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Abstract 

Objective  RNA-Seq provides an accurate quantification of gene expression levels and it is widely used for molecular 
subtype classification in cancer, with special importance in prognosis. However, the reliability and validity of these 
analyses can significantly be influenced by how data are processed. In this study we evaluate how RNA-Seq pre-
processing methods influence molecular subtype classification in bladder cancer. By benchmarking various aligners, 
quantifiers and methods of normalization and transformation, we stress the importance of preprocessing choices 
for accurate and consistent subtype classification.

Results  Our findings highlight that log-transformation plays a crucial role in centroid-based classifiers such as con-
sensusMIBC and TCGAclas, while distribution-free algorithms like LundTax offer robustness to preprocessing vari-
ations. Non log-transformed data resulted in low classification rates and poor agreement with reference classifica-
tions in consensusMIBC and TCGAclas classifiers. Additionally, LundTax consistently demonstrated better separation 
among subtypes, compared to consensusMIBC and TCGAclas, regardless of preprocessing methods. Nonetheless, 
the study is limited by the lack of a true reference for objective assessment of the accuracy of the assigned subtypes. 
Hence, future work will be necessary to determine the robustness and scalability of the obtained results.
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Introduction
While recent advancements in technologies, such as sin-
gle-cell RNA sequencing and multi-omics approaches, 
have facilitated novel cancer classifications [1–3], RNA 
sequencing (RNA-Seq) remains a powerful and cost-
effective tool that enables comprehensive transcriptome 
analysis by providing an accurate quantification of gene 
expression. RNA-Seq data are largely used for molecular 

subtype classification of diseases, crucial for improv-
ing prognostic accuracy and enhancing understanding 
of cancer biology [4–9]. In bladder cancer (BC), sub-
types have shown to correlate with prognosis and treat-
ment response [10–12]. Pioneering efforts by Robertson 
et  al. defined five molecular subtypes and developed 
the TCGA classification (TCGAclas) [10], followed by 
the LundTax classifier developed by Sjöhdal et al. which 
focused on tumor differentiation and immune response 
[11]. Building on these efforts, Kamoun et al. unified pre-
viously reported molecular taxonomies and developed 
ConsensusMIBC, a robust classification for BC [12]. 
However, RNA-Seq preprocessing choices significantly 
impact the reliability of downstream analyses, including 
molecular subtype classification [13].
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RNA-Seq data preprocessing workflow encompassess 
several steps to transform raw reads into a data matrix 
with the gene expression levels. The first step is the 

alignment of the reads to a reference genome or tran-
scriptome using tools like STAR [14] or Hisat2 [15] 
among others. STAR typically offers higher accuracy in 

Fig. 1  Overview of methodology and count summaries of benchmarked tools. A Combination of datasets and preprocessing methods 
benchmarked. B Total counts for each dataset. Colors indicate distinct preprocessing methods for alignment and quantification. X axis shows 
the number of detected genes and Y axis shows the number of total counts
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aligning complex and repetitive regions of the genome, 
while Hisat2 tends to be more precise in detecting sin-
gle nucleotide polymorphisms. The next step is gene 
expression quantification, where the number of reads 
aligned are quantified to determine the gene expression 
levels. Widely used methods such as featureCounts [16] 
and HTSeq [17] perform straightforward read-counting 
methods, whereas StringTie [18] employs an EM algo-
rithm to estimate transcript abundances, which helps in 
resolving ambiguities when the reads map to multiple 
transcripts. Although alignment and quantification are 
typically performed as separate steps, they can be per-
formed together using pseudoaligners like Kallisto [19] 
and Salmon [20].

Gene expression levels are affected by biological and 
technical variability (e.g. sample quality, sequencing 
depth, batch effect). Normalization and transformation, 
such as transcript per million (TPM) or Trimmed Mean 
of M-values (TMM) [21], adjust raw counts to make 
expression values comparable. Log transformation is also 
essential as it balances skewed data and stabilizes the var-
iance reducing the impact of outliers.

The main objective of this study is to evaluate the 
impact of different RNA-Seq preprocessing tools meth-
ods on molecular subtype classification in BC. We foresee 
that by ensuring the best choice for every preprocessing 
step, we can maximize the reliability of subtype classifica-
tion [22].

Methods
We evaluated twelve combinations of preprocessing 
methods on three molecular subtype classifiers using 
four bladder cancer datasets: GSE148079 (n = 8) [23], 
GSE179440 (n = 12) [24], GSE186610 (n = 100) [25] 
and TCGA (n = 378) [10] (Fig.  1A). The preprocess-
ing workflow included quality control (Supplementary 
Fig.  1), alignment (STAR, Hisat2), quantification (Fea-
tureCounts, StringTie, HTSeq), and pseudoalignment 
(Salmon, Kallisto), using hg38 annotations. Different nor-
malization and/or transformation methods (TMM, TPM 
and log2TPM), together with rawData and log2rawData 
were studied. ConsensusMIBC, LundTax, and TCGAclas 

classifiers were assessed using separation and coinci-
dence metrics. (Supplementary Methods).

Results
The number of total counts and detected genes were 
consistent among the different alignment and quantifica-
tion methods across datasets. STAR and Hisat2 outper-
formed the two pseudoaligners (Kallisto and Salmon) in 
the number of counts. Even though both pseudoaligners 
yielded the lowest number of counts, they detected an 
equivalent number of genes as the StringTie quantifier, 
regardless of the aligner. In contrast, featureCounts, fol-
lowed by HTSeq, consistently detected the highest num-
ber of genes, except for the GSE179440 dataset, in which 
StringTie detected more genes than HTSeq. The number 
of counts was proportional to the number of sequenced 
reads, being the highest for the TCGA (average of 62 
million reads) (Fig. 1B, Supplementary Table 1 and Sup-
plementary Methods). Overall, the best performing 
methods across datasets were STAR or Hisat2 combined 
with featureCounts since they retrieve the highest num-
ber of genes (Fig. 1B, Supplementary Table 1).

We next evaluated if the differences observed in the 
number of counts and number of detected genes have 
an impact on BC subtyping. Our results on the consen-
susMIBC classifier [12] showed that, across all methods 
and datasets, using non log-transformed data (rawData 
or TPM) resulted in low correlation values and many 
unclassified samples (up to 87.5–100% in the two small-
est datasets and 34.4%-64% in the largest). Even when 
few or no samples were unclassified (eg. featureCounts), 
correlation values were consistently higher for log trans-
formed data, being log2TPM and TMM the highest. 
Of note, HTSeq and StringTie quantifiers were more 
affected by this issue, regardless of the aligner and spe-
cially in combination with TMM normalization (e.g. 0% 
vs 1.06–34.4% of unclassified samples, using log-trans-
formed vs non log-transformed data in TCGA dataset). 
Similar results were observed with the pseudoaligners 
(0% vs 0–16.7%) (Fig. 2, Supplementary Table 2).

Additionally, we assessed two other BC classifiers: 
TCGAclas [10] and LundTax [26]. The results for the 
TCGAclas classifier showed a high variability across 

Fig. 2  Heatmap of consensusMIBC classification using benchmarked tools. Each column shows the results for the different RNA-Seq combinations 
of aligner, quantifier, of normalization and transformation method. Each row represents a sample from several public datasets (GSE148079, 
GSE179440, GSE186610 and TCGA). Colors of the heatmap indicate the predicted molecular subtype. Column on the left represents the reference 
for each sample (i.e. the most commonly predicted subtype). Luminal papillary (LumP), luminal unstable (LumU), luminal non-specified (LumNS), 
stroma rich (Stroma-rich), basal squamous (Ba/Sq) and neuroendocrine-like (NE-like). Kallisto, Salmon, STAR + featureCounts (STAR + featC), 
STAR + HTSeq, STAR + StringTie (STAR + StringT), Hisat2 + featureCounts (Hisat2 + featC), Hisat2 + HTSeq, Hisat2 + StringTie (Hisat2 + StringT) 
and Reference. Barplots show the mean and standard deviation of the correlation values for each methodology

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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methods, especially when comparing log-transformed 
and non log-transformed data (Supplementary Fig. 2). In 
contrast, LundTax appeared very stable, even across log 
and non-log data (Supplementary Fig.  3). For instance, 
the TCGAclas on TPM compared to log2TPM predicted 
53% vs 18% of basal squamous, 37% vs 68% of luminal 
papillary (GSE186610, STAR + featureCounts). In con-
trast, the subtype classification of the same dataset using 
consensusMIBC and LundTax classifiers were more con-
sistent across both pipelines, with variations of at most 
3%. These results were observed in most of the differ-
ent preprocessing pipelines that were applied, such as 
Hisat2 + featureCounts, Kallisto or STAR + HTSeq (Sup-
plementary Figs. 2, 3 and Supplementary Tables 3, 4).

In an effort to fairly compare across the three clas-
sifiers, we evaluated the distribution of their scores 
(Supplementary Methods). The distribution of the non 
log-transformed data was distinctly separated from that 
of the log-transformed for consensusMIBC and TCGAc-
las classifiers. Importantly, all scores below the minimum 
confidence threshold belonged to non log data (Fig. 3A). 
In contrast, LundTax scores distribution was not influ-
enced by log transformation (Supplementary Tables  5 
and 6).

To assess the performance, two metrics were evalu-
ated: separation and coincidence. Separation shows 
how a sample is representative of its subtype whereas 
coincidence is the percentage of samples corresponding 
to the most frequent subtype (Supplementary Methods, 
Supplementary Fig. 4). The most important differences 
were influenced by the classifier and the normalization 
and transformation methods. Specifically, TPM nor-
malization combined with HTSeq or StringTie exhib-
ited the lowest coincidence scores across both the 
consensusMIBC (0.22–0.40) and TCGAclas (0.46–0.66) 
classifiers. LundTax was not influenced by log transfor-
mation and showed more stable metrics. Finally, pseu-
doaligners, when combined with log transformed data, 
performed similarly to other quantifiers, regardless 
of the aligner (Supplementary Fig.  4, Supplementary 
Table 7).

Of note, consensusMIBC and TCGAclas classifiers 
demonstrated low separation values regardless of the 
preprocessing methods used (0.1–0.32), indicating that 

the samples were less representative and less distinctly 
separated from other molecular subtypes. Conversely, 
the LundTax classifier achieved consistently the highest 
separation values (0.45–0.63) across different methods 
(Supplementary Fig. 4, Supplementary Table 7).

As observed in Fig.  2, the stability of the molecular 
subtype classification was highly sample-dependent. We 
studied the changes in molecular subtype classification 
across datasets and methods to analyze their exchange-
ability. The most frequent subtypes, Ba/Sq and LumP, 
were the most stable ones (93.8%; 90.3%), followed by the 
less frequent, NE-like (89.7%). As expected, we observed 
high exchangeability among luminal subtypes (LumP, 
LumU, and LumNS). Around 11.4% of LumNS and 13.2% 
of LumU were also classified as LumP, the most abundant 
luminal subtype. In contrast, the likelihood of a luminal 
subtype being classified as a non-luminal subtype was 
low or zero, as in the case of NE-like (Fig.  3B, Supple-
mentary Table  8). The likelihood of interchange among 
non-luminal subtypes (Stroma-rich, Ba/Sq, and NE-Like) 
was not as high as among luminal subtypes (0–7.22%), 
but it was still higher than being reclassified as any of the 
luminal subtypes. Stroma-rich showed similar reclassifi-
cation proportions with most subtypes (Fig. 3B, Supple-
mentary Table 8).

Conclusions
Evaluating the impact of RNA-Seq preprocessing tools 
is essential for standardizing RNA-Seq pipelines, and 
thus maximizing the reliability of molecular subtype 
classification in bladder cancer. Our findings suggest 
that preprocessing steps including read alignment, gene 
quantification, normalization and data transformation, 
have an impact on the downstream analysis of molecu-
lar subtypes in bladder cancer. Despite some preprocess-
ing methodologies being more affected by normalization 
and transformation, results showed that the critical fac-
tor when using consensusMIBC [12] and TCGAclas [10] 
classifiers is the log transformation of the data. Both 
classifiers are centroid-based and therefore highly sen-
sitive to the distribution of the data. Indeed, Kamoun 
et  al. recommend using log-transformed data to reduce 
common issues such as outliers or skewness [9]. The 
LundTax classifier [26], in contrast, is less affected by 

(See figure on next page.)
Fig. 3  Score distribution across classifiers and molecular subtypes interconnections of the consensusMIBC classifier. A Density plot of the score 
values distribution for each classifier, splitted by log-transformed and non log-transformed values. Shadows in each density plot represent the 95% 
confidence intervals. B Directed graph with reclassification percentages. Each node represents a consensusMIBC molecular subtype. The size 
shows the number of samples classified as that specific molecular subtype across methods. The distance between nodes and the width of the links 
represent the proportion of reclassified samples across methods between the subtypes. Edge colors are inherited by the original node. Edges 
below 1% were filtered out
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log-transformation. This may be attributed to the use of 
a Random Forest algorithm, which relies on relative com-
parisons rather than absolute values [27–29].

We examined the interconnections among molecu-
lar subtypes within the consensusMIBC classification to 
assess their exchangeability. As expected and previously 
reported, luminal subtypes showed a higher likelihood 
of being reclassified within the luminal group compared 
to non-luminal subtypes [28]. However, reclassification 
between luminal and non-luminal subtypes is not likely 
to happen, suggesting a distinct separation between these 
groups greater than differences across preprocessing 
methods [27, 30].

Based on our comprehensive evaluation and previous 
studies, both pseudoaligners (Kallisto [19] and Salmon 
[20]) and the featureCounts [16] quantifier combined 
with any aligner (STAR [14] or Hisat2 [15]) are effective 
for molecular subtype classification. While featureCounts 
provides better sensitivity in detecting lowly expressed 
genes, Kallisto and Salmon offer notable advantages in 
speed and memory efficiency [31]. Our findings suggest 
that, although Kallisto and Salmon identify a smaller 
number of genes, this does not compromise the accuracy 
of subtype classification, likely because the classifiers rely 
only on a subset of genes.

Moreover, we evaluated the classification rates to 
compare among the results obtained by the three clas-
sifiers. Our results showed low classification rates for 
HTSeq [17] and StringTie [18] quantifiers, regardless of 
the aligner, across all datasets and classifiers, indicating a 
low-accuracy in subtype assignment. The highest classi-
fication rates were achieved by featureCounts combined 
with STAR or Hisat2 aligners, along with Kallisto and 
Salmon.

We have tested gene-based quantifiers (featureCounts 
and HTSeq), as well as transcript quantifiers (StringTie), 
with the objective of assessing subtyping classification 
for which most methods are based on gene estimations. 
Despite gene-level results being often more accurate, 
powerful and interpretable than transcript-level results, 
difference between transcript-based and exon-based 
quantifiers is expected to be relatively minor when per-
forming molecular subtype classification compared to 
other analyses, such as differential expression analysis, 
where gene quantification plays a crucial role [32–34].

In conclusion, our results show that log-transformation 
is a required step for centroid-based classifiers such as 
consensusMIBC and TCGAclas, that were trained on 
log-transformed data. In addition, we recommend dis-
tribution-free algorithms such as LundTax, which show 
less sensitivity to preprocessing steps. Future research 
should be focused on the validation of the robustness 
and scalability from the findings of our study in MIBC as 

well as on other cancer type molecular classifiers. Having 
standardized workflows could improve the application of 
molecular subtype classification across cancers, enabling 
a more thorough study of their association with treat-
ment response and promoting the development of per-
sonalized therapeutic strategies in clinical practice.

Limitations
The main limitation of this study is the lack of a true ref-
erence to compute objective evaluation metrics, which 
makes it challenging to assess the accuracy and reliability 
of assigned subtypes. Coincidence can also be misleading 
as it measures the agreement of an assigned subtype with 
the most frequent subtype, without considering subtype 
designation accuracy.

Additionally, relying only on limited methods and data-
sets might introduce bias and miss important insights, 
compromising the reliability of the findings. Neverthe-
less, our findings reveal parallel constraints in predictive 
models development, which are heavily reliant on the 
datasets and methods used, particularly when external 
validation is not feasible.
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