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To the Editor:

Diffusion MRI (dMRI) enables tumor characterization, providing
metrics of cellular properties that could become powerful bio-
markers.' However, the number and type of properties that can be
resolved depends on the number of images encompassing the dMRI
protocol. Long acquisition times are often required to support accu-
rate microstructural signal models, implying that these often remain
relegated to research studies.

Here, we investigated whether machine learning (ML) can
bridge the gap between routine, clinical dMRI and more advanced
quantitative  methods, such as joint diffusion-relaxation
(DR) imaging. We studied the ML-based prediction of advanced
DR parametric maps from short dMRI protocols that are feasible in
the clinic, focusing on pelvic and abdominal imaging of advanced
solid tumors.

Concise Methods
Complete methods in Data S1.

Data Acquisition

Data from two scanners were analyzed (1.5T Siemens Avanto; 3T
GE SIGNA Pioneer), which included anatomical T2w and DR
imaging (21 contrasts: 7 b-values acquired at 3 TE each). To simu-
late a more clinical protocol, we extracted a subset of five images
(the five lowest b-values acquired at the minimum TE, referred to
as “clinical protocol”). Conversely, the full set of 21 DR measure-
ments is referred to as “advanced protocol.” DR images were
denoised and corrected for Gibbs ringing and motion. Tumors
>1 cm in diameter were manually segmented on the T2w scan and
co-registered to DR space. Biopsies from one of the imaged tumors
were also collected.

Signal Models

CLINICAL METRICS. From the clinical protocol, we fitted a
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mono-exponential signal decay S=Spe™ on three scenarios: 1)
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the whole dMRI clinical set of images, obtaining the Apparent Dif-
fusion Coefficient (ADC) and the proton density Sp; 2) the lowest
b-values (0, 50, 100 s/mmz), obtaining a vascular-driven pseudo-
ADC (ADCygy); 3) the highest d-values (100, 400, 900 s/mm?),
obtaining an average, tissue ADC (ADCy,,,). Moreover, a proxy for
the vascular, pseudo-diffusion signal fraction was obtained by com-

So,slow

bining the Sy estimates from the first and last fits as Fr 1 — S

ADVANCED METRICS. The advanced protocol was taken as ref-
erence. It enables fitting a complex signal model, jointly capturing
T2 relaxation, intravoxel incoherent motion (IVIM) and tissue diffu-
sion, distinguishing between Gaussian/non-Gaussian diffusion. The
used DR signal representation will be referred as T2-IVIM-Kurtosis

and is: §=35 (feiw'ﬁ% +(1 ff)efbD'Jr%K(bD')zf%) (v/t indicate

vascular/tissue properties).

Prediction Strategies

We studied two predictions strategies (Fig. 1a): 1) signal-to-signal
predicts the DR signals of the advanced protocol given the clinical
protocol, so that T2-IVIM-Kurtosis can be fitted on such predicted
signals; 2) maps-to-maps predicts directly T2-IVIM-Kurtosis metrics
from ADCpg, ADCgey» F. Both approaches were implemented
using seven algorithms and deployed on a leave-one-out fashion. 6/7
algorithms worked voxel-wise, while one patch-wise.4 All
implementations are freely available online (https://github.com/

carlosmacarro/clinical2advanced).

Prediction Evaluation

We assessed the quality of the predicted T2-IVIM-Kurtosis metrics
through per-patient bias and dispersion indices (BI, DI), with
BI=P5¢(E) and DI = (Py5(E) — P5(E)), where Py is the Xth per-

prediction—ground truth

ground ruth the relative error. Pixel-level corre-

centile and £ =

lations between reference/estimated parameters were also computed.

Training Set Size

We assessed the impact of the training set size on the prediction by
systematically reducing the number of patients included in the
training set.

Results

Thirty-two patients with advanced solid tumors (Fig. S1 in the Sup-
plemental Material) were included (15 males, 64.31 £ 10.73 years),
16/32 scanned with the Siemens system (cohort 1) and 16/32 with
the GE system (cohort 2). In signal-to-signal, all algorithms capture
salient characteristics of the diffusion-T2 decay (Fig. S2 in the Sup-
plemental Material) and of anatomical features (mean relative errors
below 12%; Fig. 1b; Table S1 and Figs. S3 and S4 in the Supple-
mental Material). T2-IVIM-Kurtosis maps fitted to the signal-to-

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

1018

© 2024 The Author(s). Journal of Magnetic Resonance Imaging published by Wiley Periodicals

LLC on behalf of International Society for Magnetic Resonance in Medicine.


https://orcid.org/0000-0002-8238-2262
https://orcid.org/0000-0002-0945-3909
https://orcid.org/0000-0002-0945-3909
https://github.com/carlosmacarro/clinical2advanced
https://github.com/carlosmacarro/clinical2advanced
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjmri.29484&domain=pdf&date_stamp=2024-06-19

Macarro et al.: Diffusion-relaxation MRI enhancement in cancer

a Anatomical scan Reference LR RFR sINN mINN GBR ETR pRFR

signal-to-signal

e

5 b-value x 1 TE 7 b-value x 3TE Hepalocéllular
\ carcinema

/maps—to—maps

5b-value x 1 TE

C signal-to-signal maps-to-maps

Reference mINN mINN

s ol

Reference T2t (ms)

140 o I 140
Predicted T2t (ms)

3 o

Reference K

ol
ADC (um?/ms) ADC (pmzlms)

FIGURE 1: (a) Graphical description of the two approaches compared in the study. (b) Example of liver DR images (reference and
predicted) form a 65-year-old female patient (cohort 1) who suffered from a primary hepatocellular carcinoma, alongside percentage
relative error maps and mean percentage relative error of the entire hepatocellular carcinoma. An orange arrow indicates the
hepatocellular carcinoma and green arrows point toward the healthy liver. (b.a) Images acquired at b= 1600 s/mm? and
TE = 105 msec with unseen predictions and error maps; (b.b) images acquired at b = 400 s/mm? and TE = 120 msec with unseen
predictions and error maps. (c) Example of reference and predicted T2-IVIM-Kurtosis maps obtained from both signal-to-signal and
maps-to-maps strategies (images from the same hepatocellular carcinoma seen in b). (d.a) H&E from a biopsy of the hepatocellular
carcinoma seen in b and ¢, alongside ADC map and reference and predicted kurtosis (K) maps. (d.b) Biopsy of liver metastasis of a
47-year-old female melanoma patient (cohort 2) alongside the ADC map and reference and predicted T2t maps of the entire lesion.
In both cases, the H&E shows the existence of different microstructural environments within the tumor, a finding that is line with the
heterogeneity also seen on maps such as ADC, K or T2t. LR=linear regression; RFR =random forest regressor; ETR = extra trees
regressor; GBR = gradient boosting regressor; sINN = single-layer neural network; mINN = multi-layer neural network.

2.5 o 2.5/0
Predicted K

signal output show less variability between algorithms than those
predicted from maps-to-maps. K and T2t are qualitatively worse in
maps-to-maps (Fig. 1c). Biopsies reveals the existence of a variety of
intra-tumor cellular characteristics (eg, active cancer and necrosis).
All MRI metrics (both clinical and advanced) reveal intra-tumoral
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heterogeneity, mirroring the histological ground truth. However,
advanced metrics such as K and 72t enable the quantification of
non-Gaussian diffusion and T2 relaxation, potentially giving extra
information than protocols not including high 4 and muldple TE
(Fig. 1d; Fig. S5 in the Supplemental Material).
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FIGURE 2: (a) Distribution of mean Bl and DI of each predicted T2-IVIM-Kurtosis metric/algorithm combination, for both signal-
to-signal and maps-to-maps prediction strategies. Metrics are differentiated by shape and algorithms by color. Points show a trend
to cluster by metric rather than algorithm. Both Bl and DI are lower (better) for the signal-to-signal approach (note the different
y-axis range for signal-to-signal vs. maps-to-maps). Cohort 2 presents worse Bl and DI for both strategies. (b) Impact of the training
set size on signal-to-signal predictions. On top: overall mean Bl and DI as a function of the training size. In the middle: Bl and DI for
every algorithm as a function of the training set size. On the bottom: Bl and DI of every DR metric as a function of the training set
size. LR = linear regression; RFR =random forest regressor; ETR = extra trees regressor; GBR = gradient boosting regressor;
sINN = single-layer neural network; mINN = multi-layer neural network.

Mean BI and DI are lower for signal-to-signal than maps-to-
maps. A greater variation is seen between metrics than between algo-
rithms, and such variation is pronounced in maps-to-maps. In gen-
eral, ML algorithms achieve better performances in cohort 1 than
2 (lower BI and DI; Fig. 2a; Figs. S6 and S7 in the Supplemental
Material). No statistical differences between algorithms are seen, for
a fixed prediction strategy (Fig. S8 in the Supplemental Material).
Pixel-level correlations between reference and predicted DR signals
are above 0.8 for both cohorts but lower correlations are seen
between reference and predicted metrics (Fig. S9 in the Supplemen-
tal Material).

BI and DI decrease as the training size increases. It stabilizes
around N = 5 patients. mINN exhibits low BI and DI even with
only N =2 training cases. DI’s fluctuations in the range 5-15
patients are mainly caused by D, (Fig. 2b; Fig. S11 in the Supple-
mental Material).

Discussion

We investigated whether ML can enhance the amount of informa-
tion on tissue microstructure that can be extracted from clinically
viable dMRI scans. It appears feasible to gain insight on DR proper-
ties from shorter dMRI protocols at fixed TE in advanced solid
tumors, using small training cohorts. To achieve this, predicting rich
DR protocols and then fitting advanced signal models on the
predicted signals provides substantially better performances than
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predicting DR maps directly. In practice, training cohorts as small as
N = 5 scans may suffice for this purpose, and independently of the
specific algorithm used for prediction. Therefore, we recommend
that efforts of the community should focus on the signal prediction,
rather than on the unseen parametric maps.

We acknowledge some limitations of our approach. First, we
did not consider advanced deep learning algorithms, for example,
vision transformers, which we will study in future work. Second,
here we only provide a first pilot demonstration, which we aim to
confirm in larger cohorts, and in data from more MRI scanners and
acquisition protocols, beyond DR imaging.

Conclusions

For DR quantification in abdominal and pelvic solid tumors, using
ML to enhance the information that can be extracted from clinical
dMRI protocols appears feasible, with practical training sets of as
few as five scans.
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