56] using the
full set of N=20,000 CpG sites as background.

GO enrichment analysis of CUD-associated gene sets
Convergence of CUD association signals at the pathway level was
evaluated by pathway enrichment analysis for GO terms using the
enrichGO function on the GO “BP” ontology in the compareCluster
functionality of clusterProfiler. A total of 10 gene lists were included in the
input dataset: 1) CUD-associated CpG sites (N =394, p>0.001) from the
EWAS of CUD [22], genes in the CUD-associated WGCNA methylation
modaules 2) blue (N =9201), 3) steelblue (N = 390), 4) brown (N = 5268), 5)
brown4 (N =205), 6) nominally significant DEGs (N=1057, p <0.05), 7)
genes in the CUD-associated WGCNA expression module yellow
(N=2517), 8) AS genes (N=98, g <0.05), 9) MOFA methylation weights
factor 9 (N=983 genes based on the 2.5 and 97.5 percentiles of the
weight distribution for CpG sites), and 10) MOFA methylation weights
factor 9 (N=1000 genes based on the 2.5 and 97.5 percentiles of the
weight distribution for genes). Pathways remaining statistically significant
after FDR correction (q < 0.05) were displayed in an enrichment map with a
pie plot visualization scheme for GO terms that were repeatedly identified
for the different gene lists.

RESULTS

Sociodemographic characteristics and cell type composition
estimation in the postmortem brain tissue cohort

We first assessed the phenotypic similarities between CUD cases
and controls. No significant differences were observed regarding
the pH value of the brain, postmortem interval (PMI), RNA integrity
number (RIN), and occurrence of comorbid depressive and alcohol
use disorders (Table 1). A significant difference was detected for
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suicide that was the most frequent cause of death in CUD
individuals (p =7.01e-03, Table 1). We further investigated the
variance partition of potential covariates in the RNA-seq dataset
(Supplementary Fig. S1a) and found age, PMI, brain pH, and RIN to
be associated with gene expression levels, and hence included
them as covariates in further analyses. To explore whether major
cell type composition could affect analysis results, we performed
a cell type deconvolution analysis using CIBERSORT based on
human PFC major cell type marker gene signatures (Supplemen-
tary Fig. S1b, Supplementary Table S2a). No significant differences
in the distribution of major cell types such as astrocytes,
oligodentrocytes, microglia, neurons and others were detected
between samples from individuals with and without CUD as
all 95% high-density intervals from the Bayesian estimation
contained 0 (Supplementary Table S2b).

Transcriptome-wide differential gene expression patterns in
CUD are related to synaptic signaling, ion transport, and
inflammatory processes

The transcriptome-wide analysis of differential expression in BA9
revealed a total of N= 1057 DEGs associated with CUD (p < 0.05).
Of these, N=378 were upregulated and N=679 were down-
regulated (Fig. 1a, Supplementary Table S3a, b). After adjustment
for multiple testing, ZFAND2A (Zinc Finger AN1-Type Containing 2A,
log2FC=0.43, p=1.98e-06, q=0.04), remained significantly
upregulated in individuals with CUD (5% FDR). Results were stable
in a sensitivity analysis when AUD and MDD status were included
as additional covariates in differential expression testing (Supple-
mentary Fig. S1c). To evaluate whether BA9 DEGs are significantly
enriched within cell type-specific genes of the human PFC, we
performed an overlap analysis, using the same set of major brain
cell type marker genes as in the cell type composition analysis.
Upregulated DEGs were significantly enriched for neuron marker
genes exclusively, whereas downregulated DEGs were significantly
enriched in markers of non-neuronal cell types such as astrocytes,
endothelial cells, and oligodendrocytes (Fig. 1b).

Next, we were interested in the biological functions related to
the identified CUD-associated DEGs. After adjusting for multiple
testing, we detected N = 276 statistically significant GO terms for
positive GSEA normalized enrichment scores (NES, Supplementary
Table S4) and N =782 significant GO terms for negative NES
(Supplementary Table S5). Among significantly enriched path-
ways, the largest positive NES was detected for “vesicle-mediated
transport in synapse” (NES =2.63, g = 5.31e-15), whereas “super-
oxide metabolic process” (NES = —2.43, g = 2.08e-06) was the top
finding with negative NES. To identify functional modules of
pathways consisting of multiple GO terms related to similar
biological functions, we created an enrichment map (emap)
visualization based on the significant findings from GSEA. For GO
terms with negative NES, we detected one large cluster related to
inflammatory and immune signaling and several smaller clusters
consisting of pathways involved in angiogenesis, extracellular
matrix (ECM) organization, and gliogenesis (Fig. 1c). Two major
clusters emerged for pathways with positive NES. The first was
related to neurotransmission and synaptic signaling whereas the
second cluster consisted of GO terms involved in transmembrane
transporter activity (Fig. 1d).

Network analysis highlights fatty acid metabolism and
morphogenesis processes in CUD

We next performed WGCNA to investigate gene co-expression
patterns in CUD and detected a total of N =27 co-expression
modules (Supplementary Fig. S2a, 2b). Co-expression module
yellow was significantly correlated with CUD (r=—0.47,
p=0.02) while no significant association with other known
covariates was observed (Supplementary Fig. S2a). Module
yellow consisted of N=2517 genes and module membership
was highly correlated with gene significance for CUD (r=0.61,
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p < 1e-200, Supplementary Fig. S2¢, Table S6). GO enrichment
analysis for module yellow genes revealed N =519 statistically
significant GO terms after multiple testing correction (Supple-
mentary Table S7). Strongest associations were detected for
“small molecule catabolic process” (g =2.22e-11), and more
specifically, “carboxylic acid catabolic process” (g = 1.5%9e-09,
Supplementary Fig. S2d). After clustering the significant terms, a
prominent GO term cluster related to fatty acid metabolism was
detected, while another cluster was related to organ develop-
mental and morphogenesis processes. To further characterize
WGCNA expression module yellow, we generated a protein-
protein interaction (PPI) network based on module hub genes
and identified APOE (N=9 edges), ERBB2 (N=8 edges),
ALDH7A1 (N =7 edges), PPARA (N =7 edges), and TLR4 (N=7
edges) as the most strongly connected nodes in the PPl network
(Supplementary Fig. S3, Supplementary Table S6).

Genes with alternative splicing events in CUD are involved in
cell junction formation and the morphogenesis of axons and
dendrites

To investigate alternative splicing in CUD and its potential
relevance for contributing to altered neurobiological functions in
the brain, we performed a differential alternative splicing analysis
using LeafCutter [47]. After multiple testing correction, we
identified a total of N= 108 differentially spliced intron clusters
in BA9 (FDR < 0.05, Fig. 2a, Supplementary Tables S8-10). These
clusters were distributed among N =98 genes that we further
denote as alternatively spliced (AS) genes. One of the top findings
in our AS analysis of CUD was BINT (Bridging Integrator 1, q = 7.8e-
04, Fig. 2b) previously identified as a conserved AS genes in other
substance use disorders. We next investigated the biological
pathways enriched for alternative splicing events based on our list
of AS genes. Statistically significant enrichment after multiple
testing correction was detected for N=15 GO terms (Supple-
mentary Table S10). Strongest enrichment was found for GO terms
“cell junction assembly” and “neuron projection extension” (both
g = 3.62e-03). In the emap visualization of enriched GO terms with
a more lenient threshold of 25% FDR (q < 0.25), we detected a
well-connected cluster containing GO terms related to cellular
growth and cell-cell junction development, while also more brain-
specific processes such as myelination and the extension of axons
and dendrites were found (Fig. 2c). While differential alternative
splicing itself contributes to altered biological functions by
inducing different abundances of transcript isoforms, this effect
might be potentiated by differential gene expression. We thus
investigated the overlap of AS and DEGs in CUD and identified 8
genes that were differentially spliced and differentially expressed
in BA9: ITPKB, CPLX1, HLA-F, INPP5E, GALNTS, IGFBP6, ZBTB4, and
BCAT2 (Fig. 2d).

Replication analysis in independent cohorts reveals FKBP4
and HSPAG6 as conserved DEGs in CUD

To evaluate the potential replication of CUD-associated DEGs in
other RNA-seq datasets of human PFC, we performed an overlap
analysis of nominally significant DEGs (p < 0.05) across studies.
CUD-associated differential expression testing was performed in
two independent replication datasets, the first originating from
BA9 (BA9 replication, bulk RNA-seq) and the second from BA46
(BA46 replication, neuron-specific RNA-seq, Supplementary
Fig. S4). Two genes, HSPA6 and FKBP4, were shared upregulated
DEGs at nominal significance and showed comparable effect
sizes (log2FC) in CUD across all three PFC datasets (Fig. 3a, c). As
HSPA6 is a spliceosome-associated gene with conserved
differential expression across datasets, we performed a look-
up of genes related to the KEGG Spliceosome pathway
(hsa03040) in DE results from our discovery cohort (Fig. 3b).
Here, we aimed to address the hypothesis of spliceosomal
differential gene expression as a potential mechanism for
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Fig. 1

Differential expression analysis in CUD suggests synaptic signaling and immunological alterations in Brodmann Area 9. a Volcano

plot of the differential expression (DE) analysis showing the N =378 upregulated (red) and N =679 downregulated genes (blue) at nominal
significance (p < 0.05). Solid black line indicates nominal significance (p < 0.05), dashed gray line indicates transcriptome-wide significance
(FDR g < 0.05). b Results of the overlap analysis for upregulated (up) and downregulated (down) DEGs among cell type-specific marker genes.
Green color depicts the odds ratio (OR) of overlap, p-values inside the panels indicates significance of overlap based on Fisher-Test. Gene-set
enrichment analysis (GSEA) was performed for the DEGs in BA9 ranked by the Wald test statistic from DESeq?2. Statistically significant results
(g <0.05) from GSEA separated by c negative and d positive normalized enrichment scores (NES) are shown in an enrichment map
visualization. N.S. = not significant, OPC = oligodendrocyte progenitor cell.

splicing alterations in CUD [57]. HSPA6 was the spliceosome-
associated gene showing strongest CUD-associated expression
changes in BA9 (log2FC=2.59, p=0.002). We detected six
additional spliceosome-associated genes that were among
nominally significant DEGs: HSPATA (log2FC=0.71, p =0.034),
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CRNKL1 (log2FC=-0.19, p=0.011), LSM6 (log2FC= —0.24,
p =0.014), SRSF4 (log2FC = —0.14, p =0.022), SNRPG (log2FC =
—0.20, p =0.037), and TRA2A (log2FC = —0.14, p = 0.036).
Using rank-rank hypergeometric overlap (RRHO) visualization for a
more unbiased evaluation of convergent and divergent gene
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Fig. 2 Differential alternatively spliced genes in CUD are related to neuron morphogenetic processes. a Volcano plot of the differential
alternative splicing (AS) results in Brodmann Area 9 (BA9). Statistically significant intron clusters (N = 108) identified by LeafCutter (q < 0.05) were
annotated by gene name while dots represent individual introns of an intron cluster. Introns highlighted in red (dPSI>0) are more abundant in
CUD while introns highlighted in blue (dPSI<0) are less abundant in CUD. b Results of the differential AS analysis at the cluster and gene level for
one of the top findings, an intron cluster (clu_14172_-) in the Bridging Integrator 1 (BIN1) gene. Upper panel: visualization of BINT exons and
introns with percent spliced in (PSI) measures related to the significant cluster clu_14172_-. The table indicates delta percent spliced in (dPSI)
values from the CUD vs. Ctrl comparison. Lower panel: gene-level summary of all intron clusters detected in BINT. FDR g-values are shown below
cluster names. ¢ GO enrichment analysis for the N =98 AS genes harboring differentially statistically significant (g < 0.05) intron clusters in CUD.
d Overlap of findings from differential expression (DE) analysis (N = 1057 DEGs at p < 0.05) and differential AS analysis.

expression patterns across studies, we found strong convergent Drug repositioning analysis highlights glucocorticoid receptor
overlap between the BA9 discovery and BA9 replication datasets targeting drugs to reverse the CUD gene expression profile

indicating similar patterns of CUD-associated expression deregula- To evaluate the potential use of small molecule drugs to revert
tion (Fig. 3d). In the comparison with neuron-specific expression data the gene expression pattern of CUD, we performed drug
from BA46, we found prominent divergent gene expression patterns repositioning analysis based on the L1000 assay as implemented
between datasets, while convergent expression patterns were in CMap (Supplementary Fig. S5a), using the top 150 up- and
detected in the shared upregulated genes across studies (Fig. 3e). downregulated genes as input (Supplementary Table S11).
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Fig. 3 Replication analysis of CUD associated transcriptomic alterations in independent datasets. a Overlap of nominally significant
(p < 0.05) differentially expressed genes across datasets reveals two shared DEGs, HSPA6 and FKBP4. The replication datasets were based on
N =21 BA9 samples from the National PTSD Brain Bank (NPBB) and neuronal-specific transcriptomic data of N =36 BA46 samples available
under GEO accession number GSE99349 (BA46 replication). b HSPAG6 is the strongest spliceosome-associated DEG in BA9. ¢ Results of the look-
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Among the results with negative normalized connectivity score
(NCS), i.e. perturbagens that revert the DE profile in CUD,
the most significant finding for small molecule drugs after
multiple testing correction was the glucocorticoid receptor
agonist medrysone (NCS= —1.78, g =2.2e-16, Supplementary
Fig. S5b). Glucocorticoid receptor agonists were the only FDR-
significant perturbagen class overrepresented among CMap
GSEA results (Supplementary Fig. S5c). When we further
investigated connectivity scores for all glucocorticoid receptor
targeting drugs including agonists and antagonists in CMap, we
found exclusively significant negative connectivity scores
(Supplementary Fig. S5d) suggesting glucocorticoid receptor
targeting molecules as potential pharmacological drugs to
revert the CUD expression changes in BA9. In line with this
finding, the biological pathway “response to glucocorticoid”
(NES = —1.54, g =0.019, Supplementary Table S5) was among
the FDR-significant pathways with negative NES in the GSEA
analysis of DEGs from BA9.

Findings of the integrated analysis of DNA methylation and
gene expression data converge at the gene and

pathway levels

As DNA methylation data was available and previously analyzed
for the same cohort in BA9, we next aimed to integrate findings
from the epigenome-wide and transcriptome-wide studies on the
gene-level, applied multi-omics factor analysis, and performed an
integrative functional GO-term enrichment analysis across all
—omics layers.

Gene-level integration of epigenomic, transcriptomic and splicing
alterations highlights ZBTB4 and INPP5E in CUD. Of the over-
lapping genes between the differential methylation, expression,
and alternative splicing analyses, two genes were consistently
altered across all the investigated molecular views in BA9:
ZBTB4 (Zinc Finger And BTB Domain Containing 4) and INPP5E
(Inositol polyphosphate-5-phosphatase E) (Fig. 4a, Supplementary
Table S12). Both genes were characterized by a hypomethylated
CpG site and increased transcript levels in CUD (Fig. 4b). For
ZBTB4, the strongest association for a CpG site was found for
cg03443505 (chr17:7387573, B = —0.84, p = 1.01e-05). ZBTB4 was
upregulated with a log2FC of 0.08 (p =0.015) and it contained
the differentially spliced intron cluster chr17:clu_10246_-
(g =0.028). The strongest association for CpG differential
methylation in the INPP5E gene was found for cg18558462
(chr9:139334381, 3= —0.93, p=28.55e-03). It was differentially
expressed with log2FC of 0.17 (p =0.025) and intron cluster
chr9:clu_25078_- was differentially alternatively spliced
(g =0.015). In the replication datasets, we detected conserved
transcript upregulation of ZBTB4 (BA9 replication, log2FC =0.12,
pval=0.21; BA46, log2FC=0.12, pval=0.09) and INPP5E (BA9
replication, log2FC=0.11, pval=0.47; BA46, log2FC=0.08,
pval=0.49), however not statistically significant. To deeper
characterize the ZBTB4 and INPP5E gene loci in BA9 and
specifically in the context of CUD, we performed an integrative
gene locus visualization approach by combining GWAS, EWAS,
alternative splicing, and RNA-seq results for CUD with ENCODE
ChlIP-seq reference data from human dorsolateral prefrontal
cortex. ChIP-seq data confirmed the presence of activating
chromatin marks at promoter (H3K4me4, H3K27ac) and gene
body regions (H3K36me3) at ZBTB4 and INPP5E gene loci in the
human dIPFC. In addition, for ZBTB4, multiple nominally
significant associations for SNPs and CpG sites were detected
that were most prominent within intronic and intergenic regions,
while no SNP but CUD-associated CpG sites were identified in the
INPP5E gene locus (Fig. 4c). In line with this, when we quantified
the association of genetic variants with CUD at the gene level
using a gene-based association analysis in MAGMA, we detected
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stronger association for ZBTB4 with CUD (Z=1.74; p=0.04)
compared to INPP5E (Z = —1.14; p = 0.87).

Multi-omics factor analysis confirms cell junction, synaptic signaling,
and neurogenesis as important biological processes in CUD. The
integration of DNA methylation and gene expression data as
described above was based on results of the EWAS, DE, and AS
analyses depicting one possible way of integrating multiple
omics datasets. In addition, multi-omics analysis tools such as
MOFA enable an integrated analysis of omics datasets in a
single statistical framework. Using MOFA on our DNA methyla-
tion and gene expression data from BA9, we identified one
factor representation of the multi-omics dataset (factor 9) that
was significantly correlated with CUD (r= —0.48, p = 0.02) and
age (r=0.47, p=0.02, Supplementary Fig. S6a, b). Factor 9
displayed significantly smaller factor values in CUD cases
compared to individuals without CUD in a Wilcoxon test
(p =0.02, Supplementary Fig. S6¢c). When we extracted the CpG
sites with the strongest weights on factor 9, c¢g23859635
annotated to MTA3 was the CpG site with the strongest positive
weight on factor 9 (w=0.31), while cg24621354 in the gene
TES displayed the strongest negative weight (w= —0.33,
Supplementary Fig. S6d, Supplementary Table S13). In the
gene expression dataset, the small GTPase RAB6A had the
strongest positive weight (w=0.07), while HIVEP2 had the
strongest negative weight (w = —0.05) on factor 9 (Supple-
mentary Fig. S6e, Table S13). Results of a GSEA on negative
expression weights on factor 9 revealed FDR-significant
(g <0.05) enrichment for synaptic signaling, cell junction
organization, and neurogenesis pathways, confirming the
results from the previous analyses. In contrast, GSEA on
positive expression weights revealed enrichment for cellular
respiration and small molecule metabolic processes (Supple-
mentary Fig. S6f, Supplementary Table S14). When we used
missMethyl to investigate the biological pathways for DNA
methylation features with strong weights on factor 9, we
detected enrichment for similar biological pathways as in the
analysis of expression features. While none of the enrichment
results remained FDR-significant after multiple testing correc-
tion, strongest enrichment for CpG sites with negative weights
on factor 9 was detected for intracellular calcium concentration
regulation and synaptic vesicle related processes (Supplemen-
tary Fig. S6g, Supplementary Table S15). The pathways showing
the strongest enrichment for the positive weight CpG sites
were related to monocarboxylic acid and specifically, lactate
transmembrane transporter activity, and ER stress pathways
(Supplementary Fig. S6h, Supplementary Table S15).

Integrative functional analysis reveals pathway modules related to
neurotransmission, cell differentiation, cell junction organization,
and fatty acid metabolism. In an integrative functional analysis
approach, we used all available information from our study on
DNA methylation, gene expression, and alternative splicing
alterations in CUD to identify potential convergence of association
results at the pathway level in BA9. We thus performed a GO
enrichment analysis based on 10 curated lists with CUD-associated
genes derived from EWAS, DE analysis, alternative splicing
analysis, WGCNA modules based on DNA methylation and
expression data, and MOFA (Supplementary Table S16). In the
enrichment map for GO terms, we identified several functional
modules where the same biological pathway was detected for
multiple gene lists at FDR-adjusted statistical significance
(g <0.05) indicating convergence of the results from different
analysis approaches (Supplementary Fig. S7). The two largest
functional modules (FM) contained pathways involved in neuro-
transmission and synaptic signaling (FM1), while FM2 was
enriched for neuron and glial cell differentiation, growth, and
morphogenesis processes. Two further prominent modules were
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Fig. 4 Convergence of DNA methylation, alternative splicing, and gene expression alterations in CUD at the ZBTB4 and INPP5E gene loci.
a Overlap of differential expression (DE), differential DNA methylation (DiffMeth), and differential alternative splicing analyses suggest two
genes, ZBTB4 and INPP5E, where alterations are consistently associated with CUD. b Relationship between DE and DiffMeth genes in Brodmann
Area 9 based on log2FC (y-axis) from DE analysis and effect size  from linear regression in the EWAS of CUD (x-axis). For both genes, ZBTB4
and INPP5E (highlighted in red), hypomethylation of the strongest significant CUD-associated CpG site and increased transcript levels are
observed. ¢ Integrated visualization of functional genomic datasets for ZBTB4 and INPP5E gene loci. CUD-associated genomic variants (SNPs
p <0.05 from [49]), CUD-associated CpG sites (p < 0.05 from [22]), RNA-seq data and intron clusters (q < 0.05) from the present study were

DEGs p<0.05

868
ZBTB4
2
INPPSE

N

AS genes

Differential Expression (log2FC)

DiffMeth genes p<0.001

ZBTB4 gene locus

Chr17: 7,449,366-7,494,263
[ 5 kb

o
—th

=

&
ChIP et
le ¥

r 5 kb

| ek il ll:
R U

L mMmALL NAN
L uhm.JLle L.MJ..JA._.LJLLJ

Wl bl

Chr17: 7,449,366-7,494,263

log2FC = 0.08

RNASeq val= 0.015

Ctrl
CcuD

Splicing

CHRNB1
ZBTB4
SLC35G6
POLR2A

H3K4me1(activation, enhancer)

H3K4me3 (activation, promoter)

H3K27ac (activation, promoter)

H3K36me3 (activation, gene body)

H3K9me3 (repression)

H3K27me3 (repression)

Methylation (Poisel et al. 2023)

SNPs (Cabana-Dominguez et al. 2019)

6
29 genes 33 genes
3
‘PiwiL1
LY6G6E
GUCA1A .
o
1 \-‘PLEKHN1
S .
o e | 3% e°
CENPF INPPSE, o3 | i * .
0 < TMEMiT6 ZBTBA o g0 |hgee o oo .
o TOB1 E ° °
NFKB2 *Sixs * - . CAT CRLS1
|5
. P o
o .
)
PLAC8 4B
-3 ‘OR7AS
o
SERPINA5
58 genes 63 genes
-6
-6 -3 0 3 6
Differential Methylation (effect size)
INPP5E gene locus
Chro: 136,418,618-136,449,845
e da log2FC = 0.17
og = 0.
[ RNA(;:fq pval= 0.025
0 cup
. Splicing
e o PMPCA
St - — & INPP5E
w=—-H-ii-  SEC16A
ENCODE ChiP
dIPFC male
1421 5 kb
H3K4me1(activation, enhancer)
ok (USSP U PRSI - b st adad
69.0
J H3K4me3 (activation, promoter)
ol .
1421
i H3K27ac {activation, promoter)
LR VSRY NN 1 ookl
26
H3K36me3 (activation, gene body)
ol MJLL“L T TTNY
o9r
H3K9me3 {repression)
ol
131
H3K27me3 {repression)
ol
Chro: 136,418,618-136,449,845
-ogioP [ Sk
Methylation (Poisel et al. 2023)
ol
-logioP [
SNPs (Cabana-Dominguez et al. 2019)

ok

visualized together with ENCODE ChlIP-seq data for different chromatin marks in human dorsolateral prefrontal cortex.
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related to synapse and cell junction organization (FM3) and fatty
acid metabolism (FM4).

DISCUSSION

By applying a multi-omics data integration approach on DNA
methylation and gene expression data from postmortem human
brain tissue we aimed for a deeper understanding of the
neurobiology of CUD in the human prefrontal cortex. At the
gene level, our differential expression analysis suggests two
candidates, FKBP4 and HSPA6, which were replicated as nominally
significant findings in two independent cohorts. In addition, our
multi-omics analyses highlight ZBTB4 and INPP5E, that were
consistently altered across omics analyses in BA9 and displayed
consistent upregulation patterns in independent replication
datasets. At the pathway level, we found converging evidence
for CUD-associated DNAm and transcriptional alterations that
were related to neurotransmission, fatty acid metabolism, and
changes in neuronal morphology.

Analysis of the transcriptome in BA9 revealed ZFAND2A as the
DEG showing the strongest association with CUD. ZFAND2A is a
canonical heat shock gene in humans encoding a zinc-finger
containing protein that is involved in the regulation of proteaso-
mal protein degradation [58, 59]. It was further identified as a DEG
in a study on transcriptomic signatures of Alzheimer’s disease (AD)
[60]. Another AD-related finding emerged in co-expression
network analysis. APOE showed the strongest connectivity in the
PPl network for module yellow genes and has been intensively
characterized due to its association with age of onset in AD [61].
While SUDs and neurodegenerative disorders such as AD depict
different neuropsychiatric disorders based on the current under-
standing of disease mechanisms, CUD and AD share brain atrophic
changes as a clinical symptom [62] and our results suggest that
there might be shared molecular mechanisms involved.

Previous studies have identified differential alternative splicing
in AUD [25] and OUD [26] in the human brain, however, RNA
splicing alterations have not been characterized in human CUD so
far. In the differential alternative splicing analysis, we found
N = 98 statistically significant genes containing AS intron clusters.
Interestingly, among our top findings, we found Bridging
Integrator 1 (BINT) for which differential alternative splicing in
the brain has been described in OUD. BINT was the only
differential AS gene in OUD that was conserved across all
investigated brain regions; dIPFC, NAc, and midbrain [26]. Further,
AS events in Bin1 were identified in the mouse brain in a study on
splicing alterations associated with cocaine self-administration
[27]. As dendrite and axon morphogenesis processes were among
the enrichment results for AS genes in BA9, we hypothesize that
AS is directly related to neuroplastic changes in the CUD brain.
Mechanistically, AS processes change the abundance of transcript
isoforms with different biological functions that might contribute
to the neuroadaptations in CUD. We explored the mechanism of
spliceosomal gene expression alterations as a potential contribu-
tor to differential AS events in CUD. Exposure to cocaine was
previously hypothesized to alter spliccosomal gene expression
[57] and our results suggest splicecosomal genes such as HSPA6
and HSP1AT1 as DEGs in BA9. As spliceosomal gene alterations were
also detected in the replication analysis with HSPA6 as a shared
upregulated DE gene across studies, AS events might be an
important mechanism in CUD contributing to neurobiological
changes in the PFC.

In the last step of the RNA-sequencing analysis, we aimed to
address the urgent need for novel pharmacotherapeutic
approaches for the treatment of CUD by performing a drug
repositioning analysis. We detected glucocorticoid receptor-
targeting drugs having consistently negative connections with
the CUD expression profile in BA9. In addition, FKBP4, an
important regulator of glucocorticoid receptor signaling was
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identified as a conserved upregulated DEG in CUD based on
three independent dIPFC datasets. FKBP4 has a key role in the
nuclear translocation of the glucocorticoid receptor, as it replaces
FKBP5 upon cortisol binding to the receptor complex leading to its
nuclear translocation [63]. Pharmacological targeting of glucocor-
ticoid receptor signaling was tested in rodent models of cocaine
addiction [64-66]. Reduced behavioral response to cocaine was
observed when glucocorticoid receptor antagonists such as
mifepristone were applied [64]. In contrast, corticosterone was
shown to promote cocaine intake in rats [65, 66]. In the drug
repositioning analysis, results for glucocorticoid receptor agonists
were more prominent compared to antagonists which appears to
be in conflict with previous literature. However, glucocorticoid
receptor antagonists such as mifepristone also displayed sig-
nificant negative connectivity scores with the BA9 expression
signature supporting previous findings. Further, synthetic gluco-
corticoid receptor agonists such as dexamethasone were shown
to impair cocaine self-administration in rats [65] indicating a more
complex relationship between the endogenous glucocorticoid
system and exogenously applied glucocorticoid receptor targeting
drugs. We thus suggest that glucocorticoid receptor targeting
drugs should be further investigated for their potential use as a
pharmacotherapy in CUD.

Using multi-omics data integration, we identified two genes,
ZBTB4 and INPP5E, for which CUD-associated alterations were
consistently detected across DNAm, gene expression, and
alternative splicing analyses. Both genes contained a hypomethy-
lated CpG site, stronger transcript expression was found in
individuals with CUD, and significant differentially spliced intron
clusters were identified. Despite being strongly expressed in the
brain and most prominently in neurons [67], the role of ZBTB4 in
neuropsychiatric disorders remains poorly understood. However,
due to the DNA binding capacity and its role as a transcriptional
repressor, ZBTB4 deregulation in CUD could lead to downstream
expression changes of its target genes. Further, protein-protein
interaction data suggests interaction of ZBTB4 with the transcrip-
tion factor PRDM5 as well as with the AP2M1 and AP2A1 subunits
of the adapter protein 2 (AP-2) complex that is involved in
endocytosis of neurotransmitter receptors in neurons [68, 69].
The second finding at the gene level, INPP5E, encodes a
phosphatidylinositol-phosphatase specific to cilia and INPP5E
mutations were found in Joubert syndrome which is characterized
by cerebellar and cerebral malformation [70]. A possible link to
CUD provide neuronal primary cilia, known as key signaling hubs
on somata enriched for G-protein-coupled receptors (GPCRs) [71].
As INPP5E is required for proper trafficking of GPCRs along ciliary
microtubules [72], deregulation of INPP5E might lead to aberrant
ciliary signaling that has recently gained attention in the addiction
field: cell type-specific ablation of neuronal primary cilia in mice
was shown to affect body weight as well as locomotor response to
psychostimulants such as cocaine [73] and amphetamine [74]. In
humans, further studies on INPP5E are required to evaluate its role
in SUDs.

Evaluating the convergence of results at the pathway level
revealed widespread molecular alterations in synaptic signaling
represented by functional module FM1 in the GO enrichment
analysis. Our findings are well in line with previous literature that
reported on cocaine-associated DNAm and expression changes in
genes involved in neurotransmission [14-16, 18, 75]. The observed
overrepresentation of neuronal marker genes in the upregulated
DEGs together with the non-neuronal marker gene enrichment in
the downregulated DEGs further suggests a particular importance
of CUD-associated expression changes in altering neurotransmis-
sion. In a study on CUD-associated gene expression changes in
neuronal nuclei of the human dIPFC [21], the authors found a
WGCNA co-expression module that was significantly associated
with CUD and was enriched for GTPase signaling and neuro-
transmitter transport that well matches our results in BA9.
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Neuronal function thus appears to be strongly influenced by
altered epigenetic and transcriptional programs in the CUD brain.

Functional modules FM2 and FM3 were related to pathways
involved in neuron, synapse, and axon morphogenetic processes.
This is supported by literature from animal models of CUD, where
alterations in dendritic branches and spine density were observed
in the PFC of cocaine self-administering rats [76]. Even a single
cocaine exposure was sufficient to reduce dendritic spine density
in neurons [77]. In summary, brain morphological changes depict
an interesting link between molecular and behavioral aspects of
addiction as neuroplastic changes are the basis of neurocircuit
alterations in the SUD brain that are related to compulsive drug-
seeking and relapse [78].

Another converging finding were metabolic changes related to
fatty acid metabolism (FM4). This finding was especially
prominent in the CUD-associated WGCNA module yellow where
we found a functional module of pathways related to fatty acid
metabolism. Further, results from MOFA suggested gene expres-
sion changes related to the electron transport chain as another
key metabolic pathway alteration. This is supported by findings
from animal models of cocaine addiction where a downregula-
tion of glycolysis and oxidative phosphorylation were observed in
the brain [79] while fatty acid metabolism genes were upregu-
lated [80]. It has to be noted that metabolic changes in CUD are
most likely not brain-specific but also appear on a systemic level
as individuals with CUD were found to have reduced body fat in
comparison to a healthy control group [81]. To follow up on this
finding, future studies should evaluate if interfering with fatty
acid metabolism could depict a therapeutic strategy in CUD as a
ketogenic diet has been shown to alter the behavioral response
to cocaine in rats [82].

There are some limitations that apply to our multi-omics
study of CUD. First, depicting an inherent limitation of analyses
in human postmortem brain tissue, our cross-sectional analysis
design can only reflect the endpoint of CUD, limiting the
identification of dynamic changes in DNAm and gene expres-
sion during the disease course. Second, considering the sample
size and the few DEGs at transcriptome-wide significance, it
remains unclear whether the findings are generalizable to the
general population. While we were able to replicate findings at
nominal significance, our studies lack statistical power in the
main and replication analyses. This highlights the need for
collaborative efforts to perform studies in larger and more
diverse cohorts, including meta-analyses. Third, while the
homogeneity of our sample consisting of only males from EA
ancestry is a strength in statistical analysis, sex-specific and
ancestry-related molecular signatures of CUD remain an open
question. At least in the analysis of the more diverse replication
cohorts we were able to show comparable CUD-associated
gene expression patterns when compared to our discovery
cohort. At the same time, we were not able to include
potentially important covariates, such as cocaine at death
and cause of death, in our analyses, because of statistical
power. Future efforts with larger sample sizes are needed to
investigate how these factors influence CUD-related gene
expression. Lastly, it cannot be assumed that differential mMRNA
expression necessarily leads to changes in protein expression.
Therefore, it will be crucial for future studies to combine
transcriptomics with proteomics.

In summary, our study identifies novel associations with CUD at
the gene level, confirms these on the multi-omics level, and
suggests differential alternative splicing as an important molecular
hallmark of CUD in the human prefrontal cortex. At the same time,
our study supports previous findings of synaptic signaling
alterations that have been robustly detected when investigating
the neurobiological effects of cocaine. We highlight drugs
targeting glucocorticoid receptor signaling to be further tested
as a treatment for CUD.
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