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ABSTRACT

Background The efficacy of immune checkpoint
inhibitors (ICls) depends on the tumor immune
microenvironment (TIME), with a preference for a T cell-
inflamed TIME. However, challenges in tissue-based
assessments via biopsies have triggered the exploration
of non-invasive alternatives, such as radiomics, to
comprehensively evaluate TIME across diverse cancers.
To address these challenges, we develop an ICI response
signature by integrating radiomics with T cell-inflamed
gene-expression profiles.

Methods We conducted a pan-cancer investigation into
the utility of radiomics for TIME assessment, including
1360 tumors from 428 patients. Leveraging contrast-
enhanced CT images, we characterized TIME through
RNA gene expression analysis, using the T cell-inflamed
gene expression signature. Subsequently, a pan-cancer
CT-radiomic signature predicting inflamed TIME (CT-
TIME) was developed and externally validated. Machine
learning was employed to select robust radiomic features
and predict inflamed TIME. The study also integrated
independent cohorts with longitudinal CT images, baseline
biopsies, and comprehensive immunohistochemistry
panel evaluation to assess the pan-cancer biological
associations, spatiotemporal landscape and clinical utility
of the CT-TIME.

Results The CT-TIME signature, comprising four radiomic
features linked to a T-cell inflamed microenvironment,
demonstrated robust performance with AUCs (95% Cl)

of 0.85 (0.73 to 0.96) (training) and 0.78 (0.65 to 0.92)
(external validation). CT-TIME scores exhibited positive
correlations with CD3, CD8, and CD163 expression.
Intrapatient analysis revealed considerable heterogeneity
in TIME between tumors, which could not be assessed
using biopsies. Evaluation of aggregated per-patient CT-
TIME scores highlighted its promising clinical utility for
dynamically assessing the immune microenvironment
and predicting immunotherapy response across diverse
scenarios in advanced cancer. Despite demonstrating
progression disease at the first follow-up, patients within
the inflamed status group, identified by CT-TIME, exhibited
significantly prolonged progression-free survival (PFS),
with some surpassing 5 months, suggesting a potential
phenomenon of pseudoprogression. Cox models using

WHAT IS ALREADY KNOWN ON THIS TOPIC

= Traditional biopsies face challenges in assessing the
immune microenvironment, prompting the search
for non-invasive alternatives like radiomics to eval-
uate it across different cancers.

WHAT THIS STUDY ADDS

= This study introduces a new method, CT-tumor im-
mune microenvironment (TIME), which combines
radiomics and gene expression to assess the im-
mune microenvironment across diverse cancers. It
also reveals significant variations in the microenvi-
ronment between tumors and highlights potential
pseudoprogression in certain patients.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= The CT-TIME method has the potential to im-
pact treatment decisions, patient categorization,
and treatment outcomes in immune checkpoint
therapies. It may also redefine our understand-
ing of treatment response, particularly in cases of
pseudoprogression.

aggregated CT-TIME scores from baseline images revealed
a statistically significant reduction in the risk of PFS in

the pan-cancer cohort (HR 0.62, 95% Cl 0.44 to 0.88,
p=0.007), and Kaplan-Meier analysis further confirmed
substantial differences in PFS between patients with
inflamed and uninflamed status (log-rank test p=0.009).
Conclusions The signature holds promise for impacting
clinical decision-making, pan-cancer patient stratification,
and treatment outcomes in immune checkpoint therapies.

BACKGROUND

The emergence of immune checkpoint inhib-
itors (ICIs) has transformed the treatment
landscape for advanced cancers by leveraging
the immune system to selectively target tumor
cells. Despite these advancements, the overall
response rates to ICI remain modest, with less
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than 15% of patients experiencing positive responses,’
alongside instances of severe treatment-related toxicities.”
This underscores the urgent need in oncology for the
development of precise predictive response biomarkers
tailored to ICI therapies.

The efficacy of ICI is intricately tied to the tumor
immune microenvironment (TIME).?* However, charac-
terizing the TIME is complex, given the variability in T
cell reactivity within tumors and the nuanced response of
tumour-reactive T cells to immunotherapy. Recent investi-
gations revealed key attributes of a T cell-inflamed tumor
microenvironment, including active IFN-y signaling, cyto-
toxic effector molecules, antigen presentation, and T cell-
active cytokines.” The T-cell-inflamed gene-expression
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profile (GEP),” serving as an indicator of the activity and
condition of the TIME rather than the specific abundance
of immune cell types, has demonstrated associations with
ICIs response across diverse cancer types and clinical trial
settings.®’

However, the assessment of TIME through tissue
sampling presents logistical challenges in clinical prac-
tice, primarily due to the invasive character of the proce-
dure. Furthermore, tissue biopsies, limited to small
tumor fragments, are susceptible to sampling biases
and inherently fail to capture the broader spatiotem-
poral dynamics of the microenvironment. In contrast,
radiomics, a non-invasive approach extracting semi-
quantitative features from medical images, offers a
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Figure 1 Data and study overview. (A) Dataset overview with demographics and treatment information. Note that patients were

treated with a single agent (mono IT) or a combination of immunotherapy agents. Cohort 1 was used for signature development
and model training, Cohort 2 for external signature validation, cohort 3 for exploring biological associations, and cohort 4

for analyzing the clinical utility of the signature. (B) Step-by-step study overview with colors corresponding to the analyzed
datasets (A). Biopsies and CT images from the training cohort underwent analysis using genomics and radiomics. Robust
feature selection was conducted through machine learning, with various models fitted to predict the T cell-inflamed GEP score.
The best-performing model was chosen during validation. Biological associations of CT-TIME were explored, along with an
investigation into the clinical utility of the aggregated CT-TIME score. AUC, area under the curve; FFE, formalin-fixed paraffin-
embedded; GEP, gene-expression profile; IHC, immunohistochemistry; PFS, progression-free survival; RF, random forest; ROC,
receiver operating characteristic; SVM, support vector machine; TIME, tumor immune microenvironment.
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comprehensive view of tumor heterogeneity, enabling
the characterization of an individual patient’s tumor
phenotype’s spatiotemporal landscape to guide person-
alized treatments.

Radiomic signatures are patterns or profiles derived
from radiomic features that can be correlated with
specific disease characteristics, treatment responses,
or patient outcomes. Initial studies demonstrated the
potential of radiomics in characterizing the abundance
of CD8+tumor-infiltrating lymphocytes and predicting
treatment outcomes.® ! However, these studies have
shown limited reproducibility across different cancer
types and have lacked external validation and signature
explainability,'*™*

To address these challenges, we propose a novel
approach—integrating radiomics with T cell-inflamed
GEP to develop an ICI response signature. Our objec-
tives encompass: (1) developing and validating a robust
radiomic signature for the T cell-inflamed tumor micro-
environment using machine learning, (2) studying the
biological relevance of identified radiomic signature in
relation to TIME, (3) analyzing spatiotemporal evolu-
tion of CT-TIME, and (4) exploring the clinical utility of
the radiomic signature as a non-invasive tool for guiding
personalized immunotherapy decisions, allowing for
extended analysis compared with current techniques
based on tissue sampling.

We anticipate that our radiogenomics signature holds
the potential to advance personalized digital health
solutions. CT-TIME not only serves as a novel imaging
biomarker to assess the inflamed TIME but is also able
to predict immunotherapy responses. This facilitates
patient-centric care and contributes to tailored treatment
strategies, ultimately improving clinical outcomes for
patients with advanced cancer undergoing ICI treatment.

METHODS

Patient data

This study involved 428 patients (1360 evaluated tumors)
from four independent patient cohorts (figure 1).
Cohorts 1 was used for signature development and
model training, cohort 2 for external signature valida-
tion, cohort 3 for biological associations and cohort 4 to
analyze clinical utility of the signature. Cohorts 1, 3 and 4
consisted of patients with contrast-enhanced CT acquired
no more than 4 weeks before the start of the immuno-
therapy (baseline) and before tissue sampling. Cohorts
1, 3 and 4 included patients treated with ICIs at the Vall
d’Hebron Hospital in Barcelona, with data retrieved from
digital clinical records. Cohort 3 was from an ongoing
prospective study (PREDICT), while others were collected
retrospectively. Cohort 2 data were obtained from the
radiogenomics the Cancer Imaging Archive (TCIA)
repository,”” including presurgical intervention patient
CT images. Online supplemental S1 provides details on
relevant patient characteristics .

Gene expression analysis

For the training cohort (cohort 1), NanoString computed
gene expressions were analyzed as in Frigola et al.” 1 Clin-
ical and immune characteristics of evaluated patients are
presented in online supplemental S2. Univariate and
multivariate regression analysis of immune variables with
clinical benefit at 5 months were conducted. Only the
T-cell-inflamed GEP, reflecting the TIME’s activity and
state rather than the abundance of specific immune cell
types, achieved statistically significant associations with
clinical outcome (online supplemental S3 and S4).

For cohort 2, RNA sequencing and data processing were
performed as in Bakr et al’” and summarized in online
supplemental S5. T-cell-inflamed GEP scores from cohort
2 were harmonized by adjusting normal distribution
parameters to match cohort 1. A GEP status (inflamed/
uninflamed) was computed using median T-cell-inflamed
GEP score and was used as the prediction target to guide
development of the radiomics signature in subsequent
sections.

Radiomic analysis

A robust radiomics methodology and computational
pipeline were implemented in adherence to best-practice
procedures. The Radiomics Quality Score (RQS)"
assessed the study quality online supplemental S6, and
guidelines from the Image Biomarker Standardization
Initiative'® for reporting imaging protocols and feature
extraction were followed.

Contrast-enhanced CT images were identified, down-
loaded as Digital Imaging and Communication in Medi-
cine (DICOM), anonymized and converted to NIFTI
format using DICOM for Quantitative Imaging library."
Image acquisition and reconstruction parameters are
summarized in table 1.

All measurable lesions according to the Response Eval-
uation Criteria 1.1’ were segmented using semiautomatic
delineation tools from 3D Slicer V.4.11*! by a radiologist
with more than 10 years of experience in oncological
imaging (RP-L).

A total of 107 radiomic features describing lesion
location, size, shape, first-order and high-order texture
features were extracted using the PyRadiomics package.?
Images were processed in the same way across studied
cohorts. Details on image processing and feature
extraction parameters used are provided in table 2.
Additionally, two aggregated features of total tumor
volume and total surface were computed by considering
all segmented tumors in a patient. Thus, a total of 109
features were analyzed per tumor online supplemental
S7. Feature selection was carried out in three steps to
find robust, non-redundant and informative radiomic
features. Details are provided in online supplemental S8
and S9. Groups of highly correlated radiomic features
were identified via hierarchical clustering and reduced to
a single archetypal feature per cluster.

As detailed in table 2, 74% of images from cohort 2
were reconstructed using a sharp imaging kernel. To
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Table 1 Imaging protocols across studied cohorts

Parameter Cohort 1 Cohort 2 Cohort 3 Cohort 4
Number of images 41 49 38 421

Tube potential (kVp) 120 120 120 120

Tube current (mA), median (IQR) 419 (311-466) 341 (231-507) 395 (306-492) 319 (230-550)
Slice Thickness (mm), median (IQR) 2 (2-3) 1.25 (1.25-1.25) 22 2.5 (2-3)

Convolution Kernel, n (%)
Soft 41 (100%)
Sharp -

minimize the differences from imaging protocols, we
applied feature harmonization using ComBat correc-
tion, as previously studied in Orlhac and Eertink® ** and
detailed in online supplemental S10.

Radiomic T-cell-inflamed signature development and
validation

Elastic-net penalized logistic regression, based on 10
times repeated five-fold cross-validation, was applied to
the training set (Cchort 1) to perform hyperparameter
tuning and radiomic feature selection, using GEP status
as an outcome. The receiver operating characteristic
(ROC) curve served as the performance metric and was
used to select an optimal model. The tuned hyperparam-
eters included o (balancing L1 and L2 regularization)

10 (26%) 19 (100%) 421 (100%)
39 (74%) - _

and A (regularization strength). The CT-TIME signature
comprised robust, relevant and non-redundant radiomic
features.

The radiomic signature was used to train various classifi-
cation models, encompassing a generalized linear model
(glm) based on logistic regression, K-nearest neighbors
(knn), feed-forward neural networks model (nnet),
random forest (rf), regression trees (rpart) and support
vector machine (svmRadial).

Internal validation was conducted through repeated
fivefold cross-validation. For each fold, the dataset was
divided into five subsets, the model was trained on four
subsets and validated on the fifth, computing perfor-
mance metrics such as AUC, sensitivity, and specificity.

Table 2

Image processing
Software
Bounding box

Resampled voxel spacing (mm)
Image interpolation method
Intensity rounding
ROl interpolation method
Re-segmentation

Feature computation
Kernel radius
Discretization (fixed bin size)
Image filter
maskedKernel

Initvalue
Distance weighting for GLCM, GLRLM, NGTDM
GLCM Symmetry

GLCM distance, GLSZM linkage distance, GLDZM linkage
distance, NGTDM distance

NGTDM coarseness

Image processing and radiomic feature extraction parameters

PyRadiomics V.3.0.1, installed in Python V.3.7.10

Defined by the segmentation, extended by default padding
distance.

1x1x1

B-spline

None

Nearest neighbor

Intensity range (-100; 300)

1mm
25 HU
None

True (only voxels in the kernel that were also segmented in
the ROI were used for calculation)

NaN (voxels outside ROl were considered as transparent)
No weighting
Symmetric

Chebyshev distance 6=1

Coarseness parameter 0=0

GLCM, gray-level co-occurrence matrix; GLSZM, gray-level size zone matrix; NGTDM, neighboring gray tone difference matrix; ROI, region of

interest.
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The AUC values from all the folds were then aggregated
to calculate the mean and SD, providing a comprehen-
sive assessment of the model’s performance. Further-
more, external validation of the models was carried out
using cohort 2 data. The selection of the best-performing
model was based on the AUC metric.

Both signature training and validation were imple-
mented using glmnet and caret packages. It is essential
to emphasise that these models, trained with GEP status
as the outcome, will produce a CI-TIME score ranging
from 0 to 1, representing the probability of the tumor
belonging to the T cell inflamed group. This scoring
system provides a quantitative measure of the likelihood
of the tumor immune responsiveness.

The CT-TIME scoring system, functioning as a dichoto-
mous variable, categorizes scores surpassing 0.5 as indica-
tive of an immune-inflamed CT-TIME status, while scores
below 0.5 are classified as uninflamed CT-TIME status.
This dichotomy provides a clear and clinically relevant
distinction, facilitating the identification of tumors with
heightened immune responsiveness.

Exploration of biological correlates of CT-TIME score in a
prospective cohort

A prospective cohort (cohort 3) of patients with matched
baseline CT images and tumor biopsies was used to under-
stand the biological associations of the developed model.
Biopsies were processed using next-generation immuno-
histochemistry (NGI), to characterize different aspects
of the tumor and its microenvironment. NGI consisted
of a multiplex immune panel that provided co-localized
CD8, CD3, CD163 and FOXp3 markers as well as Pan-CK
for tumor region delineation and Ki67 for proliferation
analyses. Furthermore, standard IHC single-plex staining
was used to quantify PDLI1, PD1 and CD31 expressions.
Stained sections were digitized on a NanoZoomer 2.0-HT
slide scanner (Hamamatsu Photonics), and digital images
processed using the Visiopharm Image analysis software,25
resulting in marker expression scores expressed in densi-
ties (cell/mm?).

Spatiotemporal analysis of TIME using CT-TIME

CT-TIME was comprehensively studied in cohort 4,
comprising 319 patients with advanced pan-solid tumors,
with over half presenting multiple tumors. Aggregating
per-tumor into per-patient CI-TIME scores using mean,
median, minimum, and maximum values allowed the
classification of patients based on their aggregated
scores. Those exceeding 0.5 were categorized as having
an immune-inflamed CT-TIME status, while others were
classified as uninflamed.

Additionally, CI-TIME status was longitudinally exam-
ined in a subset of 51 patients (153 tumors) with base-
line, first follow-up and best response images acquired
during immunotherapy treatment. A quantitative analysis
of these transitions, including the number of cases, was
conducted and visualized using the Sankey diagram to

provide a comprehensive understanding of the dynamics
within the TIME.

Clinical applications of CT-TIME

Our investigation explored two distinct CI-TIME applica-
tions: (1) enhancing the monitoring of immunotherapy
patients and its potential role in response assessment and
(2) predicting the response to immunotherapy based on
the evaluation of baseline CI-TIME scores.

To explore the predictive capability of aggregated
scores at baseline, Cox proportional hazard models were
fitted for progression-free survival (PFS). Kaplan-Meier
analysis, using median CT-TIME status, was performed
both in the entire cohort and in a subgroup focusing on
patients with lung cancer.

As a benchmark, CT-TIME was compared against
PDL1 status and tumor burden (volume) at baseline.
This comparative analysis was performed in a subcohort,
comprising patients with available PDLI status (n=42),
providing valuable insights into the performance of
CT-TIME relative to established biomarkers in the field.

Statistical analysis and code availability

AUC and 95% CI were determined from the ROC curve,
and the p value was assessed by using the Mann-Whitney
U test to assess the model performance. A p value of 0.05
or lower was considered as statistically significant. Calibra-
tion was assessed using the Hosmer-Lemeshow goodness-
offit test. Statistical analyses were performed by using R
software, version 4.2.0.*° To ensure the reproducibility of
the signature, we made our code available on GitHub:
(https://github.com/kingaber/CT-TIME-public.git).

RESULTS
Radiomic T-cell-inflamed signature development and
validation
Out of 109 radiomic features, 34 were identified as
robust to different image perturbations (see online
supplemental S9). The repeated cross-validation process
revealed consistent and reliable performance metrics
across different folds, attesting to the stability of the
selected features and the effectiveness of the elastic net
regularization. Optimal values for A (0.012) and o (0.55)
were identified. 13 radiomic features were selected, and
4 distinctive and non-redundant archetypal features
were used in the signature: elongation, first-order 90th
percentile, gray-level co-occurrence matrix (GLCM)
maximum probability, and gray-level size zone (GLSZM)
non-uniformity. Univariate and multivariate analyses of
the signature features, with the T cell inflamed GEP score
dichotomized to classify tumors into inflamed and unin-
flamed groups, are reported in online supplemental S11.
The radiomic signature features were used to train
different classification models, as summarized in online
supplemental S12. Following cross-validation and external
validation, a generalized linear model with logistic regres-
sion was selected as the final CT-TIME-based model,
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Figure 2 Development and evaluation of the radiomic T-cell-inflamed signature (CT-TIME). (A) Upper panel: Radiomic features,
and their corresponding regression coefficients used in computing the CT-TIME signature. Lower panel: ROC curve depicting
CT-TIME model training performance (cohort 1) and external validation results (cohort 2). (B) Correlation of the signature

with immunohistochemistry staining, along with examples illustrating high and low signature scores and intratumoral CD8
expression. GEP, gene-expression profile; ROC, receiver operating characteristic; TIME, tumor immune microenvironment.

providing CT-TIME scores from 0 to 1 for each tumor,
representing the probability of belonging to the inflamed
group. This model yielded an AUC (95% CI) of 0.85 (0.73
to 0.96) and 0.78 (0.56 to 1) in training and internal
validation, respectively. The Hosmer and Lemeshow
goodness-of-fit test indicated good model calibration
based on the % statistics of 5.2 and p=0.74. Observed and
expected values were similar across the groups, further
confirming well model calibration. Additionally, the
CT-TIME model was validated in an external and inde-
pendent cohort, demonstrating an AUC of 0.78 (0.65 to
0.92), as illustrated in (figure 2A).

Exploration of biological correlates of CT-TIME score in a
prospective cohort

The biological correlates of CT-TIME score were inves-
tigated within a prospective cohort of patients with
matched baseline CT images and tumor biopsies assessed
using immunohistochemistry. Various markers were
examined to characterize different aspects of the tumor
and its microenvironment, as illustrated in (figure 2B). A
significant correlation between CT-TIME score and intra-
tumoral CD8 staining (R=0.65, p=0.005), a marker of the
cytotoxic T cell population, was identified. Additionally,
correlations were observed with CD163 (R=0.54, p=0.02),

a marker of tumor-associated macrophages and the CD3
marker of the overall presence of T cells (R=0.57, p=0.02).
Four selected radiomic features were also explored indi-
vidually. We observed a correlation between GLSZM
size zone non-uniformity and CD31 expression, which
is indicative of vascular differentiation (R=0.5, p=0.034).
Additionally, the first order 90th percentile displayed a
negative correlation with FOXP3 expression, a marker
associated with regulatory T cells (R=-0.49, p=0.038), as
shown in online supplemental S13.

Spatiotemporal analysis of TIME using CT-TIME

CT-TIME score was computed in a cohort of 319 patients
with 1314 advanced pan-solid tumors segmented. In a
subset of 153 patients, additional CT images acquired at
first follow-up and at best response were further analyzed.
The examination of interpatient and intrapatient (inter-
tumor) heterogeneity of the CI-TIME score extracted
from baseline images underscored the dynamic nature of
immune responsiveness across diverse tumors.

Patients with multiple tumors showed moderate to high
intrapatient heterogeneity in CI-TIME in more than 67%
of cases as shown in online supplemental S14. Interest-
ingly, the CT-TIME score exhibited non-specificity to
primary tumors, but a distinct pattern emerged, with
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Figure 3 Spatiotemporal analysis of CT-TIME in cohort 4. (A) Exploration of CT-TIME score heterogeneity across tumor types
and locations. Aggregation of per-tumor CT-TIME scores to the patient level and translation to CT-TIME status. (B) Longitudinal
change in CT-TIME status. TIME, tumor immune microenvironment.

lung tumors demonstrating a higher score and liver To further characterize the CI-TIME score, per-
tumors showing a lower score. This observation suggests tumor scores were aggregated using mean, median,
that lung tumors may possess a more immune-inflamed ~ minimum, and maximum values. Patients with aggre-
microenvironment (figure 3A). gated scores exceeding 0.5 were classified as having an
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immune-inflamed CT-TIME status. The distribution
of aggregated scores varied based on the aggregation
method, as depicted in figure 3A.

A dynamic fluctuation in CT-TIME status during
immunotherapy emerged, depicted in figure 3B. Anal-
ysis of baseline and first follow-up images revealed tran-
sitions from inflamed to uninflamed in 18% (9/51) of
patients, with only 4% (2/51) changing from uninflamed
to inflamed. From the first follow-up to best response,
transitions from inflamed to uninflamed occurred in 2%
(1/51) of cases, and 12% (6/51) changed from unin-
flamed to inflamed CT-TIME status.

Clinical applications of CT-TIME

The clinical utility of the CT-TIME, revealing notable insights into its
potential applications

Given the acknowledged limitations of current response
monitoring, particularly in the context of iRECIST uncon-
firmed progression disease, the CI-TIME score emerged
as a compelling complementary tool. When computed
at the first follow-up and indicating an uninflamed
status, it could serve as an early indicator of confirmed
progression. In a subset of progressing patients at the first
follow-up, significant disparities in PFS were observed
between inflamed and uninflamed groups (p=0.047), as
depicted in figure 4A.

Exploring the predictive capability of aggregated
scores at baseline, Cox proportional hazard models were
employed for PFS. Notably, aggregated scores using the
minimum value exhibited an HR<1 with a CI that did not
cross one in both the pan-cancer cohort and the lung
subcohort (see figure 4B).

Survival analysis further reinforced the clinical signif-
icance of CT-TIME status derived from the minimum
CT-TIME score, elucidating significant group separation
through log-rank tests (p=0.0054 for pan-cancer and
p=0.00073 for lung; figure 4B).

Lastly, within a subcohort enriched with available PD-L1
status, benchmarking against PD-L1 status and tumor
burden (volume) at baseline revealed CT-TIME as the
superior predictor, demonstrating significance (p=0.018)
in Kaplan-Meier curves (figure 4C). This comprehensive
investigation underscores the promising clinical utility
of CT-TIME in dynamically assessing the immune micro-
environment and predicting immunotherapy response
across diverse advanced pan-cancer scenarios.

DISCUSSION AND GONGLUSION

In this study, we successfully developed and validated
a robust radiomics signature for predicting the T cell-
inflamed tumor microenvironment (CI-TIME) using
advanced machine learning techniques. Notably, our
signature included a single shape feature (elongation)
while omitting features related to tumor volume. Due to
substantial heterogeneity in previously published signa-
tures,'? it is difficult to compare our signature with the
literature. However, some overlap could be observed with

other radiomics studies related to TIME: elongation was
one of the selected features by Ligero et al,”” first-order 90
percentile was selected by Katsoulakis ¢t af® and GLSZM
SZN was used by Li et al.*® Nevertheless, we did not find
GLCM maximum probability in previous publications,
the GLCM family was frequently used. Importantly, our
study’s assessed quality (RQS=83.33%) substantially
exceeded the mean RQS of previously published works
(mean RQS=33.3%, range 0%-61.1%)."*

The biological relevance of the identified radiomic
features comprising our signature was explored in rela-
tion to the TIME. The CT-TIME signature demonstrated
correlations with CD8, consistent with findings from
prior studies.” '* Notably, we also observed correlations
with CD163, a marker associated with macrophages,
and CD3 lymphocytes. Furthermore, our study revealed
a novel correlation between signature radiomic features
and CD31 (avasculature marker) and FOXP3, suggesting
potential regulatory T cell (Treg) activity. The negative
correlation with FOXP3 implies that CT-TIME has the
potential to identify a more inflamed microenvironment
characterized by heightened T-cell activity. The asso-
ciation with CD31 expression suggests potential links
between specific radiomic features and vascularity within
the tumor microenvironment. Although these findings
are promising, establishing causal relationships will
require further investigation through functional studies
or animal models.

We demonstrated the utility of radiomics as a potent
tool to study the spatiotemporal landscape of a patient’s
immune tumor microenvironment. Patients with multiple
tumors exhibited substantial intrapatient heterogeneity
in TIME, emphasising the need for tools capable of
capturing TIME across different patient locations beyond
current techniques relying on tissue sampling. This aligns
with other studies investigating TIME using RNA expres-
sion or histology.™ *' Interestingly, the CT-TIME score
was independent of the primary tumor type, but it was
higher in lung tumors than in liver tumors. Lung metas-
tases were previously reported as highly immunogenic in
several transcriptomic studies.* **

In the longitudinal analysis of CI-TIME, we observed
transitions between inflamed and uninflamed statuses,
and vice versa. Patients initially classified as having uncon-
firmed progression by iRECIST at the first follow-up
exhibited an uninflamed CT-TIME status at the same
follow-up, followed by rapid progression. This observa-
tion suggests the potential involvement of a resistance
mechanism to immunotherapy treatment. CT-TIME
proves to be a valuable complementary tool for guiding
response assessments in clinical trials and facilitating
the optimal submission of samples for laboratory anal-
ysis of immuno-resistant tumors. Moreover, early detec-
tion of progression enables the exploration of different
treatment options, such as therapies that transform cold
tumors into hot ones.”*

Patients with uninflamed CT-TIME status at base-
line were more likely to progress, pointing to CT-TIME

8 Bernatowicz K, et al. J Immunother Cancer 2025;13:009140. doi:10.1136/jitc-2024-009140
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Figure 4 Clinical utility of CT-TIME signature in cohort 4. (A) Aggregated CT-TIME status for response assessment. (B) CT-
TIME status as a predictor of immunotherapy response. (C) Comparative analysis of CT-TIME status with PDL1 status and
tumor burden. TIME, tumor immune microenvironment.
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potential for predicting immunotherapy response. We
found that the signature performance was better in lung
cancer patients than across diverse advanced pan-cancer
scenarios. Considering the evolving landscape of immu-
notherapy biomarkers, a combination of CT-derived
signatures (eg, CI-TIME+CTTMB + CT-PDL1) promises
accurate immunotherapy response prediction, offering
broad accessibility and spatio-temporal insights for
oncologists.

While our study explores the clinical utility of the
CT-TIME signature and highlights potential advantages,
we acknowledge inherent limitations. The need for fast
and automatic radiomics analysis requires the implemen-
tation of automatic segmentation tools, an aspect beyond
the scope of this work. However, recent advancements in
Al, particularly automatic segmentation models, are antic-
ipated to enhance workflow implementation.” Feature
harmonization is crucial for generalizing radiomics pipe-
lines, and standardizing reference datasets across studies
could alleviate inconsistencies. Additionally, using an
immune score derived from tumor samples for CT-TIME
estimate could serve as a quality check, offering a quick
cross-check alongside predictions. Ongoing efforts to
define reEroducible immune assays are crucial for this
purpose.””* Proposed CT-TIME signature was successfully
developed and validated in lung cancer cohorts (cohort 1
and 2). While we demonstrated its clinical application in
a pan-cancer cohort, the restricted number of cases per
cancer type group precludes drawing definitive conclu-
sions, although the results are promising.

Further investigation into the relationship between
radiomic features and underlying biological mechanisms,
particularly through the use of functional imaging tech-
niques and animal models, has the potential to provide
deeper insights into how radiomic features correlate with
specific biological processes. This avenue of research
holds promise for advancing the applicability of radiomic
analyses in various clinical settings. In conclusion, our
study introduces an innovative radiomics T-cell-inflamed
signature, providing biological insights, spatiotemporal
evaluation, and clinical utility exploration. By advancing
the understanding of the TIME and its radiomics
features, we aim to catalyze further research and discus-
sions, ultimately leading to the clinical implementation
of radiomics tools and improved personalized treatment
strategies for patients undergoing ICI therapy.
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