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Abstract

for accurate and consistent subtype classification.

Objective RNA-Seq provides an accurate quantification of gene expression levels and it is widely used for molecular
subtype classification in cancer, with special importance in prognosis. However, the reliability and validity of these
analyses can significantly be influenced by how data are processed. In this study we evaluate how RNA-Seq pre-
processing methods influence molecular subtype classification in bladder cancer. By benchmarking various aligners,
quantifiers and methods of normalization and transformation, we stress the importance of preprocessing choices

Results Our findings highlight that log-transformation plays a crucial role in centroid-based classifiers such as con-
sensusMIBC and TCGAclas, while distribution-free algorithms like LundTax offer robustness to preprocessing vari-
ations. Non log-transformed data resulted in low classification rates and poor agreement with reference classifica-
tions in consensusMIBC and TCGAclas classifiers. Additionally, LundTax consistently demonstrated better separation
among subtypes, compared to consensusMIBC and TCGAclas, regardless of preprocessing methods. Nonetheless,
the study is limited by the lack of a true reference for objective assessment of the accuracy of the assigned subtypes.
Hence, future work will be necessary to determine the robustness and scalability of the obtained results.
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Introduction

While recent advancements in technologies, such as sin-
gle-cell RNA sequencing and multi-omics approaches,
have facilitated novel cancer classifications [1-3], RNA
sequencing (RNA-Seq) remains a powerful and cost-
effective tool that enables comprehensive transcriptome
analysis by providing an accurate quantification of gene
expression. RNA-Seq data are largely used for molecular
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subtype classification of diseases, crucial for improv-
ing prognostic accuracy and enhancing understanding
of cancer biology [4-9]. In bladder cancer (BC), sub-
types have shown to correlate with prognosis and treat-
ment response [10—12]. Pioneering efforts by Robertson
et al. defined five molecular subtypes and developed
the TCGA classification (TCGAclas) [10], followed by
the LundTax classifier developed by Sjohdal et al. which
focused on tumor differentiation and immune response
[11]. Building on these efforts, Kamoun et al. unified pre-
viously reported molecular taxonomies and developed
ConsensusMIBC, a robust classification for BC [12].
However, RNA-Seq preprocessing choices significantly
impact the reliability of downstream analyses, including
molecular subtype classification [13].
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Fig. 1 Overview of methodology and count summaries of benchmarked tools. A Combination of datasets and preprocessing methods
benchmarked. B Total counts for each dataset. Colors indicate distinct preprocessing methods for alignment and quantification. X axis shows
the number of detected genes and Y axis shows the number of total counts

RNA-Seq data preprocessing workflow encompassess alignment of the reads to a reference genome or tran-
several steps to transform raw reads into a data matrix  scriptome using tools like STAR [14] or Hisat2 [15]
with the gene expression levels. The first step is the among others. STAR typically offers higher accuracy in
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aligning complex and repetitive regions of the genome,
while Hisat2 tends to be more precise in detecting sin-
gle nucleotide polymorphisms. The next step is gene
expression quantification, where the number of reads
aligned are quantified to determine the gene expression
levels. Widely used methods such as featureCounts [16]
and HTSeq [17] perform straightforward read-counting
methods, whereas StringTie [18] employs an EM algo-
rithm to estimate transcript abundances, which helps in
resolving ambiguities when the reads map to multiple
transcripts. Although alignment and quantification are
typically performed as separate steps, they can be per-
formed together using pseudoaligners like Kallisto [19]
and Salmon [20].

Gene expression levels are affected by biological and
technical variability (e.g. sample quality, sequencing
depth, batch effect). Normalization and transformation,
such as transcript per million (TPM) or Trimmed Mean
of M-values (TMM) [21], adjust raw counts to make
expression values comparable. Log transformation is also
essential as it balances skewed data and stabilizes the var-
iance reducing the impact of outliers.

The main objective of this study is to evaluate the
impact of different RNA-Seq preprocessing tools meth-
ods on molecular subtype classification in BC. We foresee
that by ensuring the best choice for every preprocessing
step, we can maximize the reliability of subtype classifica-
tion [22].

Methods

We evaluated twelve combinations of preprocessing
methods on three molecular subtype classifiers using
four bladder cancer datasets: GSE148079 (n=8) [23],
GSE179440 (n=12) [24], GSE186610 (n=100) [25]
and TCGA (n=378) [10] (Fig. 1A). The preprocess-
ing workflow included quality control (Supplementary
Fig. 1), alignment (STAR, Hisat2), quantification (Fea-
tureCounts, StringTie, HTSeq), and pseudoalignment
(Salmon, Kallisto), using hg38 annotations. Different nor-
malization and/or transformation methods (TMM, TPM
and log2TPM), together with rawData and log2rawData
were studied. ConsensusMIBC, LundTax, and TCGAclas

(See figure on next page.)
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classifiers were assessed using separation and coinci-
dence metrics. (Supplementary Methods).

Results

The number of total counts and detected genes were
consistent among the different alignment and quantifica-
tion methods across datasets. STAR and Hisat2 outper-
formed the two pseudoaligners (Kallisto and Salmon) in
the number of counts. Even though both pseudoaligners
yielded the lowest number of counts, they detected an
equivalent number of genes as the StringTie quantifier,
regardless of the aligner. In contrast, featureCounts, fol-
lowed by HTSeq, consistently detected the highest num-
ber of genes, except for the GSE179440 dataset, in which
StringTie detected more genes than HTSeq. The number
of counts was proportional to the number of sequenced
reads, being the highest for the TCGA (average of 62
million reads) (Fig. 1B, Supplementary Table 1 and Sup-
plementary Methods). Overall, the best performing
methods across datasets were STAR or Hisat2 combined
with featureCounts since they retrieve the highest num-
ber of genes (Fig. 1B, Supplementary Table 1).

We next evaluated if the differences observed in the
number of counts and number of detected genes have
an impact on BC subtyping. Our results on the consen-
susMIBC classifier [12] showed that, across all methods
and datasets, using non log-transformed data (rawData
or TPM) resulted in low correlation values and many
unclassified samples (up to 87.5-100% in the two small-
est datasets and 34.4%-64% in the largest). Even when
few or no samples were unclassified (eg. featureCounts),
correlation values were consistently higher for log trans-
formed data, being log2TPM and TMM the highest.
Of note, HTSeq and StringTie quantifiers were more
affected by this issue, regardless of the aligner and spe-
cially in combination with TMM normalization (e.g. 0%
vs 1.06-34.4% of unclassified samples, using log-trans-
formed vs non log-transformed data in TCGA dataset).
Similar results were observed with the pseudoaligners
(0% vs 0—16.7%) (Fig. 2, Supplementary Table 2).

Additionally, we assessed two other BC classifiers:
TCGAclas [10] and LundTax [26]. The results for the
TCGAclas classifier showed a high variability across

Fig. 2 Heatmap of consensusMIBC classification using benchmarked tools. Each column shows the results for the different RNA-Seq combinations
of aligner, quantifier, of normalization and transformation method. Each row represents a sample from several public datasets (GSE148079,
GSE179440, GSE186610 and TCGA). Colors of the heatmap indicate the predicted molecular subtype. Column on the left represents the reference
for each sample (i.e. the most commonly predicted subtype). Luminal papillary (LumP), luminal unstable (LumU), luminal non-specified (LumNS),
stroma rich (Stroma-rich), basal squamous (Ba/Sq) and neuroendocrine-like (NE-like). Kallisto, Salmon, STAR +featureCounts (STAR +featC),
STAR+HTSeq, STAR + StringTie (STAR+ StringT), Hisat2 + featureCounts (Hisat2 + featC), Hisat2 + HTSeq, Hisat2 + StringTie (Hisat2 + StringT)

and Reference. Barplots show the mean and standard deviation of the correlation values for each methodology
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methods, especially when comparing log-transformed
and non log-transformed data (Supplementary Fig. 2). In
contrast, LundTax appeared very stable, even across log
and non-log data (Supplementary Fig. 3). For instance,
the TCGAclas on TPM compared to log2TPM predicted
53% vs 18% of basal squamous, 37% vs 68% of luminal
papillary (GSE186610, STAR + featureCounts). In con-
trast, the subtype classification of the same dataset using
consensusMIBC and LundTax classifiers were more con-
sistent across both pipelines, with variations of at most
3%. These results were observed in most of the differ-
ent preprocessing pipelines that were applied, such as
Hisat2 + featureCounts, Kallisto or STAR+HTSeq (Sup-
plementary Figs. 2, 3 and Supplementary Tables 3, 4).

In an effort to fairly compare across the three clas-
sifiers, we evaluated the distribution of their scores
(Supplementary Methods). The distribution of the non
log-transformed data was distinctly separated from that
of the log-transformed for consensusMIBC and TCGAc-
las classifiers. Importantly, all scores below the minimum
confidence threshold belonged to non log data (Fig. 3A).
In contrast, LundTax scores distribution was not influ-
enced by log transformation (Supplementary Tables 5
and 6).

To assess the performance, two metrics were evalu-
ated: separation and coincidence. Separation shows
how a sample is representative of its subtype whereas
coincidence is the percentage of samples corresponding
to the most frequent subtype (Supplementary Methods,
Supplementary Fig. 4). The most important differences
were influenced by the classifier and the normalization
and transformation methods. Specifically, TPM nor-
malization combined with HTSeq or StringTie exhib-
ited the lowest coincidence scores across both the
consensusMIBC (0.22-0.40) and TCGAclas (0.46—0.66)
classifiers. LundTax was not influenced by log transfor-
mation and showed more stable metrics. Finally, pseu-
doaligners, when combined with log transformed data,
performed similarly to other quantifiers, regardless
of the aligner (Supplementary Fig. 4, Supplementary
Table 7).

Of note, consensusMIBC and TCGAclas classifiers
demonstrated low separation values regardless of the
preprocessing methods used (0.1-0.32), indicating that

(See figure on next page.)
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the samples were less representative and less distinctly
separated from other molecular subtypes. Conversely,
the LundTax classifier achieved consistently the highest
separation values (0.45-0.63) across different methods
(Supplementary Fig. 4, Supplementary Table 7).

As observed in Fig. 2, the stability of the molecular
subtype classification was highly sample-dependent. We
studied the changes in molecular subtype classification
across datasets and methods to analyze their exchange-
ability. The most frequent subtypes, Ba/Sq and LumP,
were the most stable ones (93.8%; 90.3%), followed by the
less frequent, NE-like (89.7%). As expected, we observed
high exchangeability among luminal subtypes (LumP,
LumU, and LumNS). Around 11.4% of LumNS and 13.2%
of LumU were also classified as LumP, the most abundant
luminal subtype. In contrast, the likelihood of a luminal
subtype being classified as a non-luminal subtype was
low or zero, as in the case of NE-like (Fig. 3B, Supple-
mentary Table 8). The likelihood of interchange among
non-luminal subtypes (Stroma-rich, Ba/Sq, and NE-Like)
was not as high as among luminal subtypes (0-7.22%),
but it was still higher than being reclassified as any of the
luminal subtypes. Stroma-rich showed similar reclassifi-
cation proportions with most subtypes (Fig. 3B, Supple-
mentary Table 8).

Conclusions

Evaluating the impact of RNA-Seq preprocessing tools
is essential for standardizing RNA-Seq pipelines, and
thus maximizing the reliability of molecular subtype
classification in bladder cancer. Our findings suggest
that preprocessing steps including read alignment, gene
quantification, normalization and data transformation,
have an impact on the downstream analysis of molecu-
lar subtypes in bladder cancer. Despite some preprocess-
ing methodologies being more affected by normalization
and transformation, results showed that the critical fac-
tor when using consensusMIBC [12] and TCGAclas [10]
classifiers is the log transformation of the data. Both
classifiers are centroid-based and therefore highly sen-
sitive to the distribution of the data. Indeed, Kamoun
et al. recommend using log-transformed data to reduce
common issues such as outliers or skewness [9]. The
LundTax classifier [26], in contrast, is less affected by

Fig. 3 Score distribution across classifiers and molecular subtypes interconnections of the consensusMIBC classifier. A Density plot of the score
values distribution for each classifier, splitted by log-transformed and non log-transformed values. Shadows in each density plot represent the 95%
confidence intervals. B Directed graph with reclassification percentages. Each node represents a consensusMIBC molecular subtype. The size
shows the number of samples classified as that specific molecular subtype across methods. The distance between nodes and the width of the links
represent the proportion of reclassified samples across methods between the subtypes. Edge colors are inherited by the original node. Edges

below 1% were filtered out
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log-transformation. This may be attributed to the use of
a Random Forest algorithm, which relies on relative com-
parisons rather than absolute values [27-29].

We examined the interconnections among molecu-
lar subtypes within the consensusMIBC classification to
assess their exchangeability. As expected and previously
reported, luminal subtypes showed a higher likelihood
of being reclassified within the luminal group compared
to non-luminal subtypes [28]. However, reclassification
between luminal and non-luminal subtypes is not likely
to happen, suggesting a distinct separation between these
groups greater than differences across preprocessing
methods [27, 30].

Based on our comprehensive evaluation and previous
studies, both pseudoaligners (Kallisto [19] and Salmon
[20]) and the featureCounts [16] quantifier combined
with any aligner (STAR [14] or Hisat2 [15]) are effective
for molecular subtype classification. While featureCounts
provides better sensitivity in detecting lowly expressed
genes, Kallisto and Salmon offer notable advantages in
speed and memory efficiency [31]. Our findings suggest
that, although Kallisto and Salmon identify a smaller
number of genes, this does not compromise the accuracy
of subtype classification, likely because the classifiers rely
only on a subset of genes.

Moreover, we evaluated the classification rates to
compare among the results obtained by the three clas-
sifiers. Our results showed low classification rates for
HTSeq [17] and StringTie [18] quantifiers, regardless of
the aligner, across all datasets and classifiers, indicating a
low-accuracy in subtype assignment. The highest classi-
fication rates were achieved by featureCounts combined
with STAR or Hisat2 aligners, along with Kallisto and
Salmon.

We have tested gene-based quantifiers (featureCounts
and HTSeq), as well as transcript quantifiers (StringTie),
with the objective of assessing subtyping classification
for which most methods are based on gene estimations.
Despite gene-level results being often more accurate,
powerful and interpretable than transcript-level results,
difference between transcript-based and exon-based
quantifiers is expected to be relatively minor when per-
forming molecular subtype classification compared to
other analyses, such as differential expression analysis,
where gene quantification plays a crucial role [32-34].

In conclusion, our results show that log-transformation
is a required step for centroid-based classifiers such as
consensusMIBC and TCGAclas, that were trained on
log-transformed data. In addition, we recommend dis-
tribution-free algorithms such as LundTax, which show
less sensitivity to preprocessing steps. Future research
should be focused on the validation of the robustness
and scalability from the findings of our study in MIBC as
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well as on other cancer type molecular classifiers. Having
standardized workflows could improve the application of
molecular subtype classification across cancers, enabling
a more thorough study of their association with treat-
ment response and promoting the development of per-
sonalized therapeutic strategies in clinical practice.

Limitations

The main limitation of this study is the lack of a true ref-
erence to compute objective evaluation metrics, which
makes it challenging to assess the accuracy and reliability
of assigned subtypes. Coincidence can also be misleading
as it measures the agreement of an assigned subtype with
the most frequent subtype, without considering subtype
designation accuracy.

Additionally, relying only on limited methods and data-
sets might introduce bias and miss important insights,
compromising the reliability of the findings. Neverthe-
less, our findings reveal parallel constraints in predictive
models development, which are heavily reliant on the
datasets and methods used, particularly when external
validation is not feasible.
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