Original Study

A Prospective Non-interventional Real-World Study of cabozantinib in Pretreated Patients With Advanced Renal Cell Carcinoma Refractory to Vascular Endothelial Growth Factor-Targeted Therapy (CASSIOPE)

Michael Staehler, ¹ Umberto Basso, ² Jean-Christophe Eymard, ³
Philippe Barthelemy, ⁴ Pierre Bigot, ⁵ Mathieu Laramas, ⁶ Michael Rink, ⁷
Cristina Suarez, ⁸ Aline Guillot, ⁹ Jens Bedke, ¹⁰ Paul Hamberg, ¹¹ Rocco De Vivo, ¹²
Pablo Gajate, ¹³ Martín Lázaro-Quintela, ^{14,15} Priti Rastogi, ¹⁶ Valérie Perrot, ¹⁷
Bryan Qvick, ¹⁷ Pascale Dutailly, ¹⁷ Elena Verzoni, ¹⁸ Giuseppe Procopio ¹⁸

Abstract

CASSIOPE was a real-world study of cabozantinib use as a second-line or later-line therapy for advanced renal cell carcinoma after prior VEGF-targeted therapy. Of 679 patients prospectively enrolled in Europe, second-line or later-line cabozantinib use was shown to be effective and manageable in a real-world setting and had a safety profile consistent with previous studies.

Background: There is a lack of published data on real-world cabozantinib use in patients with advanced renal cell carcinoma after prior vascular endothelial growth factor (VEGF)-targeted therapy. **Methods:** CASSIOPE was a real-world, prospective, multicenter, non-interventional postauthorization safety study of cabozantinib in adult patients with advanced renal cell carcinoma in Europe following prior VEGF-targeted treatment (NCT03419572). Endpoints included cabozantinib utilization (dose modifications due to adverse events [AEs; primary endpoint], dose, dose modifications, and treatment duration), safety, effectiveness (progression-free survival [PFS], overall survival [OS], best overall response [BOR]), and healthcare resource utilization. **Findings:** Full analysis set (FAS)/safety population comprised 679 patients; 433 of these initiated cabozantinib at 60 mg/day (recommended dose) (primary safety population). Median age (FAS) was 67 (range, 29-93) years; most were male (73·0%), had clear-cell histology (85·7%), metastatic disease at cabozantinib initiation (97·8%), and prior nephrectomy (80·3%). In the primary safety population, 77·1% experienced dose modification owing to an AE. In the safety population, the median daily dose was 40·0 (range, 7·8-60·0) mg/day and the median treatment duration was 7·8 (< 0·1-15·2) months. Treatment-emergent and treatment-related AEs were experienced by 95·9% and 90·4% of patients, respectively. Median PFS (FAS) assessed by the local investigator

Journal: Clinical Genitourinary Cancer

Author for correspondence: Michael Staehler, MD, Ludwig Maximilian Universität München, Klinikum Grosshadern, Marchioninistrasse, 15, 81377, Munich, Germany. E-mail contact: michael.staehler@med.uni-muenchen.de, mstaehler@t-online.de

¹Ludwig Maximilian Universität München, Klinikum Grosshadern, Munich, Germany

²Oncology 1 Unit, Istituto Oncologico Veneto IOV IRCCS, Padova, Italy

³Institut Jean Godinot, Reims, France

⁴Institut de Cancérologie Strasbourg Europe, Strasbourg, France

⁵Centre Hospitalier Universitaire d'Angers, Angers, France

⁶Grenoble Alpes University Hospital, Grenoble, France

⁷Marien Hospital, Hamburg, Germany

⁸ Vall d'Hebron Institute of Oncology, Hospital Universitari Vall d'Hebron, Barcelona,

⁹Ramsay Santé, Hôpital privé de la Loire, Saint-Étienne, France

¹⁰Klinikum Stuttgart, Stuttgart, Germany

¹¹Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands

¹² ULSS Company 8 Berica, Vicenza, Italy

 $^{^{13}{\}rm Hospital}$ Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain

¹⁴Hospital Universitario Álvaro Cunqueiro, Vigo, Spain

¹⁵Health Research Institute Galicia Sur (IIS Galicia Sur), Vigo, Spain

¹⁶Ipsen, London, United Kingdom

¹⁷Ipsen Pharma, Boulogne-Billancourt, France

¹⁸Genitourinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

Submitted: Sep 2, 2024; Revised: Nov 11, 2024; Accepted: Nov 26, 2024; Epub: 30 November 2024

using any method was 8·3 months, and 1-year OS rate was 74%. Approximately one-third of all patients had a BOR of partial response and 6 had a complete response. **Interpretation:** Second- or later-line cabozantinib was effective and manageable in a real-world setting and had a safety profile consistent with previous studies.

Clinical Genitourinary Cancer, Vol. 23, No. 1, 102285 © 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Keywords: Adverse event, Dose modification, Targeted therapies, Treatment-refractory renal cell carcinoma, Tyrosine kinase inhibitor

Introduction

Immune checkpoint inhibitors, mammalian target of rapamycin inhibitors, and vascular endothelial growth factor (VEGF)-targeted therapies, as monotherapies and combination therapies, are available for the treatment of advanced renal cell carcinoma (aRCC). However, few patients experience complete and long-lasting response, $^{3-5}$ and $\leq 70\%$ of patients receive subsequent therapies. 6,7

Cabozantinib, a multitargeted tyrosine kinase inhibitor (TKI), is approved in Europe for use in treatment-naive adults with intermediate- or poor-risk aRCC or following prior VEGF-targeted therapy.^{2,8} cabozantinib is also approved in combination with nivolumab as a first-line (1L) treatment.⁸

Approval of cabozantinib as subsequent monotherapy was based on the results of the phase 3 METEOR trial, which demonstrated efficacy in patients with metastatic clear cell renal cell carcinoma (RCC) who had progressed after previous VEGF receptortargeted TKI treatment.^{9,10} In METEOR, cabozantinib significantly improved median progression-free survival (PFS) and overall survival (OS) compared with the mammalian target of rapamycin inhibitor everolimus (PFS: 7.4 vs. 3.9 months, respectively; OS: 21.4 vs. 16.5 months, respectively).¹⁰

Although a gold standard for establishing the efficacy and safety of novel therapies and informing clinical decision-making, randomized controlled trials (RCTs) typically occur under highly regulated conditions at specialist centers, and only 43-68% of patients with aRCC are eligible for inclusion. 11-13 Real-world study data can complement RCT data helping to understand treatment performance in patient populations managed in standard clinical practice. 14 However, prospective real-world data on cabozantinib use in aRCC are limited. Here we report results from CASSIOPE, a prospective real-world study conducted in Europe that investigated cabozantinib use in patients with aRCC following prior VEGF-targeted therapy.

Methods

Study Design

CASSIOPE was a real-world, prospective, multicenter, non-interventional, voluntary, postauthorization safety study to assess cabozantinib utilization in patients with aRCC after prior VEGF-targeted treatment (conducted between April 2018 and May 2022) (Figure S1). Data were collected from the medical records of eligible patients for a maximum of 12 months from cabozantinib initiation. CASSIOPE is registered in the European Union Electronic Register of Post-Authorisation Studies (EU PAS Register; EUPAS19464) and on ClinicalTrials.gov (NCT03419572).

Eligibility Criteria

Eligible patients were aged \geq 18 years, with a diagnosis of aRCC, and had received \geq 1 prior VEGF-targeted therapy. The decision to start cabozantinib treatment was made prior to and independent from study enrollment. Prior cabozantinib treatment and concurrent involvement in another interventional study were not permitted. Patients provided their consent. There were no exclusion criteria (patients with brain metastases were not excluded). Consenting patients were enrolled consecutively and treated according to local routine clinical practice.

Study Endpoints

The primary endpoint was the proportion of patients with ≥ 1 dose modification (reduction, interruption, or discontinuation) due to adverse events (AEs), based on the investigator's decision, in the second-line (2L) or third-or-later-line ($\geq 3L$) cabozantinib settings. If treatment was interrupted and restarted at a reduced dose, it was recorded as both a dose interruption and a dose reduction; if it was restarted at the same dose, it was recorded as a dose interruption only.

Secondary endpoints were to describe: real-world cabozantinib use (including median daily dose, duration of treatment, dose modifications due to any reason, time to first dose modification); treatment-emergent adverse events (TEAEs; classified according to the National Cancer Institute Common Terminology Criteria for Adverse Events v4·0); the effectiveness of cabozantinib (clinical and radiographic PFS, OS rate, and radiographic best overall response [BOR], based on Response Evaluation Criteria in Solid Tumors [RECIST] 1·1 or by other standard-of-care method) as assessed by the local investigator; and healthcare resource utilization associated with TEAE management during the treatment period (including concomitant medications, emergency room visits, hospitalizations, intensive care unit (ICU) stays, physician visits and homecare visits by nurses, and concomitant surgeries).

The severity of TEAEs was classified as mild (grade 1), moderate (grade 2), severe and undesirable (grade 3), life-threatening or disabling (grade 4), and death related to TEAE (grade 5).

Sample Size

Assuming that 75% of patients require dose modification, based on the pivotal METEOR trial, 9,10 a sample size of 289 patients per therapy line subgroup was required to estimate a 2-sided 95% confidence interval (CI) of the dose modification proportion with a precision of \pm 5%. Assuming that \leq 15% of patients would start cabozantinib using regimens different from the recommended

initiation regimen (60 mg/day), 15,16 in total \geq 680 patients were required, 340 each in the 2L and \geq 3L subgroups.

Analysis Populations

The full analysis set (FAS) included all patients who provided informed consent and received ≥ 1 dose of cabozantinib. Baseline characteristics and effectiveness outcomes were assessed in the FAS. Safety outcomes were assessed in the safety population (all patients from the FAS population who had a safety follow-up). The primary endpoint was assessed in the primary safety population (all patients from the safety population who started cabozantinib at the recommended dose [60 mg/day]).

Statistical Analysis

All analyses were primarily descriptive in this non-interventional study. The Clopper–Pearson method was used to calculate 2-sided 95% CIs for the primary endpoint analysis, BOR, and overall response rate (ORR). Median PFS, OS, and median time to first dose modification were analyzed using the Kaplan–Meier method.

Statistical analyses were performed using Statistical Analysis System (SAS®) version 9-4 or higher (SAS Institute Inc., Cary, NC, USA).

Results

Patient Disposition and Baseline Characteristics

Enrollment occurred between April 24, 2018 and May 19, 2022 across 91 centers in 11 European countries (Austria, Belgium, Czech Republic, France, Germany, Greece, Italy, the Netherlands, Poland, Spain, and the United Kingdom). Of 689 patients enrolled, 679 were eligible and included in the FAS and safety populations (Figure S2). In total, 335 patients received 2L cabozantinib and 343 received ≥ 3L cabozantinib. One patient receiving 1L cabozantinib (protocol deviation) was included in the overall FAS and safety populations and the subgroup of patients who initiated cabozantinib at 40 mg/day. The primary safety population comprised 433 patients (2L subgroup, n = 237; $\geq 3L$ subgroup, n = 196) who initiated cabozantinib at 60 mg/day (recommended dose). In total, 221 patients initiated cabozantinib at 40 mg/day (1L, n = 1; 2L, n = 90; \geq 3L, n=130). In the safety population, 296/679 patients had previously received nivolumab treatment; 285/296 (96.3%) received ≥ 3L cabozantinib.

Baseline characteristics are presented in Table 1. Briefly, median (range) age was 67 (29-93) years (aged < 65 years, 286 [42·1%]; \geq 65 years, 393 [57·9%]), most patients were male (73·0%), had clear cell RCC (85·7%), had metastatic disease at cabozantinib initiation (97·8%), and had prior nephrectomy (80·3%). Most patients reported prior TKI therapy (96·9%), most commonly sunitinib (57·3%) or pazopanib (34·5%) monotherapies. Almost half had received prior programmed death receptor-1/programmed death ligand-1 therapy (PD1/PDL1; 44·8%), most commonly nivolumab monotherapy (39·6%) (Table S1).

Demographic and baseline characteristics were generally similar between the 2L and \geq 3L subgroups. That proportionately fewer patients in the 2L subgroup had received prior PD1/PDL1 immunotherapy (2.7%) compared with patients in the \geq 3L

subgroup (86.0%) reflects that cabozantinib is not approved after immunotherapy alone (Table S1).

Patterns of Cabozantinib Use

Dose Modifications Due to AEs. The overall median (range) study exposure for the FAS population was 8.7 (< 1-15.4) months and was similar between the 2L and \geq 3L subgroups (8.5 [0.2-15.4] months and 9.3 [< 1-15.0] months, respectively). Of the 433 patients in the primary safety population, 77.1% experienced a dose modification (reduction, interruption, or discontinuation) owing to an AE (primary endpoint) (Figure 1A). Approximately half of this population experienced a dose reduction, about half experienced a dose interruption, and approximately a quarter discontinued treatment owing to an AE. Findings were similar between the 2L and \geq 3L subgroups.

Similar trends were observed among 221 patients in the safety population who initiated cabozantinib at 40 mg/day (Figure 1B). However, dose reduction and any modification rates were lower with an initial dose of 40 mg/day (43.9% and 70.6%, respectively) versus 60 mg/day (56.8% and 77.1%, respectively) cabozantinib. With 2L cabozantinib, the dose interruption rate was lower in patients initiating at 40 mg/day (38.9%) versus 60 mg/day (53.2%).

In subgroup analyses, proportionately fewer patients aged <65 years than ≥ 65 years experienced dose modifications due to AEs (71·7% vs. 77·6%) (Table S2). Experience of dose reductions and treatment discontinuations due to AEs was also higher in patients aged ≥ 65 years (55·5% and 30·5%, respectively) than patients aged <65 years (46·5% and 17·8%, respectively). Approximately half of each age subgroup experienced dose interruptions. The proportion of patients aged ≥ 65 years who experienced dose reductions was interestingly lower than the 91·4% of patients aged ≥ 70 years in the ZEBRA/MEET-URO 9 study (a tolerability study of cabozantinib in elderly real-world patients). ¹⁷

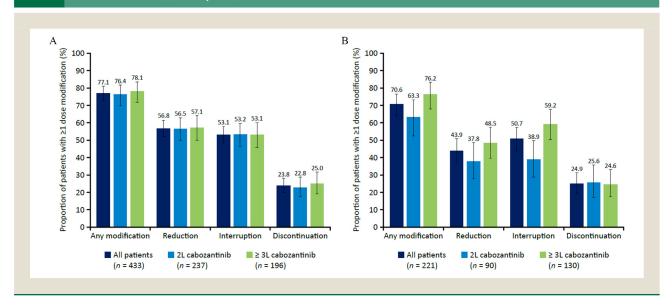
In the safety population, median (95% CI) time to first dose modification, reduction, interruption, or discontinuation due to AEs was 60 (57-68) days, 135 (113-179) days, 136 (104-173) days, and 457 (457-not calculable) days, respectively (Table 2). Times to dose modification, reduction, or interruption were numerically longer with 2L than \geq 3L cabozantinib (68-0 vs. 56-0 days, 141-0 vs. 120-0 days, and 173-0 vs. 99-0 days, respectively), suggesting better health in 2L patients. Median time to discontinuation was not reached owing to limited numbers of discontinuation events.

Of 296 patients with prior nivolumab, 78·0% experienced dose modifications due to AEs (52·7% experienced reduction; 54·1% experienced interruption; 27·4% experienced discontinuation).

Cabozantinib Exposure and Dose Modifications for Any Reason. In the safety population (ie, irrespective of starting dose), the median (range) daily dose across all patients was $40\cdot0$ ($7\cdot8-60\cdot0$) mg/day, and the median (range) duration of cabozantinib treatment was $7\cdot8$ (< $0\cdot1-15\cdot2$) months (Table 2). Findings were similar for both subgroups; however, proportionately more patients in the 2L subgroup initiated cabozantinib at 60 mg/day ($70\cdot7\%$) than in the $\geq 3L$ subgroup ($57\cdot1\%$). Most patients experienced a dose modification owing to any reason ($93\cdot8\%$), with a mean of $2\cdot7$ (standard deviation [SD], $2\cdot3$) dose modifications per patient. The median

Characteristics	2L cabozantinib	≥ 3L cabozantinib	All Patients
	(n = 335)	(n = 343)	$(n = 679)^a$
Age, years, median (range)	66 (29-93)	67 (36-89)	67 (29-93)
Age category, n(%)			
< 65 years	142 (42-4)	143 (41.7)	286 (42-1)
≥ 65 years	193 (57-6)	200 (58-3)	393 (57-9)
Sex, male, $n(\%)$	243 (72.5)	252 (73.5)	496 (73-0)
Fime since diagnosis, months, median (range)	30-1 (1-9-311-3)	44.5 (5.4-341.3)	36-6 (1-9-341-3
Cancer predominant history at diagnosis, n (%)		, ,	
Clear cell RCC	281 (84-4)	298 (86.9)	580 (85-7)
Nonclear cell RCC	52 (15.6)	45 (13.1)	97 (14-3)
Papillary carcinoma Type I	10 (3.0)	8 (2.3)	18 (2.7)
Papillary carcinoma Type II	15 (4-5)	10 (2.9)	25 (3.7)
Chromophobe RCC	8 (2-4)	7 (2.0)	15 (2.2)
Collecting duct RCC	0	1 (0.3)	1 (0-1)
Renal medullary carcinoma	2 (0.6)	0	2 (0-3)
Unclassified RCC	17 (5.1)	19 (5.5)	36 (5.3)
RCC histology not reported	2	0	2
ECOG performance status, $n(\%)$	_		_
0-1	275 (89-0)	236 (78-9)	512 (84-1)
≥ 2	34 (11.0)	63 (21.1)	97 (15-9)
Missing	26	44	70
RCC stage at diagnosis, $n(\%)$			
Localized (I/II)	119 (35-7)	104 (31-1)	223 (33-4)
Locally advanced (III)	66 (19-8)	69 (20.7)	135 (20-2)
Metastatic (IV)	148 (44-4)	161 (48-2)	310 (46-4)
Missing	2	9	11
RCC stage at start of cabozantinib treatment, $n(\%)$	-	,	
Locally advanced (III)	10 (3.0)	5 (1.5)	15 (2-2)
Metastatic (IV)	325 (97.0)	338 (98-5)	664 (97-8)
Prior surgery, n (%)	025 (6. 6)	333 (33 3)	55.(5.5)
Nephrectomy	257 (76-7)	287 (83-7)	545 (80-3)
Other	89 (26-6)	123 (35.9)	212 (31.2)
Metastasis site, $n(\%)$	55 (25 5)	120 (00 0)	2.2 (01.2)
Any site	325 (97-0)	338 (98-5)	664 (97-8)
Brain	30 (9.0)	37 (10.8)	67 (9.9)
Bones	138 (41-2)	138 (40-2)	276 (40-6)
Liver	74 (22.1)	103 (30-0)	177 (26-1)
Lungs	193 (57-6)	214 (62.4)	408 (60-1)
Lymph nodes	137 (40.9)	168 (49-0)	306 (45.1)
Other visceral metastasis	57 (17.0)	86 (25.1)	143 (21-1)
Other	98 (29-3)	116 (33.8)	214 (31.5)
Number of sites with metastasis, $n(\%)$	55 (25 5)	110 (00 0)	2.7(010)
0	10 (3.0)	5 (1.5)	15 (2.2)
1	94 (28-1)	69 (20.1)	163 (24-0)
2	105 (31.3)	106 (30.9)	212 (31-2)
≥ 3	126 (37.6)	163 (47.5)	289 (42-6)
MDC/Heng score for metastasis RCC prognosis, n(%)	120 (01.0)	(0.14)	203 (42.0)
Favorable	35 (17-9)	34 (19.0)	69 (18-4)

(continued on next page)


Table 1	(continued

Characteristics	2L cabozantinib	\geq 3L cabozantinib	All Patients
	(n = 335)	(n = 343)	$(n = 679)^a$
Poor	28 (14-3)	39 (21-8)	68 (18-1)
Missing	139	164	303
Number of prior systemic therapies, $n(\%)$			
1	335 (100-0)	0	335 (49-3)
2	0	258 (75-2)	258 (38-0)
3	0	58 (16-9)	58 (8.5)
4	0	16 (4-7)	16 (2.4)
> 4	0	11 (3-2)	11 (1.6)
Class of prior systemic therapy			
TKI	319 (95-2)	339 (98-8)	658 (96-9)
PD1/PDL1	9 (2-7)	295 (86-0)	304 (44-8)
mTOR inhibitors	0	36 (10-5)	36 (5.3)
Cytokines	0	3 (0.9)	3 (0.4)
Other	7 (2.1)	30 (8.7)	37 (5-4)

Percentages are based on the number of patients in the FAS population with nonmissing value.

Abbreviations: $\geq 3L$ = third- or later-line; 2L = second-line; ECOG = Eastern Cooperative Oncology Group; IMDC = International Metastatic Renal Cell Carcinoma Database Consortium; mTOR = mammalian target of rapamycin; PD1/PDL1 = programmed death receptor-1/programmed death ligand-1; RCC = renal cell carcinoma; SD = standard deviation; TKI = tyrosine kinase inhibitor.

Figure 1 Cabozantinib dose modifications due to adverse events in patients initiating cabozantinib at (A) 60 mg/day (primary safety population) and (B) 40 mg/day. Error bars represent 95% confidence interval. Any dose modification was defined as a dose reduction, interruption, or discontinuation.

 $\label{eq:abbreviations: lambda} \mbox{Abbreviations:} \geq 3L = \mbox{third- or later-line;} \ 2L = \mbox{second-line.}$

(range) duration of dose interruptions due to any reason was 21·0 (1·0-225·0) days (2L cabozantinib, 21·0 [2·0-123·0] days; \geq 3L cabozantinib, 19·5 [1·0-225·0] days). Of the 221 patients who initiated cabozantinib at 40 mg/day, 36 had \geq 1 dose increase documented during the study period. For 23 of these 36 patients, 60 mg/day was the documented increased dose. In patients with

prior nivolumab, the median (range) daily dose was 39.9 (13.8-60.0) mg/day.

AEs were the main reason for all dose reductions and interruptions in the safety population (reductions: 351/384 patients, 91.4%; interruptions 349/396 patients, 88.1%) and in patients with prior nivolumab (reductions: 156/168 patients, 92.9%; inter-

^a Includes 1 patient who received cabozantinib as first-line therapy.

Pattern of Treatment	2L cabozantinib	\geq 3L cabozantinib	All Patients
	(n = 335)	(n = 343)	$(n = 679)^a$
Cabozantinib dosing and modification			
Starting dose, n (%)			
60 mg/day	237 (70-7)	196 (57-1)	433 (63-8)
40 mg/day	90 (26-9)	130 (37-9)	221 (32-5)
20 mg/day	7 (2-1)	11 (3-2)	18 (2.7)
Other	1 (0.3)	6 (1.7)	7 (1.0)
Median (range) daily dose, mg/day	40-7 (17-0-60-0)	39-2 (7-8-60-0)	40-0 (7-8-60-0)
Median (range) daily dose in the primary safety population, mg/day	47-8 (17-7-60-0)	44-2 (7-8-60-0)	46-2 (7-8-60-0)
Median (range) duration of treatment, months	7.3 (< 0.1-15.2)	8.2 (< 0.1-15.0)	7.8 (< 0.1-15.2)
Patients with dose modifications due to any reason			
n (%)	317 (94-6)	320 (93-3)	637 (93-8)
95% CI	91-6-96-8	90-1-95-7	91.7-95.5
Number of dose modifications due to any reason			
Mean (SD)	2.5 (1.9)	3.0 (2.6)	2.7 (2.3)
Missing, n	18	23	42
Dose modification due to AE related to cabozantinib			
n (%)	221 (66-0)	237 (69-1)	458 (67-5)
95% CI	60-6-71-0	63.9-73.9	63-8-71-0
Time to event due to adverse event			
First dose modification			
Median (95% CI), days	68-0 (58-0-84-0)	56-0 (49-0-61-0)	60-0 (57-0-68-0)
Patients with events, n	245	263	508
First dose reduction			
Median (95% CI), days	141.0 (108.0-217.0)	120.0 (99.0-170.0)	135.0 (113.0-179.0
Patients with events, <i>n</i>	171	177	348
First dose interruption			
Median (95% CI), days	173.0 (131.0-260.0)	99.0 (81.0-136.0)	136.0 (104.0-173.0
Patients with events, <i>n</i>	163	184	347
First dose discontinuation			
Median (95% CI), days	NC (NC-NC)	457-0 (NC-NC)	457-0 (457-0-NC)
Patients with events, <i>n</i>	81	90	171
Time to event due to any reason			
First dose modification ^b			
Median (95% CI), days	57-0 (52-0-62-0)	44.0 (39.0-50.0)	51.0 (45.0-56.0)
Patients with events, <i>n</i>	316	317	633
First dose reduction ^c			
Median (95% CI), days	112-0 (97-0-145-0)	106-0 (91-0-126-0)	110-0 (99-0-124-0)
Patients with events, <i>n</i>	188	193	381
First dose interruption ^d			
Median (95% CI), days	118-0 (98-0-162-0)	78.0 (63.0-91.0)	93.0 (83.0-112.0)
Patients with events, <i>n</i>	185	206	391
First dose discontinuation			
Median (95% CI), days	231.0 (193.0-267.0)	255.0 (224.0-309.0)	245.0 (221.0-278.0
Patients with events, <i>n</i>	219	218	437

Patients were considered not evaluable when the date of event was unknown. Dose modification was defined as a dose reduction, interruption, or discontinuation. Clopper-Pearson method was used to calculate 95% CIs.

 $Abbreviations: \geq 3L = third- \ or \ later-line; \ 2L = second-line; \ Cl = confidence \ interval; \ NC = not \ calculable; \ SD = standard \ deviation.$

a Includes 1 patient who received cabozantinib as first-line therapy.

b 4 patients were not evaluable.

c 3 patients were not evaluable.

d 5 patients were not evaluable.

Table 3 Summary of Treatment-Emergent Adverse Events (Safety Population)

Patients with Adverse Event, n (%)	2L cabozantinib	\geq 3L cabozantinib	All Patients
	(n = 335)	(n = 343)	$(n = 679)^a$
AEs	320 (95.5)	331 (96.5)	652 (96-0)
Any TEAEs	320 (95.5)	330 (96-2)	651 (95-9)
TEAEs related to treatment	301 (89.9)	313 (91-3)	614 (90-4)
Serious TEAEs	150 (44-8)	163 (47.5)	313 (46.1)
AEs leading to treatment discontinuation	81 (24-2)	90 (26-2)	171 (25.2)
AEs leading to dose modification	245 (73.1)	265 (77.3)	510 (75.1)
AEs leading to dose interruption	163 (48-7)	186 (54-2)	349 (51.4)
AEs leading to dose reductions	171 (51.0)	180 (52-5)	351 (51.7)
Serious TEAEs leading to death	60 (17-9)	69 (20-1)	129 (19.0)
TEAEs by intensity			
Grade 1	254 (75-8)	273 (79-6)	528 (77-8)
Grade 2	252 (75.2)	281 (81-9)	534 (78-6)
Grade 3	160 (47-8)	162 (47-2)	322 (47.4)
Grade 4	26 (7-8)	20 (5.8)	46 (6.8)
Grade 5	60 (17-9)	69 (20-1)	129 (19.0)
TEAEs related to treatment by intensity			
Grade 1	230 (68-7)	253 (73-8)	483 (71.1)
Grade 2	226 (67.5)	251 (73-2)	477 (70.3)
Grade 3	118 (35-2)	119 (34-7)	237 (34-9)
Grade 4	10 (3-0)	8 (2-3)	18 (2.7)
Grade 5	4 (1.2)	9 (2-6)	13 (1.9)
Common TEAEs (reported in \geq 20% of patients)			
Diarrhea	194 (57.9)	179 (52-2)	374 (55-1)
Decreased appetite	86 (25-7)	113 (32-9)	199 (29.3)
PPE	86 (25.7)	103 (30.0)	189 (27-8)
Asthenia	74 (22-1)	100 (29-2)	174 (25.6)
Hypertension	69 (20-6)	93 (27-1)	162 (23.9)
Fatigue	69 (20-6)	87 (25-4)	157 (23.1)
Nausea	68 (20-3)	87 (25-4)	156 (23.0)
Weight decrease	64 (19.1)	72 (21-0)	137 (20-2)
Common grade 3 TEAEs (reported in \geq 2% of patients)		, ,	,
Diarrhea	20 (6-0)	21 (6.1)	41 (6.0)
Hypertension	23 (6-9)	17 (5-0)	40 (5.9)
PPE	18 (5-4)	12 (3.5)	30 (4.4)
Asthenia	12 (3-6)	14 (4.1)	26 (3.8)
Fatigue	6 (1.8)	10 (2-9)	16 (2.4)
General physical health deterioration	4 (1.2)	8 (2.3)	12 (1.8)
Mucosal inflammation	3 (0.9)	9 (2.6)	12 (1.8)
Weight decrease	7 (2.1)	4 (1.2)	11 (1.6)
Pleural effusion	7 (2.1)	2 (0.6)	9 (1.3)

Abbreviations: \geq 3L = third- or later-line; 2L = second-line; AE = adverse event; n = number of patients; PPE = palmar-plantar erythrodysesthesia; TEAE = treatment-emergent adverse event. a Includes 1 patient who received cabozantinib as first-line therapy.

ruptions: 160/179 patients, 89·4%). Discontinuations were primarily due to disease progression (safety population: 197/437 patients, 45·1%; prior nivolumab subgroup: 79/193 patients, 40·9%), or AEs (171/437 patients, 39·1%; 81/193 patients, 42·0%, respectively).

Safety

Of the 679 patients included in the safety population, 95.9% experienced ≥ 1 TEAE and 90.4% experienced ≥ 1 treatment-

related TEAE (Table 3). TEAEs and treatment-related TEAEs were mostly mild (77.8% and 71.1% of patients, respectively) or moderate (78.6% and 70.3%, respectively) in intensity. Serious TEAEs and grade 3 TEAEs were each reported in approximately half of patients. The frequency of grade 4 TEAEs was 6.8% of patients. Serious TEAEs leading to death occurred in 129 patients (19.0%), and treatment-related serious TEAEs occurred in 124 (18.3%). The most common TEAEs were diarrhea (55% of patients),

decreased appetite (29%), and palmar-plantar erythrodysesthesia (PPE) syndrome (28%) (Table 3). The most common grade 3 TEAEs were diarrhea (6.0% of patients) and hypertension (5.9%). Safety data were similar for the 2L and $\geq 3L$ cabozantinib subgroups (Table 3). The most common treatment-related TEAEs were diarrhea (52% of patients), PPE syndrome (27%), and decreased appetite (26%). The top 4 most common serious TEAEs were general physical health deterioration (5.4%), disease progression (5.2%), pneumonia (2.2%), and pulmonary embolism (2.2%). The 3 most common TEAEs leading to dose interruption were diarrhea (16.8%), PPE syndrome (10.0%), and asthenia (6.5%). The 3 most common TEAEs leading to dose reduction were diarrhea (19.3%), PPE syndrome (10.3%), and asthenia (7.1%). The 3 most common TEAEs leading to treatment discontinuation were diarrhea (2.7%), decreased appetite (2.4%), and asthenia (2.1%).

Of patients in the primary safety population (n = 433; initiating cabozantinib at 60 mg/day), 96·3% experienced a TEAE, 91·0% experienced a treatment-related TEAE, and 47·3% experienced a serious TEAE (rates were similar in patients initiating cabozantinib at 40 mg/day [94·6%, 90·0%, and 43·4%, respectively] and those with prior nivolumab [96·3%, 91·2%, and 47·6%, respectively]).

Effectiveness of Cabozantinib

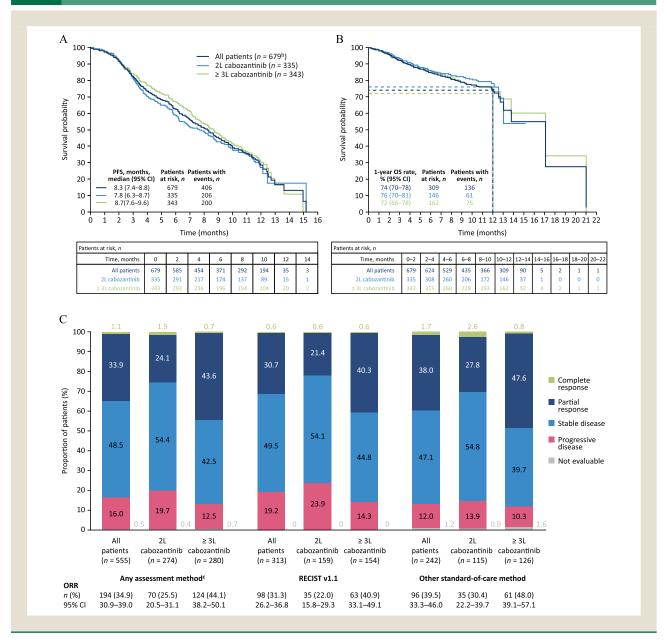
In the FAS, median (95% CI) PFS assessed by the local investigator using any method (RECIST v1·1 or another standard-of-care method) was 8·3 (7·4-8·8) months (Figure 2A). Median (95% CI) PFS assessed by RECIST v1·1 (n=313), was 8·7 (7·9-9·7) months (2L therapy, 8·1 [6·3-9·4] months; \geq 3L therapy, 9·2 [8·0-10·9] months). If PFS was not assessed using RECIST v1·1, other standard-of-care methods were used (according to local routine practice). Median (95% CI) PFS assessed using these other standard-of-care methods (n=366) was 7·8 (6·5-8·8) months (2L therapy, 7·0 [5·4-8·8] months; \geq 3L therapy, 8·1 [6·5-9·6] months). Median (95% CI) PFS (by any method) was 7·6 (6·3-8·7) months and 8·6 (7·6-9·4) months in patients who initiated cabozantinib at 40 mg/day and 60 mg/day, respectively (Table S3). In the 296 patients with prior nivolumab, the median (95% CI) PFS (by any method) was 8·6 (7·6-9·5) months.

At study completion, there were only 144 deaths, and therefore mOS calculations were not robust. The Kaplan–Meier estimate for 1-year OS rate was 74% (95% CI: 70-78%) overall and was similar between the 2L (76% [70-81%]) and \geq 3L (72% [66-78%]) subgroups (Figure 2B). Median 1-year OS rate was also similar between patients initiating cabozantinib at 60 mg/day (75% [95% CI: 69-79%]) compared with 40 mg/day (74% [66-81%]) (Table S3). Interestingly, patients aged < 65 years had a numerically higher 1-year OS rate (82% [95% CI: 76-87%]) than those aged \geq 65 years (69% [63-74%]). The 1-year OS rate for patients with prior nivolumab was 71% (95% CI: 64-77%).

BOR among the 555 patients with a radiological assessment in the FAS is presented in Figure 2C. Approximately one-third of all patients had partial response (PR) as their BOR. The proportion of patients with a PR in the \geq 3L subgroup (43·6%) was almost double that in the 2L subgroup (24·1%). Six patients had a complete response (2L cabozantinib, n=4; \geq 3L cabozantinib, n=2). ORR (95% CI) assessed by the local investigator using any method

was 34.9% (30.9-39.0) in all patients and was higher with $\geq 3L$ (44.1% [38.2-50.1]) than with 2L cabozantinib (25.5% [20.5-31.1]) (Figure 2C). Findings were similar between patients assessed using RECIST v1·1 and those assessed using another standard-of-care method. ORR (by any method) was similar between patients initiating cabozantinib at 40 mg/day (38.0%) and 60 mg/day (33.7%) (Table S3). The ORR (95% CI) was numerically higher in patients with clear cell RCC (36.9% [32.6-41.4]) than those with nonclear cell RCC (23.5% [14.8-34.2]). Of the 237 patients with evaluable data who received prior nivolumab, the ORR was 47.9% (41.4-54.4).

Healthcare Resource Utilization


Approximately 40% of patients in the safety population experienced ≥ 1 hospitalization owing to treatment-related AEs (TRAEs) (Table S4). TRAEs led to ≥ 1 homecare visit by a nurse, ≥ 1 ICU visit, or ≥ 1 emergency room visit in approximately 3%, 4%, and 17% of patients, respectively. Less than 10% of patients overall had a surgical procedure owing to TRAEs. Approximately one-quarter of patients had ≥ 1 unplanned physician visit due to TRAEs, and rates were numerically higher with ≥ 3 L than 2L cabozantinib. Concomitant medication was used to manage AEs in the majority of patients.

Discussion

This prospective, non-interventional study provides valuable information on the use of cabozantinib in patients with aRCC after prior VEGF-targeted therapy who receive treatment in real-world clinical practice in Europe. Patients included in CASSIOPE were considered representative of the real-world population of patients with aRCC; patient characteristics were similar to those in several other real-world studies. 18-22 However, differences of note included the proportion of patients with an Eastern Cooperative Oncology Group (ECOG) performance status score of 0-1, which was slightly higher in CASSIOPE than in other real-world studies (84.1% vs. 60.7-80.9%, respectively), and the proportion of patients with lung metastasis, which was slightly lower (60·1% vs. 65·0-76·3%, respectively). Patient characteristics in CASSIOPE were also similar to those in the phase 3 clinical METEOR trial. 10 However, a higher proportion of patients had bone and brain metastasis in CASSIOPE than METEOR (40.6% vs. 23.3%; and 9.9% vs. 0.6%, respectively), a higher proportion were previously treated with nivolumab (43.6% vs. 5%), and a lower proportion had lymph node metastasis (45·1% vs. 62·4%). In addition, all patients in METEOR were required to have an ECOG performance status of 0 or 1 and a clear cell histology, but only 84.1% and 85.7% of patients in CASSIOPE met these parameters, respectively. Lastly, while the proportion of patients with poor risk in CASSIOPE was similar to that in METEOR, proportionately fewer patients had favorable and more had intermediate risk in CASSIOPE.

Among patients who started cabozantinib at the recommended initial dose of 60 mg/day, approximately half had their cabozantinib dose interrupted and half had their dose reduced to manage AEs. Only about a quarter of patients discontinued cabozantinib owing to AEs. This suggests that dose reductions and interruptions were a well-used and successful approach for optimizing treatment duration, and thus potential treatment response. Similar trends were

Figure 2 Effectiveness of cabozantinib (full analysis set). Kaplan–Meier plots for (A) progression-free survival, a according to local investigator using any assessment method and (B) overall survival. (C) Best overall response and overall response rate.

Abbreviations: ≥ 3L = third- or later-line; 2L = second-line; CI = confidence interval; ORR = overall response rate; PFS = progression-free survival; RECIST v1·1 = Response Evaluation Criteria in Solid Tumors version 1·1. a Clinical and radiographic. b Includes 1 patient who received cabozantinib as first-line therapy. c Excludes patients with no radiological assessment.

observed for patients who initiated cabozantinib at the lower dose of 40 mg/day. The proportion of patients receiving \geq 2L cabozantinib who required a dose reduction due to AEs in CASSIOPE (246/433 patients [56·8%]) was similar to those reported in the phase 3 METEOR (206/331 patients [62·2%])¹⁰ and phase 2 BREAK-POINT (14/28 patients [50·0%]) trials.²³ However, the rate of treatment discontinuation due to AEs was higher in CASSIOPE (103/433 patients [23·8%]) than in METEOR (40/331 patients

[12·1%])¹⁰ and BREAKPOINT (1/30 patients [3·3%]).²³ This may reflect the inclusion of patients in CASSIOPE with more severe disease, based on bone and brain metastasis, or other differences between the real-world patient population of CASSIOPE and the clinical population included in METEOR, or differences in patient management between typical clinical practice and the highly controlled clinical trial environment. Dose modifications due to AEs in CASSIOPE were within the range found in previous real-world

trials.^{18,19,22} The proportion of patients requiring a dose reduction owing to AEs was 41·7-77·3% in real-world studies^{19,22,24} compared with 56·8% in CASSIOPE, and the rate of treatment discontinuation due to AEs was 5·2-24·9% in real-world studies ^{18,22,24} compared with 23·8% in CASSIOPE. In general, rates of dose modifications were similar for the overall safety population and those patients who had prior nivolumab.

Overall, the safety profile of cabozantinib observed in CASSIOPE was consistent with the general known safety profile of cabozantinib; no new safety signal was identified. In CASSIOPE, almost all patients reported ≥ 1 TEAE and 90·4% reported ≥ 1 treatment-related TEAE. These findings are in line with the METEOR trial, in which 100% of patients reported TEAEs, 10 and the BREAKPOINT trial, in which 93·3% of patients reported any AE. 23 In general, there was a similar safety profile for the overall safety population and for those patients who had prior nivolumab. In addition, alternative schedules of cabozantinib dosing have been shown to be associated with lower frequency and severity of TRAEs and a longer PFS. 25

The CASSIOPE data demonstrated that cabozantinib was clinically effective in real-world clinical practice in both the 2L and $\geq 3L$ settings. ORR in CASSIOPE, assessed by RECIST v1·1 (31·3%) or any method (34.9%), was similar to that reported in BREAK-POINT (37.9%),²³ and approximately double that reported in METEOR (17.3%).10 ORRs for patients with clear cell and nonclear cell RCC were proportionately lower in CASSIOPE than those reported for the phase 2 BONSAI trial (1L cabozantinib treatment)²⁶ and the phase 1b COSMIC-021 trial (cabozantinib in combination with atezolizumab);²⁷ clear cell: 36·2% in CASSIOPE compared with 53-58% in COSMIC-021; nonclear cell: 23.5% in CASSIOPE compared with 34.8% in BONSAI and 31.3% in COSMIC-021. ORR was particularly high in the ≥ 3L cabozantinib subgroup (40.9% by RECIST v1.1 vs. 22.0% in the 2L subgroup), and was similar to that in the phase 3 CONTACT-03 trial (cabozantinib subgroup, 41%). 28 This may be explained by the high proportion of patients having received ≥ 3L cabozantinib after prior nivolumab monotherapy (77.3% in CASSIOPE and 93% in CONTACT-03),²⁸ because results from the CABIR study suggest that 3L cabozantinib, when administered after nivolumab, may be more effective than 3L nivolumab administered after cabozantinib.²⁹ Another possible explanation is that patients reaching \geq 3L cabozantinib represent a selected population that responds to therapy.

Median PFS was also longer in CASSIOPE (8·7 months) than METEOR (7·4 months), albeit the difference was less dramatic than for ORR, ¹⁰ and similar to BREAKPOINT (8·3 months). ²³ Longer PFS in the real-world setting may be explained by less frequent or irregular radiological assessments compared with those formally conducted at set intervals in the clinical trial setting. These indirect comparisons should be considered with caution, particularly in light of differences between studies in population characteristics (including differences in previous treatments) and methods of assessing responses. That the PFS was longer in the \geq 3L subgroup (8·7 months) of CASSIOPE than the 2L subgroup (7·8 months) may again be due to the higher proportion of patients having received prior nivolumab. Indeed, PFS with 3L cabozantinib was even higher in CONTACT-03 (10·8 months) in which propor-

tionately more patients (93%) had prior 2L nivolumab than those in CASSIOPE.²⁸ The 1-year OS rate in CASSIOPE (74%) was higher than CABOREAL (57%)¹⁸ but similar to CONTACT-03 (76%).²⁸

In CASSIOPE, PFS and 1-year OS rate were similar, and ORR was lower, for the overall FAS population compared with the subgroup of patients who had prior nivolumab.

To our knowledge, CASSIOPE was the largest prospective real-world study of cabozantinib use to date, which included nearly 700 patients from across 11 European countries. The design permitted the investigation of cabozantinib use and outcomes for patients with aRCC who were receiving treatment in routine clinical practice and, because there were no exclusion criteria, the study population was representative of all patients with aRCC in Europe, ¹⁸⁻²² including patients with more advanced/severe disease who are excluded from interventional studies. In addition, similar outcomes in this study for patients who initiated cabozantinib treatment at the recommended dose of 60 mg/day and those who initiated at 40 mg/day support the generalizability of these data to real-world cabozantinib use.

Limitations of this study include the quality, and availability of data provided by different study sites varied depending on local clinical practice, reflecting the nature of real-world studies. For example, there was a high rate of missing International Metastatic Renal Cell Carcinoma Database Consortium/Heng score data at baseline, and only approximately half of patients were assessed using RECIST v1·1. The proportion of patients with an ECOG performance status > 2 reflects the condition of the patient at the start of cabozantinib in real-life conditions; however, this proportion is low and therefore these patients are underrepresented in this study. A higher number of patients than anticipated had started on cabozantinib at 40 mg/day and approximately 60% of these patients were in the > 3L cabozantinib subgroup, resulting in an imbalance between therapy line groups. The proportion of evaluable patients in the \geq 3L subgroup was lower than anticipated and therefore the precision rate for the primary endpoint was wider than planned. Patient inclusion was at the investigators' discretion and may have led to selection bias. To minimize this, the decision to start cabozantinib was made prior to and independent from enrollment and physicians were asked to include all successive eligible patients. Because cabozantinib is now recommended in combination with nivolumab in the 1L setting, real-world use of cabozantinib will continue to change, and the findings from this CASSIOPE study will only relate to a portion of the patient population. The ongoing, prospective, noninterventional CaboCombo trial is evaluating this 1L combination therapy in the real-world setting.³⁰ The ongoing, prospective, noninterventional, phase 2 CaboPoint study is evaluating the efficacy and safety of 2L cabozantinib following 1L checkpoint inhibitor therapy.

In conclusion, in this real-world CASSIOPE study, 2L or laterline cabozantinib was effective and the safety profile was consistent with that observed in the phase 3 METEOR trial. AEs were adequately managed using established safety guidelines, for example by using dose modifications. Treatment discontinuation rates due to AEs were higher in this study than in the METEOR trial. Further, the similarity in outcomes between patients who initiated cabozantinib at the recommended dose of 60 mg/day and those who initiated it at 40 mg/day demonstrates the generalizability of these data to real-world cabozantinib use. Unlike the METEOR trial, CASSIOPE had no exclusion criteria and included patients with severe comorbidities such as end-stage renal failure on dialysis, ECOG performance status \geq 2, brain metastasis, and nonclear cell RCC, and therefore provides data on the activity and tolerability of cabozantinib in the whole population of patients with aRCC. Overall, monitoring for TEAEs and managing them through dose modification can help to optimize cabozantinib use for the treatment of patients with aRCC.

Clinical Practice Points

- Cabozantinib, a multitargeted tyrosine kinase inhibitor, is approved in Europe for use in treatment-naive adults with intermediate- or poor-risk advanced renal cell carcinoma (aRCC) or following prior vascular endothelial growth factor (VEGF)targeted therapy. Cabozantinib is also approved as first-line treatment in combination with nivolumab. Although cabozantinib approval was based on clinical data from pivotal randomized controlled trials (RCTs), the literature shows that only 43-68% of patients with aRCC are eligible for inclusion in RCTs; therefore, it is important to complement these clinical data with real-world evidence.
- CASSIOPE (NCT03419572) is a real-world, prospective, noninterventional, postauthorization safety study conducted across multiple European centers providing insight into cabozantinib use after previous VEGF-targeted therapy in patients with aRCC.
- Among 679 patients included in CASSIOPE, a large proportion (77.1%) of real-world patients experienced dose modifications due to adverse events. Treatment-emergent adverse events (TEAEs) and those related to cabozantinib treatment were experienced by 95.9% and 90.4% of patients, respectively. However, only a quarter of patients discontinued cabozantinib treatment, suggesting that dose reduction or interruption in treatment are good strategies to help manage side effects. These dose modifications were also successful in optimizing treatment duration, and thus treatment response.
- Our findings complement those reported in RCTs, supporting cabozantinib as an effective treatment in real-world second- or later-line treatment settings, with a manageable safety profile. Monitoring for TEAEs and managing them using dose modification can help to optimize treatment for patients with aRCC. These real-world insights are valuable for clinicians and patients to improve treatment of aRCC.

Contributors

All authors provided substantial contributions to study conception/design or acquisition/analysis/interpretation of data; drafting of the publication or reviewing it critically for important intellectual content. All authors have provided final approval of the publication and have given their approval of this version for publication. They have agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics Approval and Consent to Participate

This study was conducted in accordance with the principles of the World Medical Association Declaration of Helsinki (Helsinki, 1964 and all subsequent amendments). This study also followed the International Society for Pharmacoepidemiology (ISPE) Guidelines for GPP, EMA guidelines for GVP, and the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP) Guide on Methodological Standards in Pharmacoepidemiology, when applicable. Patients' informed consent was obtained before the start of data collection.

Data Sharing Statement

Qualified researchers may request access to patient-level study data that underlie the results reported in this publication. Additional relevant study documents, including the clinical study report, study protocol with any amendments, annotated case report form, statistical analysis plan, and data set specifications may also be made available. Patient-level data will be anonymized, and study documents will be redacted to protect the privacy of study participants.

When applicable, data from eligible studies are available 6 months after the studied medicine and indication have been approved in the US and EU or after the primary manuscript describing the results has been accepted for publication, whichever is later.

Further details on Ipsen's sharing criteria, eligible studies, and process for sharing are available here (https://vivli.org/members/ourmembers/). Any requests should be submitted to www.vivli.org for assessment by an independent scientific review board.

Disclosure

MS: Consulting or advisory role—Apogepha, Bristol-Myers Squibb, Eisai, EMD Serono, EUSA Pharma, Exelixis, Ipsen, Merck Sharp & Dohme, Novartis, Oncorena, Pfizer; Speakers' bureau—Bristol-Myers Squibb, Eisai, EUSA Pharma, Ipsen, Novartis, Pfizer; Travel, accommodations, expenses—Bristol-Myers Squibb, Eisai, EMD Serono, EUSA Pharma, Ipsen, MSD Oncology, Novartis, Pfizer; Honoraria—Astellas Pharma, Bayer, Bristol-Myers Squibb, Incyte, EMD Serono, EUSA Pharma, Exelixis, Ipsen, MDS Oncology, Novartis, Pfizer, Roche; Research funding—Bayer, Bristol-Myers Squibb, Eisai, Exelixis, Novartis, Pfizer, Roche/Genentech.

UB: Consulting or advisory role—AAA Novartis, AstraZeneca, Bristol-Myers Squibb, Pfizer; Research funding—Ipsen; Travel, accommodations, expenses—Astellas Pharma, Bayer, Bristol-Myers Squibb, Janssen Oncology, Ipsen, Merck/Pfizer, MSD Oncology; Other relationship—Astellas Pharma, AstraZeneca, Bayer, Bristol-Myers Squibb, Janssen Oncology, Ipsen, Merck/Pfizer, MSD.

J-CE: Honoraria—Bristol-Myers Squibb, Ipsen, Pfizer; Consulting or advisory role—Bayer, Pfizer; Travel, accommodations, expenses—Janssen, Pfizer.

PhB: Consulting or advisory role—AAA/Endocyte/Novartis, Amgen, AstraZeneca, Bayer, Bristol-Myers Squibb, Eisai, Gilead Sciences, Ipsen, Janssen-Cilag, Merck KGaA, MSD Oncology, Pfizer; Travel, accommodations, expenses—Bristol-Myers Squibb, Ipsen, Janssen-Cilag, Merck/Pfizer, MSD, Pfizer; Honoraria—Astellas Pharma, Bayer, Bristol-Myers Squibb, Gilead Sciences,

Ipsen, Janssen-Cilag, Merck KGaA, MSD, Novartis, Pfizer, Seattle Genetics.

PiB: Honoraria—MSD; Consultancy or advisory role—Bristol-Myers Squibb, Ipsen, MSD.

ML: Consulting or advisory role—Amgen, AstraZeneca, Bristol-Myers Squibb, Ipsen, MSD, Novartis, Pfizer; Speakers' bureau—AstraZeneca, Ipsen; Travel, accommodations, expenses—Ipsen, MSD, Pfizer.

MR: Consulting or advisory role—AstraZeneca, Bayer Healthcare, Bristol-Myers Squibb, Ipsen Pharma, MSD, Novartis, Pfizer, Roche; Honoraria—AstraZeneca, Bayer Healthcare, Bristol-Myers Squibb, Ipsen Pharma, MSD, Novartis, Pfizer, Roche; Speakers' bureau—Bayer Healthcare, Bristol-Myers Squibb, EUSA Pharma, Ipsen Pharma, Novartis, Olympus, Pfizer, Roche.

CS: Consulting or advisory role—Astellas Pharma, Bristol-Myers Squibb, Eisai, EUSA Pharma, Ipsen, Merck Sharp & Dohme, Pfizer, Roche/Genentech; Speakers' bureau—Bristol-Myers Squibb, Eisai, Ipsen, Merck Sharp & Dohme, Pfizer, Roche/Genentech; Travel, accommodations, expenses—Bristol-Myers Squibb, Ipsen, Roche; Research funding—AB Science, Aragon Pharmaceuticals, Astellas Pharma, AstraZeneca, Bayer, Blueprint Medicines, Boehringer Ingelheim, Bristol-Myers Squibb, Clovis Oncology, Exelixis, Glaxo-SmithKline, Novartis, Pfizer, Roche/Genentech, Sanofi Aventis GMbH.

AG: Nothing to disclose.

JB: Consulting or advisory role—Apogepha, Astellas, AstraZeneca, BMS, Eisai, Ipsen, Janssen, Merck Serono, MSD, Pfizer, Roche; Speakers' bureau—Astellas, BMS, Ipsen, Merck Serono, MSD, Pfizer, Roche, Seagen; Research funding—Astellas, AstraZeneca, BMS, Eisai, Ipsen, MSD, Nektar, Novartis, Pfizer, Roche, Seagen; Travel, accommodations, expenses—Merck.

PH: Consulting or advisory role—Astellas Pharma, AstraZeneca, Bristol-Myers Squibb, Ipsen, MDS, Pfizer.

RDV: Honoraria—AstraZeneca, Bayer, Ipsen, Janssen, MDS, Pfizer; Travel, accommodations, expenses—AAA Novartis.

PG: Consulting or advisory role—Astellas, Bristol-Myers Squibb, Ipsen, Merck, MSD, Pfizer, Roche; Speakers' bureau—Astellas, Bristol-Myers Squibb, Ipsen, Merck, MSD, Pfizer, Roche; Travel, accommodations, expenses—Ipsen, Merck, Pfizer.

ML-Q: Consulting or advisory role—Astellas, AstraZeneca, Bayer, MSD, Pfizer; Speakers' bureau—Astellas, AstraZeneca, BMS, Eisai, Ipsen, MSD, Pfizer; Research funding—AstraZeneca, BMS, Gilead, Ipsen, MSD, Roche; Travel, accommodations, expenses—Ipsen, MSD, Pfizer.

PR: Employment—Ipsen.

VP: Employment—Ipsen; Stockholder—Ipsen; Travel, accommodations, expenses—Ipsen.

BQ: Employment—Ipsen; Stockholder—Ipsen; Honoraria—Ipsen; Travel, accommodations, expenses—Ipsen.

PD: Employment—Ipsen.

EV: Consulting or advisory role: AstraZeneca, Bayer, Bristol-Myers Squibb, Eisai, Ipsen, Janssen, Merck Sharp & Dohme, MSD Oncology, Novartis, Pfizer.

GP: Consulting or advisory role—Accord, Amgen, Astellas, AstraZeneca, Bayer, Bristol-Myers Squibb, Eisai, EUSA Pharma, Ipsen, Janssen, Lilly, Merck Sharp & Dohme, MSD Oncology,

Novartis, Pfizer, Roche Genentech; Research funding—Astellas Pharma, Gilead, Ipsen, Janssen Oncology, MSD; Travel, accommodations, expenses—AAA/Novartis, Ipsen, Janssen, Recordati.

CRediT authorship contribution statement

Michael Staehler: Writing - review & editing, Writing original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Umberto Basso: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Jean-Christophe Eymard: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Philippe Barthelemy: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Pierre Bigot: Writing - review & editing, Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Mathieu Laramas: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Michael Rink: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Cristina Suarez: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Aline Guillot: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Jens Bedke: Writing review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Paul Hamberg: Writing – review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Rocco De Vivo: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Pablo Gajate: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Martín Lázaro-Quintela: Writing review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Priti Rastogi: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Valérie Perrot: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Bryan Qvick: Writing - review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Pascale Dutailly: Writing – review & editing, Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization.

Elena Verzoni: Writing – review & editing, Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. **Giuseppe Procopio:** Writing – review & editing, Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization.

Acknowledgments

The authors thank all patients who were involved in this study, as well as their caregivers and care teams, and the investigators and research staff of the participating institutions. The authors thank Liz Sloan PhD and David Gothard PhD of Oxford PharmaGenesis, Oxford, UK for providing medical writing support, which was sponsored by Ipsen in accordance with Good Publication Practice guidelines (GPP 2022). This study, manuscript development, and open-access fee were funded by Ipsen. The design and conduct of the study, as well as collection, management, analysis, and interpretation of the data were done by the sponsor in collaboration with the authors.

Funding was provided by Ipsen.

Supplementary Materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.clgc.2024.102285.

References

- Atkins MB, Clark JI, Quinn DI. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. *Ann Oncol*. 2017;28(7):1484–1494.
- Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology Guidelines on renal cell carcinoma: the 2022 update. Eur Urol. 2022;82(4):399–410.
- Motzer R, Alekseev B, Rha SY, et al. Lenvatinib plus pembrolizumab or everolimus for advanced renal cell carcinoma. N Engl J Med. 2021;384(14):1289–1300.
- Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–1290.
- Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380(12):1116–1127.
- Schmidinger M, Pichler R, Loidl W, et al. Real-world evidence data on metastatic renal-cell carcinoma treatment in Austria: the RELACS study. Clin Genitourin Cancer. 2019:17(5):e957–ee67.
- Wells JC, Stukalin I, Norton C, et al. Third-line targeted therapy in metastatic renal cell carcinoma: results from the International Metastatic Renal Cell Carcinoma Database Consortium. Eur Urol. 2017;71(2):204–209.
- Ipsen. Summary of product characteristics: CABOMETYX 20, 40 and 60 mg filmcoated tablets (updated June 2023). https://www.ema.europa.eu/en/documents/ product-information/cabometyx-epar-product-information_en.pdf. Accessed 22 April 2024.
- Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1814–1823.
- Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. *Lancet Oncol.* 2016;17(7):917–927.

- Heng DY, Choueiri TK, Rini BI, et al. Outcomes of patients with metastatic renal cell carcinoma that do not meet eligibility criteria for clinical trials. *Ann Oncol*. 2014;25(1):149–154.
- Gan CL, Stukalin I, Meyers DE, et al. Outcomes of patients with solid tumour malignancies treated with first-line immuno-oncology agents who do not meet eligibility criteria for clinical trials. Eur J Cancer. 2021;151:115–125.
- Marschner N, Staehler M, Müller L, et al. Survival of patients with advanced or metastatic renal cell carcinoma in routine practice differs from that in clinical trials - analyses from the German clinical RCC registry. Clin Genitourin Cancer. 2017;15(2):e209–ee15.
- Moran M, Nickens D, Adcock K, Bennetts M, Charnley N, Fife K. Augmenting the randomized controlled trial with real-world data to aid clinical decision making in metastatic renal cell carcinoma: a systematic review and meta-analysis. *Future Oncol.* 2019;15(34):3987–4001.
- Atkinson BJ, Kalra S, Wang X, et al. Clinical outcomes for patients with metastatic renal cell carcinoma treated with alternative sunitinib schedules. J Urol. 2014;191(3):611–618.
- Bracarda S, Iacovelli R, Boni L, et al. Sunitinib administered on 2/1 schedule in patients with metastatic renal cell carcinoma: the RAINBOW analysis. Ann Oncol. 2015;26(10):2107–2113.
- 17. Damassi A, Cremante M, Signori A, et al. Prognostic stratification by the Meet-URO score in real-world older patients with metastatic renal cell carcinoma (mRCC) receiving cabozantinib: a subanalysis of the prospective ZEBRA study (Meet-URO 9). Clin Genitourin Cancer. 2024;22(2):126–133.e2.
- Albiges L, Flechon A, Chevreau C, et al. Real-world evidence of cabozantinib in patients with metastatic renal cell carcinoma: results from the CABOREAL early access program. Eur J Cancer. 2021;142:102–111.
- Iacovelli R, Ciccarese C, Fornarini G, et al. Cabozantinib-related cardiotoxicity: a prospective analysis in a real-world cohort of metastatic renal cell carcinoma patients. Br J Clin Pharmacol. 2019;85(6):1283–1289.
- Santoni M, Heng DY, Bracarda S, et al. Real-world data on cabozantinib in previously treated patients with metastatic renal cell carcinoma: focus on sequences and prognostic factors. *Cancers (Basel)*. 2019;12(1):84.
- van Laar SA, Gombert-Handoko KB, Groenwold RHH, et al. Real-world metastatic renal cell carcinoma treatment patterns and clinical outcomes in the Netherlands. Front Pharmacol. 2022;13:803935.
- Venugopal B, Pillai M, Powles T, et al. Early clinical experience with cabozantinib for advanced renal cell carcinoma in the UK: real-world treatment pathways and clinical outcomes. Clin Genitourin Cancer. 2022;20(1):94–104.
- Procopio G, Claps M, Pircher C, et al. A multicenter phase 2 single arm study
 of cabozantinib in patients with advanced or unresectable renal cell carcinoma
 pre-treated with one immune-checkpoint inhibitor: the BREAKPOINT trial
 (Meet-Uro trial 03). *Tumori*. 2023;109(1):129–137.
- Procopio G, Prisciandaro M, Iacovelli R, et al. Safety and efficacy of cabozantinib in metastatic renal-cell carcinoma: real-world data from an Italian managed access program. Clin Genitourin Cancer. 2018;16(4):e945–ee51.
- Bruchbacher A, Franke J, Alimohammadi A, Laukhtina E, Fajkovic H, Schmidinger M. Real-world results of cabozantinib given as alternative schedule in metastatic renal cell carcinoma. Clin Genitourin Cancer. 2023;22(2):98–108.
- Procopio G, Sepe P, Claps M, et al. Cabozantinib as first-line treatment in patients
 with metastatic collecting duct renal cell carcinoma: results of the BONSAI trial
 for the Italian Network for Research in Urologic-Oncology (Meet-URO 2 study). *JAMA Oncol.* 2022;8(6):910–913.
- Pal SK, McGregor B, Suárez C, et al. Cabozantinib in combination with atezolizumab for advanced renal cell carcinoma: results from the COSMIC-021 study. I Clin Oncol. 2021;39(33):3725–3736.
- 28. Pal SK, Albiges L, Tomczak P, et al. Atezolizumab plus cabozantinib versus cabozantinib monotherapy for patients with renal cell carcinoma after progression with previous immune checkpoint inhibitor treatment (CONTACT-03): a multicentre, randomised, open-label, phase 3 trial. *Lancet*. 2023;402(10397):185–195.
- Vano YA, Phan L, Gravis G, et al. Cabozantinib-nivolumab sequence in metastatic renal cell carcinoma: the CABIR study. Int J Cancer. 2022;151(8):1335–1344.
- Barthélémy P, Dutailly P, Qvick B, Perrot V, Verzoni E. CaboCombo: a prospective, phase IV study of first-line cabozantinib + nivolumab for advanced renal cell carcinoma. Future Oncol. 2023;20(13):811–819.