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ERK1/2 mitogen-activated protein kinase dimerization is
essential for the regulation of cell motility
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ERK1/2 mitogen-activated protein kinases (ERK) are key regulators of
basic cellular processes, including proliferation, survival, and migration.
Upon phosphorylation, ERK becomes activated and a portion of it dimer-
izes. The importance of ERK activation in specific cellular events is gener-
ally well documented, but the role played by dimerization is largely
unknown. Here, we demonstrate that impeding ERK dimerization pre-
cludes cellular movement by interfering with the molecular machinery that
executes the rearrangements of the actin cytoskeleton. We also show that a
constitutively dimeric ERK mutant can drive cell motility per se, demon-
strating that ERK dimerization is both necessary and sufficient for induc-
ing cellular migration. Importantly, we unveil that the scaffold protein
kinase suppressor of Ras 1 (KSR1) is a critical element for endowing exter-
nal agonists, acting through tyrosine kinase receptors, with the capacity to
induce ERK dimerization and, subsequently, to unleash cellular motion. In
agreement, clinical data disclose that high KSRI expression levels correlate
with greater metastatic potential and adverse evolution of mammary
tumors. Overall, our results portray both ERK dimerization and KSRI1 as
essential factors for the regulation of cell motility and mammary tumor
dissemination.

Abbreviations

EGF, epidermal growth factor; ELK, Ets-like kinase; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase; IGF, insulin-like
growth factor; KSR, kinase suppressor of Ras; MEK, MAP kinase ERK kinase; MLC, myosin light chain; MLCK, myosin light chain kinase;
MYPT, myosin phosphatase regulatory subunit; PAGE, protein acrylamide gel electrophoresis; RAS, rat sarcoma; RSK, p90 ribosomal S6
kinase; RTK, receptor tyrosine kinase; siRNA, small interfering RNA.
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1. Introduction

Extracellular signal-Regulated Kinase 1 and 2
Mitogen-Activated Protein Kinases (ERK, hereafter)
are indispensable mediators in the transduction of
external stimuli-evoked signals to the interior of the
cell, unleashing biochemical processes and genetic pro-
grams fundamental for the regulation of basic cellular
outcomes such as proliferation, differentiation, sur-
vival, and motility, plus many other cell type-specific
cellular events essential for maintaining organismal
homeostasis. As such, unregulated signal flux through
the RAS-ERK axis underlies multiple pathological
conditions, including cancer [1-3].

A fraction of the ERK pool is known to dimerize in
response to its phosphorylation [4]. It has been pro-
posed that dimerization affects ERK activity levels [5].
In addition, dimerization critically impacts on the spa-
tial regulation of ERK activity [6] by specifically
orchestrating ERK extranuclear but not nuclear signal-
ing [7,8]. This is attained through the participation of
Scaffold Proteins, such as KSR1 (Kinase Suppressor
of Ras) [9]. This was the first mammalian scaffold
described as a protein binding to C/BRAF, MEK1/2
and ERK1/2 [9]. KSR1 is a ubiquitous, multidomain,
cytoplasmic protein that rapidly translocates to the
plasma-membrane upon activation to regulate RAS-
ERK signals [10,11]. KSRI, like other scaffold pro-
teins, provides spatial selectivity to ERK signals, by
regulating their activity in a sublocalization-specific
fashion [2,12-15]. In this respect, Scaffold Proteins
play an essential role in the process of ERK dimeriza-
tion, acting as platforms where ERK dimers are
assembled in the cytoplasm [7,10,16,17]. Accordingly,
genetic ablation of scaffolds like KSR1 and others
markedly impairs RAS-ERK signaling, thereby
thwarting RAS-driven tumorigenesis [18-20]. Likewise,
impeding ERK dimerization using small inhibitory
molecules also forestalls neoplastic progression of
tumor cells harboring RAS-ERK pathway oncogenes
[17,21]. However, detailed knowledge about the role
that dimerization plays on specific ERK-regulated cel-
lular events, both physiological and at the heart of car-
cinogenesis, is largely missing.

Cell motility is essential for many physiological pro-
cesses like embryogenesis, development, inflammation,
and wound healing, among others. It also plays a cen-
tral role in pathological conditions such as cancer,
underlying local invasion, intra and extravasation and
colonization of distant organs by tumor cells. Cellular
movement entails coordinated, spatio-temporally
defined events, including the initial formation of
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protrusions at the cell leading edge; the formation and
disappearance of cell-substrate adhesions; and the final
retraction of the cellular tail [22]. ERK activation
plays an important role in the regulation of these pro-
cesses, via phosphorylation of key components of the
molecular machinery that makes cellular movement
happen. Consistently, disruption of ERK signaling,
either by genetic mutations or pharmacological inhibi-
tion, prevents motility in many cell types [1,23,24].
Yet, as of today, whether ERK monomer/dimer status
impacts on its ability for regulating cell motility is
completely unknown.

Breast cancer is the most common malignancy
among women. It is well known that the RAS-ERK
pathway plays an important role in the onset, evolu-
tion and dissemination of mammary tumors. Both as
an effector pathway for the epidermal growth factor
receptor family and also as an upstream regulator of
the estrogen receptor, two critical participants in
breast neoplasia [25]. Primary tumors of ‘node-
positive’ patients display higher ERK activity than
those from ‘node-negative’ patients and survival ana-
lyses show that low ERK activity in primary tumors is
associated to relapse-free survival of patients [26], sug-
gesting a positive correlation between ERK activity
and the metastatic potential of breast tumor cells. But
the extent to which such ERK activity can be associ-
ated to its specific functions in monomeric or dimeric
form is absolutely unknown. In this study, we present
evidence demonstrating that ERK dimerization is both
necessary and sufficient for inducing cellular move-
ment in mammary tumor cells. Unveiling ERK dimers
as promising targets for preventing the metastatic pro-
gression in breast cancer.

2. Materials and methods

All data shown are representative of at least three
independent experiments.

2.1. Cell lines, drugs and reagents

Cell lines were grown in a humidified incubator at
37°C and 5% CO, in Dulbecco’s modified eagle
medium (DMEM) (Thermo Fisher, Waltham, MA,
USA) supplemented with 10% Fetal Bovine Serum
(Gibco, Grand Island, NY, USA) and 1%
Penicillin-Streptomycin (10 000 U-mL~")  (Thermo
Fisher). MCF-7 (RRID:CVCL_0031); MDA-MB-231
(RRID:CVCL_0062); HepG2 (RRID:CVCL_0027)
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and Caco2 (RRID:CVCL_0025) cells were obtained
from ATCC (Manassas, VA, USA). The identity of
the cell lines was verified by Short Tandem Repeat
(STR) authentication. STR identity profile was ana-
lyzed using multiplex PCR assays using the Promega
PowerPlex 18D system and the ThermoFisher Scien-
tific GeNEMAPPER ID-X v1.2 software for analysis of
the amplicons. EGF (epidermal growth factor) was
from Sigma-Aldrich (USA; #E9644, Madrid, Spain);
IGF (insulin-like growth factor-1) was from Peprotech
(#100-11, Cranbury, NJ, USA). DEL 22379 was syn-
thesized at Vichem Chemie (BUdapest, Hungary).
U0126 was from Promega (#V1121, Madrid, Spain).
All experiments were performed using mycoplasma
free cells (Fig. S1). LookOut Mycoplasma qPCR
Detection Kit (Cat. no. MP0040; Sigma-Aldrich) was
used following manufacturer instructions.

2.2. Gene knockdown and overexpression

siRNA against KSR1 (#sc-35762) and control si RNA
(control #sc-37007) was purchased from Santa Cruz
Biotechnology (Heidelberg, Germany). siRNAs were
transfected with Lipofectamine™ RNAiMAX Transfec-
tion Reagent (#13778150; Thermo Fisher Scientific) fol-
lowing manufacturer’s directions. MCF-7 and MDA-
MB231 cells were transfected using Lipofectamine 3000
(#L3000015; Invitrogen, Thermo Fisher, Whatham,
MA, USA) as specified by the manufacturers.

2.3. Western blot analyses

Cell plates were collected on ice, cells were washed in
cold 1x PBS and harvested in 200-500 pL of lysis
buffer (20 mm HEPES pH 7.5, 10 mm EGTA, 40 mm -
Glycerophosphate, 1% NP40, 2.5 mm MgCl,, 1 mMm
NavVO,;, Imm DTT and protease inhibitors:
10 pg-mL~" of aprotinin and 10 pg-mL~" of leupeptin).
Cell lysates were cleared at 2700 g for 10 min at 4 °C
and protein concentration was quantified using the
Bradford Method at 620 nm. 5x laemmli loading buffer
was added to samples of 30 pg protein and the mix was
boiled at 95 °C for 5 min. Proteins were resolved by
sodium dodecyl sulfate (SDS)/poliacrylamide gel elec-
trophoresis (PAGE). Native gel protein electrophoresis
was performed as described [17]. Gels were transferred
to Nitrocellulose membranes (AmershamProtran Sup-
ported 0.45 NC; GE Healthcare Life Sciences, Chicago,
IL, USA). Membranes were blocked in Tris-Buffered
Saline-Tween (TBS-T) containing 4% BSA (blocking
solution). Blots were incubated from 1 h at room tem-
perature to O/N at 4 °C (depending on the antibody
performance) with the different antibodies prepared in
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blocking solution. Subsequently, the blots were incu-
bated for 1 h shaking at room temperature with
anti-rabbit Immunoglobulin (Ig) (#170-5046; Bio-Rad,
Madrid, Spain) or anti-mouse Ig (#170-5047; Bio-Rad)
secondary antibodies conjugated with peroxidase
(1 : 10 000) in 4% milk (GE Healthcare) TBS-T. Pro-
teins were detected by chemiluminescence with an
enhanced chemiluminescent system (ECL) and signals
were visualized and recorded with ChemiDoc MP Imag-
ing System (Bio-Rad).

2.4. Co-immunoprecipitation assays

Cell lysates were centrifuged at 13 000 r.p.m./
4 °C/10 min. The cleared lysates were quantified and
30 pg of protein were separated and 5x loading buffer
was added to be used as total lysate. 0.5-1 pg of the
antibody specific for immunoprecipitation was added
to 300 pg of protein and incubated rocking at
4 °C/2 h up to O/N. 20 pL of protein G-Sepharose 4B
(#17-0756-01; GE Healthcare) were added and incu-
bated 20 min/4 °C shaking. The immunocomplexes
were precipitated by centrifugation. Beads were
washed once with lysis buffer and twice with cold 1x
PBS; 1% NP-40. Beads were resuspended in 20 pL of
2.5x loading buffer Laemmli and boiled for 5 min,
then analyzed by SDS/PAGE as previously described.
Co-immunoprecipitations were repeated at least three
times in independent experiments.

2.5. Antibodies utilized

Mouse monoclonal anti-Flag M2 (Sigma-Aldrich)
Cat# F1804, RRID:AB_262044; Mouse monoclonal
anti-p-ERK (E-4) (Santa Cruz) Cat# sc-7383, RRID:
AB_627545; Mouse monoclonal anti-MAP Kinase,
diphosphorylated ERK-1&2 (Sigma-Aldrich) Cat#
M9692, RRID:AB_260729; Mouse monoclonal anti-
MAP Kinase, diphosphorylated ERK-1&2 (Sigma-
Aldrich) Cat# M8159, RRID:AB_477245; Mouse
monoclonal anti-ERK1&2 (Santa Cruz) Cat# sc-
514302, RRID:AB _2571739; Rabbit anti-KSRI1
[EPR2421Y] (Abcam, Cambridge, UK) Cat# ab68483,
RRID:AB_11157290; Rabbit Anti-MYLI2 (phos-
phoS19) (Abcam) Cat# AB2480, RRID:AB_303094;
Rabbit Anti-Myosin Light Chain 2 (Cell Signaling,
Danvers, MA, USA) Cat# 3672, RRID:AB_10692513;
Rabbit anti-Phospho-MYLK  (Ser1760) (Thermo
Fisher) Cat# 44-1085, RRID:AB_2533570; Anti-
FLAG tag. Mouse monoclonal (Sigma-Aldrich) Cat#
F1804, RRID:AB_262044; Anti-HA tag. Mouse
monoclonal (F-7) (Santa Cruz) Cat# sc-7392, RRID:
AB_627809; Rabbit anti-Phospho-Paxillin (Invitrogen)
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Cat# 44-720G, Mouse Monoclonal anti-Paxillin (BD
Bioscience, Barcelona, Spain) Cat# 610051, RRID:
AB_397463; Mouse monoclonal Anti-phospho-Rskl
(Thr359/Ser363) (Sigma-Aldrich) Cat# ABS1849,
RRID:AB _2181932; Rabbit Anti-Rsk (Santa Cruz)
Cat# sc-74575, RRID:AB_2181931; Goat anti- rabbit
IgG (H+L) HRP Conjugate (Bio-Rad) Cat#
1706515, RRID:AB_11125142; Goat anti-Mouse IgG
(H + L) HRP Conjugate (Bio-Rad) Cat# 1706516,
RRID:AB_2921252; Rabbit anti-GAPDH (0411)
(Santa Cruz) Cat# sc-47724, RRID:AB_627678; Texas
Red X Phalloidin (Invitrogen) Cat# 7471.

2.6. Proliferation assays

Proliferation assays were performed as described [27],
using the PrestoBlue Cell Viability Reagent (#A13261;
Thermo Fisher). Changes in metabolic activity and,
indirectly, cell number can be detected by a media color
change that can be measure using absorbance-based
plate readers, using 600 nm as a reference wavelength
and monitoring reagent absorbance at 570 nm. The cells
were counted by Neubabuer chamber or Nucleocounter
(method based on propidium iodide staining). 6000 cells
were plated per well in three 96-well plates, one for each
time point (24, 48, and 72 h) and three replicates per
condition. At the programmed times, 10 uL of room
temperature PrestoBlue Reagent was added and incu-
bated in the dark at 37 °C and the absorbance
monitored.

2.7. Liquid chromatography-mass spectrometry
(LC-MS/MS) analysis

Performed as described [28], in MCF7 cells transfected
with HA-ERK2 (1 pg). The EGF and IGF treatments
were done 24 h post-transfection. The cells were lysed
in lysis buffer (1% Triton X-100, 150 mm NaCl, 20 mm
Tris—=HCI pH 7.5, 1 mm EDTA pH 7.5). Immunoprecip-
itation, washing, and digestion were performed on a
KingFisher Duo robotic station (Thermo Fisher Scien-
tific). 5 uL of magnetic antibody bead slurry, anti-HA
beads (MBL Bio, Schaumburg, IL, USA), was diluted
in 100 pL of lysis buffer and loaded in row H of a 96
deep-well plate. 500 pL of lysate was loaded into row
G, 300 pL of lysis buffer were loaded into rows E and
F. 300 pL of Wash buffer (150 mm NaCl, 20 mm Tris—
HCI pH 7.5, 1 mm EDTA pH 7.5) were loaded into
rows B-D. Row A contained the 100 pL of digest buffer
2™ Urea, 50 mm TrissHCI pH 7.5, 1 mm DTT,
5 pg-mL ™" porcine trypsin (Promega) 5 pg-mL~' GluC
(Promega)). The robot picked up beads in row H, trans-
ported them to row G and released and mixed them for
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2 h. Beads were picked up and released subsequently
into rows F to B with 1 min. mixing in between. The
washed beads were then transported into row A and
digested at 27 °C for 30 min. under mixing. Beads were
then removed and digested for 8 h at 37 °C. After
iodoacetamide modification and acidification of the
samples, the peptide mixtures were desalted using home-
made C18 tips. The desalted and lyophilized peptides
were resuspended in 0.1% TFA and subjected to mass
spectrometric analysis by reversed-phase nano-LC-—
MS/MS. Mass spectrometry: 5 pL of the resuspended
peptides were analyzed by reversed-phase nano-LC-
MS/MS using a nano-Ultimate 3000 liquid chromatog-
raphy system and a QExactive plus or Lumos Fusion
mass spectrometer (both Thermo Fisher Scientific).
Flow rates were 400 nL-min~'. Peptides were loaded
onto a self-packed analytical column (uChrom 1.6,
0.075 mm x 25 cm) using a 67-min gradient Buffer A,
2% acetonitrile 0.5% acetic acid, Buffer B, 80% acetoni-
trile, 0.5% acetic acid; (0-16 min: 2% buffer B, 16—
56 min: 3-35% buffer B, 56-62 min: 99% buffer B; 62—
67 min 2% buffer B). The QExactive was operated in
top-12, data-dependent mode with a 30-s dynamic exclu-
sion range. Full-scan spectra recording in the Orbitrap
was in the range of m/z 350 to m/z 1650 (resolution:
70 000; AGC: 3e6 ions). MS2 was performed with an
isolation window of 1.4, AGC 5e4, HCD collision
energy of 26, Scan range from 140 200 ms maximum
injection time. The Lumos was operated in data-
dependent mode with a 10-s dynamic exclusion range.
Full-scan spectra recording in the Orbitrap was in the
range of m/z 350 to m/z 1400 (resolution: 240 000;
AGC: 7.5¢5 ions). MS2 was performed in the ion trap,
isolation window 0.7, AGC 2e4, HCD collision energy
of 28, rapid scan rate, Scan range 145-1450 m/z, 50 ms
maximum injection time and an overall cycle time of 1 s.

2.7.1. Database search

The mass spectrometry raw data were analyzed by the
MAXQUANT and ANDROMEDA software package [29]
using the pre-selected conditions for analysis (specific
proteases, 2 missed cleavages, 7 amino acids minimum
length). Protease was set to trypsin. Carbamylation
(C) was selected as fixed modification. Variable modifi-
cations were N-terminal acetylation (protein), oxida-
tion (M). FDR was set to 0.01. MS/MS spectra were
searched against the human Uniprot database and the
MAXQUANT contaminant database with a mass accuracy
of 4.5 p.p.m. (for MS) and 20 p.p.m. or 0.5 Da
(MS/MS OT or IT). Peak matching was selected and
was limited to within a 0.7 min. elution window with a
mass accuracy of 4.5 p.p.m.
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2.8. Cell migration chemotaxis

Cell migration chemotaxis was examined in Transwell
cell culture chambers with 8 um pore filters (Corning,
NY, USA). 0.1 x 10°cellsmL™" in 200 pL of
serum-free medium were added to the top of the Trans-
well and the chemoattractant was added to the bottom.
Following 16 h incubation at 37 °C/5% CO,, the invad-
ing cells were fixed with 4% paraformaldehyde and
stained with crystal violet —1% methanol, analyzed by
microscopy and counted. Images were processed and
analyzed using Fu1 IMAGE (NIH, Bethesda, MD, USA).
Cell proliferation was monitored in parallel plates.

2.9. Cell migration assay over-time

To measure cell migration in 2D, in vitro cultures of
1 x 10° cells were seeded in a T6 plate and treated
with drugs and stimuli. The cells grew for 48 h. Photos
were taken by Microscopy Ti Eclipse FL invert new.
Video microscopy was generated using a Nikon Visi-
tron Live Cell System (Visitron Systems GmbH, Puch-
heim, Germany) with images taken every 30 min for
48 h. Migration of single cells were manually tracked
using IMAGEJ to obtain coordinates for each cell and
time points. For further analysis of migratory behavior
including speed, mean squared displacement (MSD),
directionality ratio (DR), and origin plots, the DiPer
migration tool was used.

2.10. 3D tumor spheroid invasion assay

4 x 10* cells were resuspended in low viscosity medium
(800 pL — 10% FBS medium and 200 pL of low viscos-
ity methylcellulose; Sigma). 25 pL droplets of the
medium were suspended on the lid of a 10 mm dish and
cultured for 48 h at 37 °C/5% CO,. Spheroids were
resuspended gently in 5 mL of 1x PBS and centrifuged
at 300 r.p.m./15s. The spheroids were resuspended
gently in collagen I solution (1.7 mgmL™' in 5x
DMEM). 300 pL of this suspension were seeded in a
24-well plate and incubated at 37 °C for 4 h until the
matrix polymerized. Once the matrix polymerized, the
3D tumor spheroids the indicated treatments were initi-
ated and growth was monitored after 48 and 72 h.
Images were taken by optical microscopy at 4x magnifi-
cation. To quantify the spheroid proliferation and inva-
sion the IMAGEJ tool was used.

2.11. Immunofluorescence assay

Basically as described [30]. Cells were subsequently
washed twice with cold 1x PBS for 5 min, followed
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by fixation with 4% paraformaldehyde for 10 min.
The protocol was followed by two 1x PBS, one
0.1 M glycine, and two 1x PBS washes. Subsequently,
cells were permeabilized for 5 min with 0.5% Triton
X-100 in 1x PBS and washed again with 1x PBS for
5 min. Cells were incubated with 0.05% Tween
TM20 (Thermofisher) for 5 min to reduce surface ten-
sion. Diluted primary antibody was added as a drop
(8 uL) over the glass and incubated for 1 h in a
humidity chamber. Cells were washed twice for 5 min
with 1x PBS and secondary antibody conjugated
with a fluorophore was added for 1 h and then
removed washing twice with 1x PBS. Finally, the
glasses were set over a slide with mounting media
with Prolong-DAPI (Invitrogen) and sealed with clear
nail polish. In the case of spheroids immunofluores-
cence assay, they were fixed for 10 min at room tem-
perature in 20% paraformaldehyde/PBS. The cellular
membranes were permeabilized and blocked with
0.3% Triton in 4% BSA/PBS for 20 min at room
temperature. The primary antibody was diluted in
4% BSA/PBS and kept the primary antibody O/N at
4 °C. The next day, the spheroids were washed, and
the secondary antibody was added and incubated for
2 h at RT. Finally, the spheroids were washed and
DAPI was added in the second wash. Cells and
spheroids were examined by fluorescence microscopy
(photomicroscope Axiophot; Carl Zeiss, Madrid,
Spain) or confocal microscopy (Leica TCS SPS,
Hessen, Germany). The images were processed using
IMAGEJ software.

2.12. Chick embryo model for spontaneous
metastasis

Spontaneous metastasis in chick embryos was per-
formed as described [17]. Briefly, MDA-MB-231 cells
(2 x 10°) were grafted on the choryo-allantoid mem-
brane (CAM) of 10-day embryos. Experiments were
terminated on day 5 after grafting and primary tumors
were excised and weighed. Portions of the CAM and
liver were harvested and analyzed for the number of
human cells by quantitative Alu PCR (Alu-qgPCR).
The chick embryo CAM assay did not require admin-
istrative procedures for obtaining ethics committee
approval for animal experimentation. The CAM was
not innervated, and experiments were terminated
before the development of centers in the brain associ-
ated with pain perception, making this a system not
requiring animal experimentation permissions. All
experiments were performed according to the national
guidelines for animal care in accordance with the
European Union Directives.

456 Molecular Oncology 19 (2025) 452-473 © 2024 The Author(s). Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

)//:SANY) SUONIPUOD PUe SIS 1 8L 38S *[S5202/E0/70] U0 ARidiauliuO A3(1M ‘(PEPIUES 8P OLIBXSIUIIN) UOSINOL [EUOIEN BURIUO0D UsIUedS Aq ZE/ET T9Z0-8/8T/200T OT/I0PAW0D A3 1M AIq 1 pUIIUO'STR)//SANY WoI) pepeojumoq ' ‘S20Z ‘T9208.8T

00" 3| 1MA

BSUBD | SUOLLILLIOD A1) 3|eal|dde a3 Ag peusenob ae sapNe YO ‘88N JO SaINJ J0j Akelid 1 auluQ A3|IAA UO (SUO N IPUOD-pUE:



D. de la Fuente-Vivas et al.

2.13. Patient-derived xenograft tissue microarray
of breast cancer patients

As previously described [31], tissue microarray (TMA)
consisted of 51 patient-derived xenograft (PDX)

Regulation of cell motility by ERK dimerization

samples corresponding to newly diagnosed cancer
patients operated at 12 de Octubre University Hospital
(Madrid, Spain) and Virgen del Rocio Hospitals
(Seville, Spain), between September 2019 and March
2022, prior to any treatment. All tissue was collected
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Fig. 1. Inhibition of ERK dimerization prevents cell motility. (A) Effects of the ERK dimerization inhibitor on the proliferation of MCF7 cells.
Where shown, cells were treated with DEL-22379 (10 pm) for the indicated times. Data show average + SEM from three independent
experiments. (B) Effects of DEL-22379 or U0126 (10 um each) (+) on ERK dimerization and phosphorylation. Administered to 18 h-starved
MCEF-7 cells 30 min before treatment with EGF (50 ng-mL”, 5 min) where indicated. un, unstimulated cells. Results are representative of
three independent experiments. (C) Effects of ERK dimerization inhibition on cellular migration. Assayed in Transwell chambers (8 um pore)
using EGF (50 ng-mL~", 48 h) as chemoattractant, in the presence of DEL-223379, U0126 or previously transfected with the ERK2 HL
dimerization-inhibitory mutant (1 pg), where indicated. Results are representative of three independent experiments. Scale bar: 50 um. (D-F)
Effects of DEL-22379 on the indicated parameters of cell motility in control (C) or EGF-treated cells (50 ng-mL~", 48 h), as indicated in each
figure. Data show average + SEM from three independent experiments. P values: **P < 0.01 by double-tailed, unpaired Student t-test. (G)
Effects of ERK dimerization inhibition on individual cells motility, as determined by live cell video microscopy over 48 h, pictures taken every

30 min. Origin plots were calculated by DiPer.

with informed, written consent from the patients under
REB-approved protocols at both institutions. Human
breast tumors used in this study to establish PDXs
were obtained following the institutional guidelines
and approval of the institutional review boards at Vall
d’Hebron University Hospital in accordance with the
Declaration of Helsinki, license # VHIO (PR(AG)
130/2015).

The patient samples and the associated data comply
with all the guarantees of protection, security and con-
fidentiality established in the applicable regulations
(Law 14/2007 on Biomedical Research, Regulation
(EU) 2016/679 of the European Parliament and of the
Council of April 27, 2016) regarding the protection of
natural persons and Organic Law 3/2018, of December
5, on the Protection of Personal Data and guarantee
of digital rights (LOPDGDD), Law 41/2002, of
November 14, basic regulation of patient autonomy
and rights and obligations in terms of clinical informa-
tion and documentation. The original studies were
approved by the Institutional Review Board of Vall
d’Hebron hospital.

For the PDX generation, fresh tumor samples were
obtained from the Vall d’Hebron University Hospital
following the institutional guidelines. Informed patient
written consent, approved by the Ethics Committee for
Clinical Research and Animal Research of Vall
d’Hebron Hospital (PR(AG)130/2015), was obtained
for the use of these samples. Regarding the patient
cohort, material representative of the disease was
obtained from Luminal HER positive; HER-positive;
and TNBC primary and metastatic breast cancer
patients aged 18 years or older, that had received dif-
ferent treatments (doxorubicin; paclitaxel; trastuzu-
mab; t-dml; lapatinib) at the Vall d’Hebron University
Hospital. Tumor tissue was used to generate PDX and
the corresponding TMAs. Mice were maintained
and treated in accordance with the Facility Animal
Care Committee at the Vall d’Hebron Institute of
Oncology (VHIO). Excess breast tumor tissue was
transported to the laboratory in ice-cold transport

medium (DMEM/F12, 50 ug-mL™' gentamicin, 1x
penicillin-streptomycin, 2.5 ug-mL~"' fungizone). Sam-
ples were cut into 1 mm fragments and transplanted
into the fourth mammary fat pad of 5-7-week-old
NOD.Cg-PrkdcscidIl2rgtm1Sug/JicTac (NOG) (Jan-
vier, RRID:IMSR_CRL:394) females under sterile
conditions. Fine needle aspirates were washed in PBS,
resuspended in PBS: matrigel (Corning) (1 : 1) and
50 pL was injected orthotopically. All the animal stud-
ies were performed in accordance with the ARRIVE
(Animal research: Reporting of in vivo experiments)
guidelines and the 3R rule of replacement, reduction
and refinement principles. All the animals were housed
with a goal of maximizing species-specific behaviors
and minimizing stress-induced behaviors. Mice were
treated in accordance with the Ethical Committee for
the Use of Experimental Animals (IACUC) at the Vall
d’Hebron Institute of Oncology (VHIO, Barcelona).
Experimental animal License number 10303 approved
by Generalitat de Catalunya (Spain).

Mice were palpated weekly and tumors measured
using calipers and harvested for in vivo passaging when
tumors reached endpoint (> 10 mm in the largest
dimension). At the end of the experiment, after from 4
to 6 months, animals were euthanized using CO, inha-
lation. Tumor growth was measured once per week
and mice weights were recorded twice per week. If
mouse welfare was compromised before tumor pro-
gression, tumors were harvested and implanted into
another recipient mouse. In each passage, flash-frozen
and formalin-fixed paraffin-embedded (FFPE) samples
were taken for genotyping and histological studies.
Paraformaldehyde-fixed and paraffin-embedded blocks
of PDX tissue were used to generate the corresponding
TMAs by punching two 1-mm spots of sample. Prior
to staining, slides were deparaffinized and tissue was
rehydrated. To allow the antibody to penetrate more
easily to each cell, a permeabilization step was done,
incubating specimens for 10 min with 0.1% IGEPAL
(#18896; Sigma-Aldrich) diluted in 1x Tris-Buffered
Saline (TBS). Then, slides were washed twice with 1x
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TBS for 5 min, and non-specific bindings were elimi-
nated using a serum-free blocking reagent, background
punisher (BIOCARE Medical, Madrid, Spain) for
10 min. After that, 1.5% horse serum (HS) 1x PBS
solution containing an anti-rabbit KSR1 (1 : 100) anti-
body, or none of them (negative control), was incu-
bated O/N at 4 °C in a humid chamber to avoid
evaporation. Next day, slides were washed in 1x TBS
(3 x 5 min) and endogenous peroxidase was quenched
using 3x H,O, diluted in 1x TBS for 20 min. Then,
specimens were washed in 1x TBS (3 x 10 min) and
incubated with an anti-mouse/rabbit biotinylated sec-
ondary antibody (VECTOR Lab, Barcelona, Spain)
diluted in 1% BSA 0.05% IGEPAL 1x TBS (1 : 500)
for 1 h in a humid chamber. After that, slices were
washed, as before, and specimens were incubated with
Horseradish Peroxidase (HRP) Avidin D diluted in 1x
TBS (1 : 500) for 30 min in a humid chamber. Slices
were washed again and incubated with diaminobenzi-
dine (DAB, #K3468; Dako, Santa Clara, CA, USA)
for 5 min or until brownish color started to appear.
Chromogenic reaction was stopped washing with tap
water. To finish specimens were stained with Hematox-
ylin (#109253; Sigma-Aldrich), dehydrated, cleared,
and mounted with DPX (#06522; Sigma-Aldrich).
Images were taken at a Zeiss Axio Scope Al micro-
scope using 20x, or 40x objectives. Evaluation of
KSRI1expression was displayed as DAB signals, 8 field
per slide by calculation of H-score using color decon-
volution TMA plugin ru1 software.

2.14. Statistical analyses

Statistical analyses were performed using GRAPHPAD
prISM software (Boston, MA, USA). Each experiment
was independently repeated at least three times. All
values and error bars were represented as mean of the
number of determinations with error bars representing
+ SD. Two-tailed unpaired ¢ tests were used to deter-
mine statistical significance between two experimental
groups as indicated in the respective figure legends
where the number of independent experiments (n) is
indicated.

3. Results

3.1. Inhibition of ERK dimerization impedes
cellular movement

In order to study the role of ERK dimerization in cellu-
lar motility of mammary tumor cells, we used the
MCF7 epithelial tumor cell line. In these, it was found
that treatment with the ERK dimerization inhibitor

Regulation of cell motility by ERK dimerization

DEL-22379 had no effects in their proliferative capacity
(Fig. 1A), probably because they are not driven by
RAS-ERK pathway oncogenes [17,32]. However, when
we evaluated their chemotactic response to EGF stimu-
lation using Transwell assays, it was found that pretreat-
ment either with the MEK inhibitor U0126, which
completely blocked ERK activation, or with DEL-
22379, which specifically inhibited ERK dimerization
without affecting ERK phosphorylation (Fig. 1B;
Fig. S2A), markedly prevented cellular migration. This
was also the case in cells transfected with the ERK2 HL
mutant, which acts in a dominant inhibitory fashion
preventing ERK dimerization [10] (Fig. 1C; Fig. S2B).
These data indicated that the observed negative impact
of the ERK dimerization inhibitor on cellular motility
could not be attributed to a gross cytotoxic effect.

To analyze this observation in further detail we
studied the effect of inhibiting ERK dimerization on
different motility parameters in single cells. It was
found that treatment with DEL-22379 significantly
diminished the total distance traveled by cells, both
control and EGF-treated, as evaluated by the mean
square displacement (Fig. 1D), it also reduced their
speed (Fig. 1E) and distorted their directionality, par-
ticularly in the case of EGF-treated cells (Fig. IF;
Fig. S2C). Similarly, origin plots revealed a marked
restriction on cell random movements following the
administration of the dimerization inhibitor (Fig. 1G).

In order not to limit our analyses to a single cell
line, we performed similar experiments on MDA-MB-
231 cells, also of mammary tumor origin, though with
a more prominent invasive potential [33]. As in the
case of MCF7 cells, the proliferation rate of MDA-
MB-231 cells was also unaffected by DEL-22379 treat-
ment (Fig. S3A), which, once again, did not affect
ERK phosphorylation (Fig. S3B). Contrarily, EGF-
stimulated chemotaxis (Fig. S3C) and single cell total
distance traveled (Fig. S3D) and velocity (Fig. S3E)
were significantly diminished following treatment with
the inhibitor. Using these cells, we also tested the
effects of inhibiting ERK dimerization on three-
dimensional (3D) cellular movement, as observed in
collagen-embedded spheroids formed by these cells.
In this setting, it was found that U(0186 prevented
spheroid growth. On the other hand, DEL-22379 did
not affect growth but evoked a pronounced reduction
on the spontaneous dispersal from the MDA-MB-231
cellular masses exhibited by these cells as a conse-
quence of their invasive behavior (Fig. S3F).

Taking advantage of MDA-MB-231 cells spontane-
ous invasive capacity we investigated how the inhibi-
tion of ERK dimerization affected the metastatic
potential of these cells. As mentioned before, treatment

Molecular Oncology 19 (2025) 452-473 © 2024 The Author(s). Molecular Oncology published by John Wiley & Sons Ltd on behalf of 459

Federation of European Biochemical Societies.

)//:SANY) SUONIPUOD PUe SIS 1 8L 38S *[S5202/E0/70] U0 ARidiauliuO A3(1M ‘(PEPIUES 8P OLIBXSIUIIN) UOSINOL [EUOIEN BURIUO0D UsIUedS Aq ZE/ET T9Z0-8/8T/200T OT/I0PAW0D A3 1M AIq 1 pUIIUO'STR)//SANY WoI) pepeojumoq ' ‘S20Z ‘T9208.8T

00" 3| 1MA

BSUBD | SUOLLILLIOD A1) 3|eal|dde a3 Ag peusenob ae sapNe YO ‘88N JO SaINJ J0j Akelid 1 auluQ A3|IAA UO (SUO N IPUOD-pUE:



Regulation of cell motility by ERK dimerization

(A)

C/

Tumor cells/105

Tumor weight (mg)

[

o o
L

E :

*

chick embryo cells

Phalloidin

Control

Control
(inset)

DEL

DEL
(inset)

Tumor weight
150,

100 4

Lung metastasis

150
100
* *
50 I
0
[¢] v ©
& Ny

N

Tumor cells/105

Tumor cells/10%
chick embryo cells

chick embryo cells

D. de la Fuente-Vivas et al.

Intravasation
150
100 T
50 *%* *%
0 ;
(¢} v ©
OQ/ OQ\W
Brain metastasis
150
100
50
* *
0 ;_é_
(<] N ©
o‘o \)Q\'l'

Fig. 2. Inhibition of ERK dimerization impedes spontaneous metastases. (A) Inhibition of ERK dimerization prevents cells outspreading from
MDA-MB-231 spheroids, as determined by immunofluorescence of spheroids treated with DEL-22379 (10 pm, 1 h). Spheroids treated with
DEL are shown at higher magnification to highlight the absence of evading cells. Scale bars: 50 um. Results are representative of three
independent experiments. (B) Effects of ERK dimerization inhibition on the indicated metastatic parameters in chick embryos whose CAM
had been grafted with MDA-MB-231 and subsequently treated with DEL-22379 or U0126 (each 10 um/3 days). Data show mean + SEM of
three independent experiments. P values: **P < 0.01, *P < 0.05 by double-tailed, unpaired Student t-test.
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of the aforementioned MDA-MB-231 spheroids with cellular mass (Fig. 2A). Accordingly, we also evaluated

DEL-22379 resulted in pronounced attenuation on the their in vivo metastatic potential in an animal model,
outspreading of individual cells away from the main by analyzing their ability to intravasate and to
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Fig. 3. Inhibition of ERK dimerization affects actin cytoskeleton architecture. (A) Alterations on phosphorylated ERK colocalization with actin,
evaluated by immunofluorescence micrographs of individual MDA-MB-231 cells treated with DEL-22379 (10 um, 1 h). Colocalization of
phospho-ERK (green) and actin (red, phalloidin staining) was evaluated along the depicted dashed lines. Scale bar: 50 um. Representative
cells of B. (B) As in A, quantification corresponding to n = 40 cells/condition. Data show mean + SEM. P values: ****P < 0.001 by double-
tailed, unpaired Student ttest. c, control. (C) Alterations on actin architecture and cell morphology. Immunofluorescence micrographs of
MDA-MB-231 cells, control or treated with the indicated inhibitors. Scale bar: 10 um. (D) As in C, in MCF7 cells stimulated where indicated
with EGF (50 ng-mL~", 10 min). Scale bar: 5 um. (E) Effects on the molecular effectors that regulate cell motility. Immunoblotting for the
phosphorylated and total forms of the indicated proteins in MCF7 cells unstimulated (un) or treated with EGF, pretreated for 1 h (+) or not
(—) with DEL-22379. Arrowheads indicate the referred proteins. (C-E) Results are representative of three independent experiments.

colonize distant organs using the chick chorio-
allantoid membrane model [17]. It was found that,
unlike U0126, DEL-22379 treatment did not overtly
affect the primary tumor size. However, it markedly
diminished the number of intravasated cells and of
those invading the brain and the lung (Fig. 2B). Over-
all, these sets of data demonstrate that the inhibition
of ERK dimerization prevents cell motility of mam-
mary cells, thereby compromising their invasive
potential.

3.2. ERK dimerization orchestrates actin
architecture

Since the dynamic remodeling of the actin cytoskel-
eton lies at the heart of cellular movement, it was
of interest to investigate how the inhibition of
ERK dimerization affected actin architecture. When
analyzing MDA-MB-231 individual cells, it was
found that in control cells there was a substantial
colocalization of ERK with actin at the cell periph-
ery, which was completely lost following the inhibi-
tion of ERK dimerization by DEL-22379 treatment
(Fig. 3A,B).

When appraising in further detail the architecture of
the actin cytoskeleton, it was observed that normally
proliferating MDA-MB-231 cells exhibited abundant
stress fibers, plus lamellipodia and filopodia projec-
tions (Fig. 3C). Noticeably, impeding ERK dimeriza-
tion by DEL-22379 administration resulted in a total
disruption of the stress fibers network and in filopodia
disappearance, in addition to a marked subcellular
redistribution of actin, which accumulated at the
nuclear periphery forming clusters. This was also
the case in cells treated with U0126 (Fig. 3C).

A similar effect was observed in MCF7 cells, in
which EGF treatment evoked a profuse formation
of stress fibers, lamellipodia, and filopodia. The
formation of such structures was completely abro-
gated by treatment with DEL-22379, which also
caused the perinuclear accumulation of actin
(Fig. 3D).

It was important to determine how the inhibition
of ERK dimerization affected the molecular machin-
ery that regulates actin dynamics and, subsequently,
cell motility. Myosin Light Chain Kinase (MLCK) is
a direct substrate of ERK [34]. At its turn, MLCK
phosphorylates Myosin Light Chain (MLC), stimu-
lating actomyosin contractility required for the exten-
sion of lamellipodiae at the cell leading edge [35,36].
It was found that treatment with DEL-22379 mark-
edly reduced both MLCK and MLC phosphorylation
levels (Fig. 3E). Similarly, administration of the
ERK dimerization inhibitor also resulted in a down-
regulation of paxillin phosphorylation levels
(Fig. 3E), a central event in focal adhesion turnover
[37,38]. In this respect, focal adhesions, as revealed
by phospho-paxillin  immunofluorescence, were
almost completely absent in DEL-22379-treated cells
(Fig. S4). We also analyzed the phosphorylation of
the ERK substrate p90 Ribosomal S6 kinase (RSK1),
responsible for the inactivation of Myosin Phospha-
tase Regulatory subunit (MYPTI), fostering rear end
retraction [39]. As in the previous cases, the inhibi-
tion of ERK dimerization by DEL-22379 led to a
pronounced attenuation on RSK1 phosphorylation
(Fig. 3E). Conversely, the inhibition of ERK dimer-
ization potentiated nuclear events such as the phos-
phorylation of ELKI1, as we have previously
demonstrated [17]. Overall, the above results indicate
that ERK dimerization is a key factor in the regula-
tion of actin organization, as an orchestrator of acto-
myosin contractility, both in protrusions extension
and rear end retraction, and for the formation of
focal adhesions.

3.3. Migration is specifically evoked by
ERK-stimulating agonists that induce its
dimerization

Not to restrict our quest to a single ERK-activating,
migration-inducing stimulus, we also analyzed the
effects on cell motility and ERK dimerization of
Insulin-like Growth Factor 1 (IGF-1), previously
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reported to stimulate migration in MCF7 cells [40].
Surprisingly, this was not the case in our cells, as
determined in Transwell assays using IGF-1 as che-
moattractant, as opposed to EGF (Fig. 4A). Notice-

Regulation of cell motility by ERK dimerization

ERK dimerization, in spite of readily inducing ERK
phosphorylation (Fig. 4B), a phenomenon observed
throughout an ample stimulation time range (Fig. 4C).

It was conceivable that our MCF7 cells had under-

ably, in our cells IGF-1 was also incapable of eliciting gone some mutational event that made them
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Fig. 4. Cellular migration depends on the external agonists capacity for inducing ERK dimerization. (A) Left: Transwell cellular migration of
MCF7 cells, unstimulated (un) and treated with EGF (50 ng-mL~") or IGF-1 (25 ng-mL~") for 48 h, as chemoattractants. Scale bar: 50 pm
Right: Quantification of three independent experiments. Data show mean + SEM of three independent experiments. P values:
**xP < 0.005 by double-tailed, unpaired Student t-test. (B) ERK dimerization and phosphorylation in MCF7 cells as induced after 5 min of
stimulation with the indicated agonists. (C) Kinetics of ERK dimerization and phosphorylation in MCF7 cells as induced by treatments with
the shown agonists for the indicated times. St, starved. (D) Transwell cellular migration of MCF7 and MCF7N cells, stimulated with IGF-1
for 48 h. Scale bar: 50 um. (E) ERK dimerization and phosphorylation as induced by IGF-1 treatment (25 ng-mL~", 5 min) in the indicated
cell lines. (B-E) Results are representative of three independent experiments.
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insensitive to IGF-1 migration-stimulating effect. To
test this possibility, we obtained an original batch of
cells (MCF7N hereafter), and found that, unlike our
MCF7 cells, in MCF7N cells IGF-1 elicited a pro-
nounced migratory response (Fig. 4D). In this respect,
MCF7N migration could be stimulated also by EGF
and in both cases migration could be inhibited by
DEL-22379 treatment (Fig. S5). In agreement, it was
found that in MCF7N cells IGF-1 stimulation pro-
duced a marked ERK dimerization, contrarily to our
MCF7 batch (Fig. 2E). IGF-1 also induced a potent
ERK dimerization, in addition to ERK phosphoryla-
tion, in HEPG2 and Caco? cells (Fig. 4E), cell types in
which IGF-1 has been previously shown to evoke cell
motility [41,42]. Overall, these results demonstrate that
in order to stimulate cellular movement, growth fac-
tors signaling through the ERK pathway must be
capable of inducing ERK dimerization, not solely
ERK activation.

3.4. KSR1 couples growth factor signaling to
ERK dimerization and cellular motility

It was of interest to understand why in the same cellu-
lar context ERK-activating growth factors diverged in
their ability to induce ERK dimerization and evoke
cellular migration. Since Scaffold Proteins are known
to be essential mediators in the ERK dimerization pro-
cess, serving as dimerization platforms [7], we reasoned
that the intervention of some specific scaffold could
determine the capacity of an external agonist for stim-
ulating ERK dimerization and, subsequently, cellular
movement.

To test this hypothesis, we performed an
unbiassed search for scaffold protein species which
associated to phosphorylated ERK2 in response to
EGF and IGF-1 stimulation in MCF7 cells, using
mass spectrometry. Our analyses revealed a signifi-
cant binding of Kinase Suppressor of RAS 1
(KSR1) to activated ERK in EGF but not in IGF-
1 treated cells (Fig. 5A). This finding was ascer-
tained by co-immunoprecipitation assays, which
demonstrated that the association between ERK
and KSR1 was substantially increased in response
to EGF, as opposed to IGF-1 stimulation
(Fig. 5B). Next, we investigated the relevance for
ERK dimerization of the interaction occurring
between ERK and KSR1. To do so, we depleted
MCF7 cells of KSR1 by means of an siRNA, and
found that, indeed, down-regulation of KSRI1 levels
markedly reduced EGF competence for inducing
ERK dimerization (Fig. 5C). In agreement, when
we tested the effects of altering KSR1 levels on cell

D. de la Fuente-Vivas et al.

motility, it was found that depletion of KSRI1
completely  prevented EGF-stimulated cellular
migration (Fig. 5D). On the other hand, the over-
expression of KSRI1 did not affect EGF high
capacity for inducing cell motility, but it endowed
IGF-1 with the faculty for promoting a significant
extent of cellular migration (Fig. 5D). In conso-
nance, KSR1 overexpression was found to restore
IGF-1 ability for evoking a substantial amount of
ERK dimerization (Fig. SE). In full conformity,
MCF7N cells, where IGF-1 induces both ERK
dimerization and migration, displayed much higher
KSR1 levels than MCF7 cells, which don’t respond
to IGF-1 (Fig. 5F). Taken together, these sets of
data demonstrate that KSR1 plays a central role in
the connection of ERK-activating signals induced
by extracellular agonists to ERK dimerization and
the regulation of cellular motility.

3.5. KSR1 regulates the actin cytoskeleton and
cellular morphology

It was probable that the changes on cell motility in
response to agonists stimulation, as a consequence of
KSR1 over- or under-expression, stemmed from its
impact on the actin architecture. In this respect, we
observed that the sole alteration of KSR1 levels clearly
affected cellular morphology. KSR1 overexpression
markedly altered the usual spindle shape of MCF7
cells, ensuing flattened cells enriched in membrane pro-
trusions, particularly filopodia. Conversely, KSR1
depletion resulted in rounder cells with less protru-
sions, an appearance resembling that of cells treated
with DEL-22379, or that generated by the actin
cytoskeleton-disrupting drug cytochalasin D (Fig. 6A;
Fig. S6A).

When we analyzed if alterations on KSR1 levels
affected the actin cytoskeleton in response to
growth factor stimulation, it was found that KSR1
overexpression did not substantially affect the mor-
phology of EGF-treated cells, characterized by pro-
fuse lamellipodia and filopodia  extensions.
Conversely, it markedly altered the rounded
appearance of control and IGF-1-treated cells to a
more “EGF-like” flattened morphology, displaying
lamellipodia and filopodia, the latter more promi-
nent in cells stimulated with IGF-1 (Fig. 6B, insets;
Fig. S6B). Of note, KSRI1 at physiological levels
exhibited a uniform nucleo-cytoplasmic distribution
accumulating around the nucleus, whereas overex-
pression resulted in a marked nuclear enrichment
though also overexpressed at the cytoplasm, as pre-
viously reported [43] (Fig. 5D, lower panel). On
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the other hand, in all cases KSR1 depletion
resulted in rounded cells with actin accumulating at
the nuclear periphery (Fig. 6B), resembling those
treated with the ERK dimerization inhibitor

Regulation of cell motility by ERK dimerization

(Fig. 3B; Fig. S6B). Overall, these results demon-
strate that KSR1 plays a determinant role in the
regulation of the actin cytoskeleton and, as a con-
sequence, on cellular morphology.
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Fig. 5. KSR1 regulates ERK dimerization and cell motility. (A) Mass spectrometry data showing the presence of KSR1 in anti-HA
immunoprecipitates from MCF7 cells starved (st) or stimulated with EGF (50 ng-mL~") or IGF (25 ng-mL™") for 5 min. Data represent
average + SEM LFQ (label-free quantitation) intensity from three independent experiments. Lower panel: Induction of ERK dimerization in
similar samples. (B) KSR1 interaction with ERK in MCF7 cells, starved (st) or treated with the indicated agonists for 5 min. Revealed by co-
immunoprecipitation, upon immunoprecipitation (IP) with the indicated proteins or with pre-immune serum (Pl), and subsequent western
blotting. TL, total lysates. (C) Effect of KSR1 down-regulation on ERK dimerization in EGF-stimulated MCF7 cells transfected with control
and anti-KSR1 siRNAs where indicated. (D) Transwell cellular migration of MCF7 cells, parental (c) or transfected with an siRNA against
KSR1 (siKSR1); or a vector encoding for KSR1 (1 pg each), without stimulation (un) or treated with the indicated agonists for 48 h. Scale
bar: 50 um. Middle panel: Data show mean + SEM relative to the values of parental, unstimulated cells, from three independent
experiments. P values: *P < 0.05 by double-tailed, unpaired Student ttest. Lower panel: KSR1 levels and nucleo-cytoplasmic distribution in
the KSR1-trasfected cells. The endogenous and HA-tagged, ectopic KSR1 bands are indicated. Rho-GDI and LaminA mark the cytoplasmic
(C) and nuclear (N) fractions respectively. (E) Effect of KSR1 overexpression on ERK dimerization in EGF-stimulated MCF7 cells in response
to stimulation with the indicated agonists for 5 min. (F) KSR1 expression levels in the indicated cell lines. (B-F) Results are representative of

three independent experiments.

3.6. KSR1 levels determine the clinical outcome
of mammary tumors

Since our data implicated KSR1 in the regulation of
cellular motility of mammary cells, we sought to gain
an insight into the clinical relevance of this finding, by
analyzing KSR1 levels in a TMA made up of 51 PDXs
coming both from primary mammary tumors and
metastases. Remarkably, it was found that KSRI1
levels were significantly higher in samples correspond-
ing to metastases, compared to primary tumors in gen-
eral (Fig. 7A). This was also the case, when comparing
KSRI1 levels in the primary tumor versus metastasis in
samples coming from the same patient (Fig. 7B). Fol-
lowing these results, we searched the available data-
bases in order to analyze in further depth how KSRI1
levels influenced the clinical evolution of breast cancer
patients. Data corresponding to 6344 breast cancer
cases included in five different repositories, revealed
that 4% of these cases exhibited genetic alterations in
the KSR1 locus, amplifications almost in every case,
which, conceivably, should result in augmented KSR1
levels (Fig. S7). Remarkably, there was a significant
reduction on the survival rate of the patients harboring
KSRI1 alterations compared to those with a normal
KSR1 genotype (Fig. 7C), in full agreement with our
results demonstrating the relevance of KSR1 for the
promotion of cell motility and invasion.

3.7. ERK dimerization is sufficient for promoting
cell motility

In light of our previous evidence demonstrating that
ERK dimerization is an absolute requisite for cellular
movement to take place, we asked whether it could also
suffice to drive cellular motion. To this end, we used the
ERK?2 intrinsically active mutant R65S [44]. In addition
to being hyperactive regarding its kinase activity [44],

we observed that this mutant is constitutively in dimeric
form even in unstimulated conditions, as demonstrated
by the “Philipova” SDS/PAGE method [5,7] (Fig. 8A)
and by native electrophoresis (Fig. 8B). Of note, the lat-
ter technique revealed that ERK2 R65S dimers have a
higher electrophoretic mobility than wild-type dimers,
probably because the arginine to serine substitution
decreases their positive charge.

Even though ERK2 R65S is uncapable of driving
cellular transformation and proliferation by itself [45],
it was found that it could effectively drive cellular
migration, even under unstimulated conditions when
transfected in MCF7 cells (Fig. 8C). In agreement with
this observation, we found that cells expressing ERK2
R65S exhibited augmented levels of phosphorylated
MLCK, MLC, paxillin and RSK (Fig. 8D), character-
istic of moving cells. Overall, these results demonstrate
that ERK dimerization is sufficient for supporting cell
motility.

4. Discussion

While dimerization in response to stimulation is a
widespread phenomenon in the RAS-ERK pathway
[46] its significance remains obscure. This is particu-
larly true in the case of ERK. Its dimerization has
been described to be an important factor for its spatial
regulation [7,10] and for carcinogenesis [17]. However,
its implications in specific cellular events remain
obscure. Here, we unveil its utmost importance for cell
motility, a process in which ERK participation has
been widely reported [1,23,24], in particular in mam-
mary tumor cells, where ERK activation seems to play
an important role in their dissemination [25].

Our data indicating that cell motility is severely
compromised both by the inhibition of ERK dimeriza-
tion and by the drop on the levels of scaffold proteins
like KSR, strongly suggest that the regulation of cell
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motility occurs mainly at the cytoplasm, the cellular This is in agreement with previous findings, showing
compartment where ERK dimers operate [7,17] and that inhibiting ERK cytoplasmic substrates like RSK1
scaffold proteins activity primarily unfolds [7,10,13]. prevents cytoskeletal rearrangements necessary for
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Fig. 6. KSR1 regulates the actin cytoskeleton and cellular morphology. (A) Phase contrast micrographs showing the representative
morphology of individual MCF7 cells, parental (control); overexpressing KSR1; siRNA-mediated, downregulated KSR1 levels (siKSR) and
treated with DEL-22379 or cytochalasin D (10 pum, 1 h each). Scale bar: 10 um. (B) Alterations on actin architecture and cell morphology, in
MCF7 cells: parental (cont); over- (KSR1) or under-expressing KSR1 (siKSR1), when unstimulated (un) or treated with EGF (50 ng-mL~") or
IGF (25 ng-mL™") for 1 h. KSR1 (green) and actin (phalloidin, red) distributions are shown. Scale bars: 10 pm. Inset magnifications reveal
lamellipodia and filopodia formations. (A, B) Results are representative of three independent experiments.
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Fig. 7. KSR1 alterations in clinical samples. (A) Expression of KSR-1 in primary tumor and metastasis breast cancer samples. Left panel:
Representative thin sections of formalin-fixed paraffin-embedded tissues from primary and metastatic tissues from a broad-spectrum breast
disease TMA, stained with antibody against KSR-1 Scale bar: 200 um. Right panel: H-score of KSR1 quantification corresponding to 51
patients, displayed as DAB signals in 20x field, 8 fields per slice using color deconvolution TMA plugin FuI software. Results are
representative of three independent experiments. (B) As in A, quantification pertaining to samples coming from the same patient (n = 6). (A,
B) Data show average + SEM. P values: **P < 0.05; ***P < 0.01 by double-tailed, unpaired Student ttest. (C) Kaplan—-Meier survival curves
after diagnosis (time) corresponding to 6344 breast cancer patients with normal vs altered KSR1 expression levels.
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mean + SEM relative to the values of parental, starved cells, from three independent experiments. P values: ***P < 0.001 by double-tailed,
unpaired Student t-test. Lower panel: expression levels of the transfected HA-tagged ERK2 wt and R65S. (D) Effects of ERK2 R65S on the
molecular effectors that regulate cell motility. Immunoblotting for the indicated phosphorylated and total forms of the indicated proteins in
MCF7 cells: parental (cont) or transfected with HA-tagged ERK2 R65S. (A-D) Results are representative of three independent experiments.
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motility, within minutes and independently of tran-
scriptional events [39,47]. And with the fact that ERK
plays a major regulatory role in the dynamics of the
cytoskeletal architecture, at the cytoplasm, required
for each and every step of the cellular movement pro-
cess involving the actin framework [24], as we demon-
strate herein.

Our results also demonstrate that growth factors
acting through tyrosine kinase receptors, perfectly
competent for evoking ERK phosphorylation/activa-
tion, must be capable of also inducing ERK dimeriza-
tion in order to unleash cellular movement. In this
respect, our data showing that the intrinsically active
[44] and constitutively dimeric ERK2 R65S mutant,
can promote cell motility by itself, clearly indicates
that in human mammary cells ERK dimers must be
undertaking tasks that activated ERK monomers can-
not accomplish.

In this respect, we unveil the critical role played by
the scaffold protein KSR1 in coupling RTK’s to ERK
dimerization and the unleashing of cellular motion.
We demonstrate that a specific RTK agonist, in this
case IGF-1, always competent for inducing ERK phos-
phorylation/activation, will evoke ERK dimerization
and trigger cell motility only if KSR1 is expressed at
optimal levels. Remarkably, another growth factor,
EGF, is less demanding when fostering KSRI-
dependent ERK dimerization and, subsequently, cell
motility. While the mechanism underlying such differ-
ential affinity remains unknown, one possibility could
be that KSRI is enriched in those membrane microdo-
mains where EGF receptors reside, whereas higher
KSR1 levels would be necessary to stock those loca-
tions where IGF-1 receptors are present. Be as it may,
our data suggests that different stimuli display distinct
capabilities for recruiting KSR1 to participate on
ERK dimerization, and point to KSR1, among other
types of scaffold proteins, as a critical factor in the
ERK dimers assembly process.

In consonance, our results point to KSR1 as a criti-
cal orchestrator of cellular migration, in full agreement
with previous findings which implicate KSR1 in the
regulation of the actin cytoskeleton [48,49] and, conse-
quently, in the control of cell motility with pathologi-
cal connotations in tumor cells [50]. Specifically
pertinent to mammary tumor cells, dealt with herein,
it has been demonstrated that the anti-metastatic pro-
tein Nm23-H1 precludes cellular migration [51].
Noticeably, cells expressing high levels of Nm23-H1
exhibit a pronounced KSR1 degradation [52], sugges-
tive of a correlation between KSRI1 levels and an
adverse evolution of mammary cancer patients, as our
findings related to clinical data demonstrate.

D. de la Fuente-Vivas et al.

Drugs targeting RAS-ERK pathway constituents
are not habitual first-line options for the treatment
of mammary malignancies. Mainly because these
tumors are rarely driven by RAS-ERK pathway
oncogenes, therefore they are largely insensitive to
these drugs, and more efficient therapeutic alterna-
tives are available [53]. However, our findings show-
ing the importance of ERK dimerization for the
motility and metastatic dissemination of mammary
tumor cells, open an interesting venue for the future
development of ERK dimerization inhibitors, either
by directly targeting ERK-ERK interaction [17] or
ERK-KSR1 association [2]. Such inhibitors could
prove useful, in combination with current therapeu-
tics, to prevent the metastatic spreading of mammary
tumors.

Finally, it is worth noticing that our results disclos-
ing an essential role of ERK dimerization in cell motil-
ity, pertain to the mammalian cell. Remarkably, ERK
dimerization is a phenomenon that only takes place in
mammalians, not in other organisms [17]. As cells
in other creatures also undergo migratory events, it
follows that in these ERK must regulate cellular
motion as a monomer. The evolutionary advantage
provided to mammalians by ERK acting in dimeric
form in the regulation of migration, a critical process
for development and organismal homeostasis, remains
to be established.

5. Conclusions

Our results demonstrate that ERK dimerization, not
solely its activation, is an essential factor for the regu-
lation of cell motility and mammary tumor dissemina-
tion. In this process, the scaffold protein KSR1 is a
critical element for enabling external agonists to
induce ERK dimerization and, subsequently, to
unleash cellular motion.
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