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ABSTRACT

Diffusion Magnetic Resonance Imaging (dAMRI) sensitises the MRI signal to spin motion. This includes Brownian
diffusion, but also flow across intricate networks of capillaries. This effect, the intra-voxel incoherent motion
(IVIM), enables microvasculature characterisation with dMRI, through metrics such as the vascular signal
fraction f, or the vascular Apparent Diffusion Coefficient (ADC) D*. The IVIM metrics, while sensitive to
perfusion, are protocol-dependent, and their interpretation can change depending on the flow regime spins
experience during the dMRI measurements (e.g., diffusive vs ballistic), which is in general not known for a
given voxel. These facts hamper their practical clinical utility, and innovative vascular dMRI models are needed
to enable the in vivo calculation of biologically meaningful markers of capillary flow. These could have relevant
applications in cancer, as in the assessment of the response to anti-angiogenic therapies targeting tumour
vessels. This paper tackles this need by introducing SpinFlowSim, an open-source simulator of dMRI signals
arising from blood flow within pipe networks. SpinFlowSim, tailored for the laminar flow patterns within
capillaries, enables the synthesis of highly-realistic microvascular dMRI signals, given networks reconstructed
from histology. We showcase the simulator by generating synthetic signals for 15 networks, reconstructed
from liver biopsies, and containing cancerous and non-cancerous tissue. Signals exhibit complex, non-mono-
exponential behaviours, consistent with in vivo signal patterns, and pointing towards the co-existence of
different flow regimes within the same network, as well as diffusion time dependence. We also demonstrate
the potential utility of SpinFlowSim by devising a strategy for microvascular property mapping informed by
the synthetic signals, and focussing on the quantification of blood velocity distribution moments and of an
apparent network branching index. These were estimated in silico and in vivo, in healthy volunteers scanned at
1.5T and 3T and in 13 cancer patients, scanned at 1.5T. In conclusion, realistic flow simulations, as those
enabled by SpinFlowSim, may play a key role in the development of the next-generation of dMRI methods for
microvascular mapping, with immediate applications in oncology.

1. Introduction

In diffusion Magnetic Resonance Imaging (dMRI), water proton
motion is encoded in the acquired signals through magnetic field

gradients (Kiselev, 2017). Diffusion encoding provides sensitivity not
only to Brownian motion due to pure diffusion, but also to pseudo-
diffusion effects arising from the incoherent flow of blood protons
through intricate capillary networks (Le Bihan et al., 1986). Flow
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through sets of pseudo-randomly distributed capillaries leads to mag-
nitude dMRI signal attenuation, a phenomenon known as Intra-Voxel
Incoherent Motion (IVIM) effect. IVIM enables the in vivo character-
isation of microvascular perfusion through dMRI (Le Bihan, 2019),
relevant in a variety of diseases, as, for example, in cancer (Fokkinga
et al., 2024). Cancers feature aberrant microvasculature, whose flow
patterns can differ considerably from normal tissues (Munn, 2003).
Tumour vasculature is targeted specifically by anti-angiogenic treat-
ments, which are being used in several cancers (e.g., in liver or kidney
carcinomas (Jayson et al., 2016)) and tested in combination with
therapies such as immune check-point inhibitors, with promising re-
sults (Huinen et al., 2021). The non-invasive assessment of vascular
properties through dMRI can equip physicians with new tools for
tumour characterisation and longitudinal assessment. It is thereby an
active field of research, with studies spanning from malignancy detec-
tion to treatment response assessment (Ilima et al., 2018; Perucho et al.,
2021).

IVIM methods typically rely on disentangling vascular from extra-
vascular tissue dMRI signals (Barbieri et al, 2016b,a). Multi-
exponential models are routinely used for this purpose, providing
metrics such as the vascular signal fraction f,, or the pseudo-diffusion
(vascular) apparent diffusion coefficient (ADC) D*, whose estimation
has been recently made more robust by deep learning (Barbieri et al.,
2020; Zheng et al.,, 2023). Both f, and D* are useful indices, as
they have shown value in cancer assessment (Dappa et al., 2017).
However, these metrics have limitations, since they entangle several,
different microvascular characteristics into a single number, e.g., the
product between the mean of the blood velocity and capillary length
distributions in the diffusive flow regime (Le Bihan and Turner, 1992-
09). Moreover, they do not account for higher-order cumulants of the
diffusion decay (e.g., kurtosis terms proportional to %), and their actual
numerical value can depend on the acquisition protocol in non-trivial
ways (Wu and Zhang, 2019). In practice, this makes routine IVIM
metrics semi-quantitative, surrogate parameters, a fact that, together
with their known high variability (Barbieri et al., 2020), hampers their
large-scale clinical deployment.

Recently, the numerical simulation of dMRI signals within
histologically-realistic voxel models is being increasingly used to in-
form parameter estimation (Nilsson et al., 2010; Nguyen et al., 2014;
Fieremans and Lee, 2018; Buizza et al., 2021; Morelli et al., 2023).
Simulation-informed approaches increase the realism of signal models,
and may thus improve the biological fidelity of dMRI parametric
maps (Nedjati-Gilani et al., 2017; Palombo et al., 2019). However, up to
date dMRI simulations have been dominated by Monte Carlo Brownian
random walks (Hall and Alexander, 2009; Ginsburger et al., 2019;
Rafael-Patino et al., 2020; Lee et al., 2021). Given that only a few simu-
lation frameworks have focussed on blood flow (Van et al., 2021; Weine
et al., 2024), there is an urgent need for new, histologically-meaningful,
and reproducible simulators tailored for dMRI signal arising from blood
flow. These could be used to inform novel numerical approaches for
non-invasive microvasculature mapping based on dMRI, which could
equip oncologists with biologically-meaningful vascular markers in
clinical settings. The new dMRI methods could enable the characteri-
sation of capillary flow patterns that are not captured by classical IVIM
f, and D*, e.g., informing on anisotropic flow patterns, higher-order
cumulants or diffusion-time dependence of the vascular signal.

With this article we aim to fill this scientific gap. We present
an open-source framework for blood flow simulation within vascular
networks, referred to as SpinFlowSim from here on, and demonstrate
its potential to inform microvasculature property estimation in dMRI.
We start by illustrating the computational engine behind SpinFlowSim,
based on pipe network theory. Afterwards, we describe the synthe-
sis of dMRI signals arising from flow within realistic vascular net-
works obtained from histological images of human tumours. Finally,
we showcase a potential application of SpinFlowSim, by using the syn-
thetic signals to inform microvasculature property estimation, which is
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demonstrated in silico and in vivo, in healthy volunteers and in cancer
patients. Preliminary findings were disseminated at a conference in
abstract form (Voronova et al., 2024b). A draft of this article has also
been posted as in the medRxiv preprint server (Voronova et al., 2024a).

2. Methods

In this section we illustrate the computational engine upon which
SpinFlowSim relies, illustrated in Fig. 1. Afterwards, we present the
histological data used to generate realistic vascular networks, and then
describe how synthetic dMRI signals were used to inform microvascu-
lature parameter estimation in silico and in vivo. SpinFlowSim is made
freely available at https://github.com/radiomicsgroup/SpinFlowSim.

2.1. Simulation framework

In SpinFlowSim (Fig. 1) we aim to reconstruct the distribution of
volumetric flow rate (VFR) across the different segments of an input
vascular network. The following characteristics of the vascular network
are specified directly by the user:

+ a list of capillary segments with their radii;

+ the 3D coordinates of the extremities of each segment, referred to
as nodes;

« the inlet/outlet of the whole network;

+ the input VFR g,.

To obtain the VFR distribution, we solve a linear inverse problem,
in which the pressure drop 4p, , across each pair of connected nodes
(k,n) is proportional to the VFR g, , between k and n through a flow
resistance coefficient R, ,, via

Apin = Ripin- @

The approach, valid for the laminar flow regime in micro-capillaries,
has been recently proposed for capillary flow simulations (Schmid
et al., 2015; Van et al., 2021).

To solve for all unknown ¢, , in Eq. (1), we rely on PySpice (Salvaire,
2023), a python package for electric circuit analysis, given that solving
our flow problem is formally equivalent to solving a passive electric cir-
cuit (electric-hydraulic analogy). Note that in a passive electric circuit,
the voltage drop across a resistor is proportional to the product of the
electric current through the resistor and the resistance of the element
itself, i.e., it is formally equivalent to Eq. (1). In this first demonstration
of SpinFlowSim, we compute the resistance between nodes k and n
through a modified Hagen—Poiseuille law, as done in Blinder et al.
(2013):

3 H Lk,n

4
k.n

kn __Tka
Ry, =4 (1 — 0.863¢ TIm 4 275e oasw) )

Tr
Eq. (2) models the effect of the hematocrit as well as erythrocyte-
capillary wall interactions (Pries and Secomb, 2008; Blinder et al.,
2013). Above, u is the dynamic viscosity of pure plasma (Késmarky
et al., 2008) (4 = 1.20 mPa s at 37 °C), r,, is the radius of the capillary
segment, and L, , its length.

After recovering the VFR ¢, , between each pair of connected nodes,
in SpinFlowSim we obtain the corresponding mean velocity v, , as

qr,
Vew = —— - ®3)
ﬁrkyn

Finally, the 3D trajectory p,(f) of the generic w-th blood spin is
synthesised by integrating the discrete-time system

P, (t+41) = p,@) + Atv,(1)n, (1) (€))

given an initial position p,(0) = p,. In Eq. (4), 4t is the temporal
resolution of the simulation, while v,,(r) and n,,(¢) are the instantaneous
velocity vector magnitude and direction experienced by the spin at time
t. Spins’ initial positions p,, are seeded across the whole network, with
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Fig. 1. Outline of the proposed SpinFlowSim framework. The dashed boxes indicate user-provided input information. An illustrative example of a network segmented on a biopsy
with resolved volumetric flow rates for an input flow g;, =3.1- 107> mm’/s and synthesised signals are shown.

uniform spin density in each segment. The numbers of spins assigned
to each segment is proportional to its volume (Van et al., 2021).
During the integration of Eq. (4), spins reaching the termination of a
capillary are assigned at random to one of the emanating branches. The
probability of a spin being assigned to a specific branch is proportional
to the VFR through that branch (Van et al., 2021). More formally, once
a flowing spin reaches the k-th node, the probability of it continuing
its trajectory in the k — n branch emanating from k is

qk,n

plk—n) = )

n qk,n '
Moreover, spins reaching the network outlet continue flowing through
a shifted copy of the vascular network, whose inlet position coincides

exactly with the outlet itself. This ensures that no spins are lost during
the simulation (periodic boundary condition). SpinFlowSim supports
the visualisation of spin trajectories as a video, in order to facilitate
the visual inspection of the simulation output.

Once the trajectories for W spins have been generated, we synthe-
sise a complex-valued dMRI signal s for any input gradient wave form
G(1) as (Fieremans and Lee, 2018)

1 < r
- —iy 41 Y- GO
s = wgle 1=0 (6)

given the requested total simulation duration T'.
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Fig. 2. Vascular networks segmented on digitised liver tumour biopsies (resolution: 0.454 pm). Each network is labelled as “Non-Cancerous” or “Cancerous”, depending on whether
it was drawn on non-cancerous liver parenchyma or on tumour tissue. For the latter case, the primary cancer is also indicated (CRC stands for Colorectal Cancer, while HCC
for Hepatocellular Carcinoma). The non-cancerous networks were drawn on liver tissue found on liver tumour biopsies of patients suffering from Melanoma (n = 2) and Ovarian
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Fig. 3. Examples of resolved vascular networks. The top row shows results from a vascular network segmented on a HE-stained non-cancerous liver region, found on a biopsy of
a patient with metastatic melanoma (Net 6). The bottom panel shows results from a CD31-stained rectal cancer area (Net 12). From left to right, we show the vascular network,
the resolved blood flow velocity field for g, = 3.1 - 10~ mm?®/s, and examples of dMRI signal decay over a range of b-values (0-150 s/mm?) and diffusion times (4 = {30, 50,
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Fig. 4. Scatter plots relating estimated and ground truth microvascular parameters in computer simulations. First row (panels (a), (b), (c)): results for protocol “PGSE in vivo”.
Second row (panels (d), (e), (f)): results for protocol “TRSE”. Third row (panels (g), (h), (i)): results for protocol “richPGSE subset”. Fourth row (panels (j), (k), (1)): results for
protocol “richPGSE”. From left to right: results for metric v,, (panels (a), (d), (g), (j)); results for metric v, (panels (b), (e), (h), (k)); results for metric AN B (panels (c), (f), (i),
().Spearman’s and Pearson’s correlation coefficients between estimated and ground truth values are also reported in each plot.

2.2. Vascular networks

We deployed SpinFlowSim on vascular networks reconstructed from
2D histological images. These consisted of biopsies obtained in pa-
tients suffering from advanced tumours and participating in an ongoing
imaging study at the Vall d’Hebron Institute of Oncology (Barcelona).

The biopsied tissue, taken from liver tumours, was processed and
stained. Digitised images of the stained tissue were acquired on a
Hamamatsu C9600-12 optical slide scanner (resolution: 0.454 pm). For

this study, we used 11 histological images, obtained from 11 patients.
For each patient, we had access to either a routine hematoxylin-eosin
(HE) stain (n = 9) or a CD31 stain (n = 2).

We drew a total of 15 2D networks. We drew networks manu-
ally, by tracing visible capillaries in non-cancerous liver parenchyma
or in cancerous regions-of-interest (ROIs). Networks were drawn on
approximately square ROIs, of sizes ranging from 250 to 550 pm per
side. Networks were made of interconnected segments, with curved
capillaries approximated by a piece-wise series of straight pipes. A
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Fig. 5. Representative vascular voxel signals measured in two healthy volunteers in vivo. Top (A-D): signals from healthy volunteer 4, scanned on a 3T system, with the “PGSEinvivo”
protocol, based on routine PGSE. Bottom (E-H): signals from healthy volunteer 2, scanned on a 1.5T system, with the “TRSEinvivo” protocol, based on a DW TRSE acquisition.
From left to right, signals from different ROIs are shown: kidney cortex (A and E); kidney medulla (B and F); spleen (C and G); liver parenchyma (D and H). The figure reports
the median and the inter-quartile range of variation of the signal across voxels within the ROI. An estimated range of noise floor fluctuations is also reported in grey.
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Fig. 6. Microvascular maps in a representative healthy volunteer scanned on the 1.5T system with protocol “TRSEinvivo”. (a): labelled scan; (b) and (c): IVIM maps f,, and D*;
(d), (e) and (f): microvascular indices v,,, v, and AN B. In the labelled scan, we highlight the location of the liver and the spleen.
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Fig. 7. Microvascular maps in the healthy volunteer scanned on the 3T system with protocol “PGSEinvivo”. (a): labelled scan; (b) and (c): IVIM maps f,, and D*; (d), (e) and
(f): microvascular indices v,,, v, and AN B. In the labelled scan, we highlight the location of the liver, the spleen and of the kidneys.
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Fig. 8. Bar plots reporting mean and standard error of the mean of all microvascular metrics in the different regions-of-interest (ROIs) of the four healthy volunteers. (a): trends
for metric f},; (b): trends for metric D*; (c): trends for metric v,,; (d): trends for metric v; (e): trends for metric AN B.
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Fig. 9. Parametric maps obtained in adrenal metastases, liver and spleen of a 61 y.o. male patient, suffering from advanced rectal cancer (patient 8, scanned on a 1.5T Siemens
Avanto system with a DW TRSE sequence). Top row: labelled scan and IVIM maps f,, and D*. Bottom row: microvascular parameters obtained via simulation-informed model
fitting, namely: mean blood velocity v,,, blood velocity standard deviation v,, and Apparent Network Branching AN B.

characteristic radius was assigned to each segment by averaging three
radius measurements, performed at the inlet, middle point, and outlet
level. For each network, we computed an approximated network size as
the maximum euclidean distance between any pair of nodes. Addition-
ally, we also assessed the network dimensions by calculating the total
number of capillary segments. As compared to the euclidean network
size mentioned above, this index has the potential of distinguishing
between networks of similar dimensions, but characterised by different
spatial densities of capillaries. We also computed the mean and stan-
dard deviation of the capillary radii and lengths (r and L), which we
refer to as r,, and L,,.

We generated 100 VFR distribution realisations by changing ran-
domly the position of the network inlet/outlet 10 times, and varying
the input VFR g¢;, for each inlet/outlet pair (10 uniformly-spaced g;,
values in [1.5-107%; 5.5-1073] mm?/s), to cover plausible blood capillary
velocities (Ivanov et al., 1981). The total duration and the temporal
resolution of the simulations were 7 = 100 ms and 4¢ = 0.01 ms.
We characterised each realisation by computing: mean and standard
deviation of the velocity and VFR distribution across capillary segments
(v,, and v; g,, and ¢,); mean radius (r,), mean segment length (SL,,)
and mean path length (PL,,); number of input/output paths; as well an
Apparent Network Branching (AN B index). AN B measures the average
number of segments spins travel through during a reference time of
100 ms. Conversely, PL,, is instead obtained as PL,, = (PL), where
PL indicates the length of the generic input/output flow path, obtained
through the cumulative length of the segments contained within a path
connecting inlet to outlet, i.e., PL =¥ -/, ...n L;- In practice, PL,,
reports the average PL over all possible input/output network paths.

Spearman’s correlation coefficients among all possible pairs of network
metrics were computed. Additionally, we studied the correlation among
mean VFR g,, mean velocity v,, mean radius r, and path length PL
along all possible input/output paths contained in the networks. For
each path, these were computed as g, = (Lq)/PL, v, = (Lv)/PL
and r, = (Lr)/PL. The existence of closed flow loops within the
networks was also assessed with the graph theory python package
graph-tools (Peixoto, 2023).

Finally, we synthesised illustrative dMRI signals for routine pulsed-
gradient spin echo (PGSE) sequences. We probed b-values in the range
[0; 150] s/mm?, and varied the gradient separation 4 over two orders
of magnitude (from 10 ms to 1 s). Signals were generated for two
orthogonal directions within the plane containing the 2D networks,
as well as for an increasing number of evenly-spaced directions over
the unit circle, up to 64, and their magnitude averaged. The fraction
of flowing spins that do not change capillary segment during the
simulation was also recorded.

2.3. Microvascular property estimation from dMRI

We also investigated whether the synthetic signals generated with
SpinFlowSim can be used to inform microvascular parameter estima-
tion in dMRI. We hypothesised that, for a given dMRI protocol, large
dictionaries of synthetic, noise-free signal arrays S = {sy,...,s,,}, cou-
pled with their corresponding vascular parameter arrays P = {p,,...,
Py}, can be used to find practical numerical implementations of the
forward signal model p ~ s(p). Numerical implementations of this
type could be easily incorporated in standard non-linear least square
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(NNLS) fitting, used routinely in dMRI, thus avoiding the need for
approximated analytical signal expressions.

In the following sections, we will describe in silico analyses per-
formed to investigate the feasibility of simulation-informed fitting. We
will then describe experiments performed to demonstrate the approach
in vivo, based on the acquisition of dMRI scans in healthy volunteers at
1.5T and 3T and cancer patients at 1.5T.

2.3.1. In silico estimation

We used SpinFlowSim to synthesise signals for 4 realistic dMRI
protocols, and then analysed such signals to test whether it is possible
to estimate v,,, v, and AN B from noisy measurements. One of the
protocols represents a rich, comprehensive pulsed-gradient spin echo
(PGSE) acquisition, encompassing several b-values in a measurement
regime with high sensitivity to IVIM effects (i.e., b smaller than ap-
proximately 100 s/mm? Le Bihan, 2019), as well as multiple diffusion
times. A second protocol is instead a shorter subset of the rich protocol.
Finally, the third and fourth protocols match acquisitions used for in
vivo imaging. Signals were generated for two orthogonal directions
within the plane containing the 2D networks, and their magnitude
averaged. In summary, the protocols were:

+ a rich PGSE protocol, referred to as “richPGSE”. It consisted of a
total of 99 measurements, encompassing 9 b = 0 and 10 non-
zero b-values b = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
s/mm?, each acquired for 9 unique diffusion times, corresponding
to (6, 4) = {10, 20, 30} ms x {30, 50, 70} ms.

A second PGSE protocol, referred to as “richPGSEsubset”. It is a
subset of the former, and describes a more realistic acquisition
that could be implemented under time pressure. It encompassed
3 b = 0 and 6 diffusion-weighted (DW) measurements, namely
b = {50, 100} for 3 different diffusion times. The gradient duration
6 was fixed to 20 ms, while the 3 diffusion times were achieved
by varying 4 as 4 = {30, 50, 70} ms.

+ A DW twice-refocussed spin echo (TRSE) protocol, referred to
simply as “TRSEinvivo”. It matches the protocol implemented on
a 1.5T Siemens Avanto system in vivo (see Section 2.3.2 below). It
consisted of 3 non-DW and 6 DW measurements. These were b =
{50, 100}, acquired for 3 diffusion times. The gradient duration of
the 4 gradient lobes (Supplementary Fig. 1) for the 3 diffusion
times were: 6, = {8.9, 13.2, 18.9} ms, 6, = {17.6, 19.3, 21.0} ms,
53 = {20.4, 24.8, 30.5} ms, 6, = {6.0, 7.7, 9.5} ms. The separation
between the onset of the gradient lobes (Supplementary Fig. 1)
were instead: 4,, = (17.4, 21.7, 27.5} ms, 4;, = {63.9, 74.2,
87.5} ms.

Another PGSE protocol, referred to as “PGSEinvivo”. It matches
the protocol implemented on a 3T GE SIGNA Pioneer system in
vivo (see Section 2.3.2 below). The protocol included the b-values
b = {0, 10, 20, 40, 70, 100} s/mm?, with minimal variations of
gradient timings across b-values, i.e., § = {0, 2.06, 2.57, 3.37,
4.18, 4.82} ms, 4 = {0, 31.34, 31.85, 32.65, 33.47, 34.10} ms.

Briefly, we performed a leave-one-out experiment. For each vascular
network in turn, we used noise-free signals from 14 out of 15 substrates
to learn the forward signal model (v, v,, ANB) - s(v,, v,, ANB),
which we then used for estimating v,,, v, and AN B on noisy signals
for the remaining 15th network (signal-to-noise ratio (SNR) at b = 0
of 20). The forward signal model (v,, v;, ANB) ~ s(v,, v,, ANB)
was learnt by interpolating the set of paired examples signals/vascu-
lar parameters with a radial basis function (RBF) regressor, so that
fitting could be performed by embedding s(v,,, v, AN B) into standard
maximum-likelihood NNLS routines (Panagiotaki et al., 2012). Fitting
was performed with the freely-available mri2micro_dictml.py tool, part
of the bodymritools python repository (https://github.com/fragrussu/
bodymritools). To characterise fitting performance, we generated scat-

ter plots between ground truth and estimated v,,, v, and AN B, and
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computed corresponding Spearman’s correlation coefficients. For each
leave-one-out iteration, the 100 realisations of each network obtained
by varying inlet/outlet and input VFR were not averaged, but rather
used as independent entries in the signal/parameter dictionary used to
learn the forward signal model. Similarly, microvascular parameters
were estimated from signals from all realisations of the 15th test
network, which were processed independently.

2.3.2. In vivo estimation

We also investigated the feasibility of using synthetic signals from
SpinFlowSim to inform microvascular property estimation in vivo, on
both healthy volunteers and cancer patients. All participants were
scanned after providing informed written consent, in imaging ses-
sions approved by the Clinical Research Ethics Committee (CEIm)
of the Vall d’Hebron University Hospital of Barcelona, Spain (codes:
PR(AG)29/2020 and PR(IDI)109/2022).

Healthy volunteers: data and analysis. We scanned four healthy vol-
unteers on two MRI scanners. Volunteers 1 to 3 were scanned on
a 1.5T Siemens Avanto system (35 yr old, male; 34 yr old, female;
25 yr old, male), while volunteer 4 (32 yr old, male) on a 3T GE
SIGNA Pioneer system. The acquisition included routine anatomical
structural imaging and dMRI. For the 1.5T scanner, this consisted of
a DW TRSE Echo Planar Imaging (EPI) scan, with salient parameters:
resolution of 1.9 x 1.9 mm?; slice thickness of 6 mm; b = {0, 50,
100, 400, 900, 1200, 1600} s/mm?, with each b acquired at 3 different
diffusion times, with the same diffusion times as the “TRSE” protocol
used simulations (see Section 2.3.1 above); TE = {93, 105, 120} ms
for the short, intermediate, and long diffusion time; TR = 7900 ms;
trace DW imaging; NEX = 2; GRAPPA = 2; 6/8 Partial Fourier imaging;
BW = 1430 Hz/pixel; acquisition of a b = 0 image at the shortest TE
with reversed phase encoding. For the 3T scanner instead, this con-
sisted of a standard PGSE EPI scan, with salient parameters: resolution
2.4 x 2.4 mm?; slice thickness of 6 mm; b = {0, 10, 20, 40, 70, 100,
500, 1000, 1250, 1500} s/mm?; TE = 75 ms; TR = 12000 ms; trace
DW imaging; NEX = 2; ASSET = 2; BW = 3333 Hz/pixel; respiratory
gating.

We denoised scans with MP-PCA (Veraart et al., 2016), mitigated
Gibbs ringing (Kellner et al., 2016) and corrected for motion and EPI
distortions (Andersson et al., 2003) (the latter step only on the 1.5T
data). Subsequently, we normalised the signal acquired at each TE to
the b = 0 signal level at the same TE, when multiple TE were acquired,
and then estimated the vascular signal S}, for b < 100 s/mm? in each
voxel (Gurney-Champion et al., 2018; Wang et al., 2021) as

Sy =S-Sr. )

Above, S is the measured signal and Sy is an estimate of the extra-
vascular tissue signal. S was computed by extrapolating to 5 < 100
s/mm? an ADC fit S; = Sp(b = 0)e ?4PCr performed on signal
measurements at b > 100 s/mm?.

Afterwards, we fitted (v, v,, AN B) voxel-by-voxel, using the same
fitting procedure employed in in silico experiments above, but learning
the forward model P ~ S(P) on all 1500 synthetic signals from
all vascular networks (i.e., without averaging signals from different
network realisations, but rather stacking them as independent entries
of the signal/parameter dictionary). For reference, we also computed
more standard IVIM metrics f,, and D*, by fitting S, = Sy, (b = 0)e??"
to the vascular signal, with f, ~ 1 — SST((b’f(g) For the 1.5T data, f}
and D* were computed on the vascular signal estimates at the shortest
TE. Mean, standard errors and standard deviations of v,,, v,, ANB, f,
and D* within manually drawn ROIs were computed. The ROIs were
placed in the liver, spleen, as well as medulla and cortex of a kidney.
The estimated vascular signal was plotted as a function of the b-value
in an illustrative healthy volunteer for each scanner.
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Table 1

Summary of vascular networks with corresponding microvascular properties generated for this study. The non-cancerous networks were drawn on non-cancerous liver tissue found
on biopsies from melanoma (n = 2) and ovarian cancer (n = 1) metastases. Mean patient age was 66.2 years. Male = 5, Female = 6. CRC = colorectal cancer, HCC = hepatocellular
carcinoma, EC = Endometrial cancer. Vascular network metrics are: mean and standard deviation of blood velocity, v, and v,; mean and standard deviation of the VFR, g, and
q,; apparent network branching AN B; mean radius r,; mean segment length SL,; mean path length PL,; the number of input/output (I/0) paths and the network dimensions.
The dimensions have been indicated by two metrics, namely the actual Network Size (maximum euclidean distance between any pair of nodes), and the total number of segments.
For ech metric (beyond those describing the network dimensions), the mean and the standard deviation (in bracket) over the 100 realisations of each network (10 input/output

node combinations x 10 input VFRs) are reported.

Network  Description Uy v, ANB P SL, Network size g, q, 1/0 Paths PL, Total segments
[mm/s] [mm/s] [segments] [pm] [pm] [mm] [mm?3/s] - 10* [mm?3/s] - 10* [paths] [um] [segments]
Net. 1 Cancerous liver, 13.76 14.05 46.51 3.1 46.24 0.35 4.25 4.19 376 382.59 67
CRC (8.52) (9.69) (22.15) 0.9) (13.95) (2.66) (2.56) (313) (44.2)
Net. 2 Cancerous liver, 11.24 13.69 28.33 4.02 60.85 0.39 4.94 4.74 100 460.78 45
Melanoma (7.01) (9.18) (13.92) (1.37) (21.59) (3.07) (2.93) (26) (26.1)
Net. 3 Cancerous live, 24.54 19.76 56.91 2.45 53.19 0.24 4.72 4.27 187 315.76 42
CRC (14.9) (12.14) (23.3) (0.95) (21.38) (2.87) (2.67) (76) (25.2)
Net. 4 Non-cancerous liver 4.81 3.81 12.38 5.14 81.54 0.50 3.91 3.39 353 614.36 60
(2.93) (2.35) (6.42) (1.64) (27.72) (2.38) (2.09) (209) (39.1)
Net. 5 Non-cancerous liver  10.42 8.16 35.95 3.76 53.03 0.39 4.53 3.69 536 711.76 65
(6.38) (5.01) (17.13) (1.03) (15.54) (2.78) (2.24) (183) (32.7)
Net. 6 Non-cancerous liver 10.99 11.05 36.92 3.43 48.23 0.42 4.28 4.47 1432 752.97 77
(6.79) (6.98) (17.55) 0.9) (13.26) 2.7) (2.77) (927) (91.8)
Net. 7 Cancerous liver, 10.54 10.24 33.77 3.54 60.12 0.36 4.41 5.09 192 610.74 60
HCC (6.59) (6.8) (16.18) (1.03) (17.81) (2.71) (3.1) (70) (76.8)
Net. 8 Cancerous liver, 8.42 12.71 13.74 5.36 70.9 0.60 5.81 7.48 48 539.79 47
HCC (7.68) (10.52) (6.71) (1.78) (22.43) 3.97) (4.58) 18) (62.0)
Net. 9 Cancerous liver, 13.92 17.06 32.78 3.7 55.28 0.41 5.23 5.24 42 430.99 52
HCC 9.27) (12.41) (16.59) (1.05) (16.45) (3.27) (3.249) (©)] (51.5)
Net. 10  Cancerous liver, 8.68 9.8 17.96 4.71 68.17 0.44 4.84 4.82 135 728.11 53
HCC (5.46) (6.52) (8.71) (1.59) (21.72) (2.98) (2.96) (69) (88.5)
Net. 11 Cancerous liver, 19.14 19.92 33.83 3.37 61.24 0.44 5.91 5.33 80 577.98 52
HCC (12.03) (12.57) (15.22) (1.0) (18.89) (3.69) (3.26) (49) (44.8)
Net. 12 Cancerous liver, 5.49 6.76 19.84 4.42 60.47 0.38 3.29 3.7 491 544.79 66
CRC (3.36) (4.66) (10.15) (1.42) (19.98) (2.0) (2.33) (136) (24.6)
Net. 13 Cancerous liver, 6.44 6.26 23.84 4.59 55.5 0.32 3.99 3.72 427 463.76 54
CRC 4.1) (3.98) (11.8) (1.66) (20.63) (2.45) (2.32) (222) (18.0)
Net. 14 Cancerous liver, 12.45 10.92 48.51 3.64 45.1 0.29 5.23 4.22 287 476.94 45
EC (7.55) (6.73) (22.53) (1.27) (16.13) (3.18) (2.58) (192) (68.8)
Net. 15  Cancerous liver, 13.54 11.23 44.38 3.05 50.68 0.32 3.97 3.44 740 418.45 52
CRC (8.5) (6.97) (19.67) (1.13) (21.07) (2.46) (2.09) (292) (36.6)

Cancer patients: data and analysis. Finally, we tested our simulation-
informed parameter estimation on dMRI scans of 13 patients suffering
from advanced solid tumours (7 females, 5 males), who participated
in an ongoing imaging study at the Vall d’Hebron Institute of On-
cology (Barcelona, Spain). Patients were scanned on the same 1.5T
Siemens Avanto system used to acquire data on healthy volunteers,
and according to the same imaging protocol. dMRI scans underwent
the same processing as described above, obtaining voxel-wise maps of
Ums Ugs AN B, f, and D*. Mean and standard deviation of such metrics
within tumours were obtained, with tumours manually segmented by
an expert radiologist (R.P.L.). The estimated vascular signal was plotted
as a function of the b-value in illustrative cancer ROIs.

3. Results
3.1. Vascular networks

Fig. 2 illustrates the 15 vascular networks generated in this study
from liver tumour biopsies. Out of the total, 3 were segmented on
non-cancerous liver parenchyma, while the remaining 12 on cancerous
tissue. The 3 non-cancerous networks were drawn on liver tissue found
on the histological slide, adjacent to tumour tissue (n = 2 melanoma
metastases; n = 1 ovarian cancer metastasis). The 12 networks drawn
on cancerous tissue came from primary liver hepatocellular carcinoma
(HCC, n = 5), or from liver metastases of colorectal cancer (CRC, n = 5),
endometrial cancer (n = 1), and melanoma (n = 1).

Table 1 reports salient statistics of the vascular networks shown in
Fig. 2, related to capillary radii, length, velocity distribution, number of
vascular segments sensed by flowing spins and number of input/output
paths. None of the networks contain close loops, and all capillary
segments are always part of at least one flow path connecting the inlet

to the outlet. The network size varies from approximately 240 to up to
600 pm. The number of segments varies from 42 to 77, while the mean
input/output path length from approximately 316 to 753 pm. The table
shows that different network morphologies lead to different blood ve-
locity distributions. For example, mean v,, across VFR realisations can
vary from as low as approximately 4 mm/s up to 25 mm/s. This range
of variation is mirrored in the average number of capillaries blood
travels through during the simulation (AN B metric), which varies from
just over 12 up to almost 57 segments (note that in some cases, AN B
can be slightly higher than the total number of segments, given that
spins reaching the outlet of the network continue flowing in a copy of
the network itself). The mean path length PL,, also varies considerably,
e.g., from just over 300 um for network 3, exhibiting the fastest flow
among networks, to up to roughly 700 pm, as in networks 5 or 6.
Notably, networks characterised by longer PL,, tend to feature slower
flows — a finding consistent with the fact that longer input/output
paths are characterised by higher flow resistance for a fixed path radius
(see Eq. (2)). Supplementary Fig. 2 shows distributions of v,,, v, and
AN B for all networks, across the 10 different inlet/outlet realisations
and given an illustrative input VFR g, = 3.1-10~3 mm?/s. Distributions
are skewed, and strong contrasts in terms of v,,, v, and AN B are seen
across networks (e.g., compare Net 3 with Net 4). Supplementary Fig.
3 shows correlation coefficients among all possible pairs of metrics.
There is a strong, positive correlation between v,, and v, and AN B
(0.89, 0.82), and a moderate positive correlation between v, and AN B
(0.55). All of v,,, v, and AN B are negatively correlated with L,,, r,, and
PL,, (strongest correlations between AN B and r,,, of —0.93; weakest
for v, and L, of —0.19). Finally, L,, and PL,, are positively correlated
with r,, (correlation of 0.68 and 0.44). VFR and velocity are positively
correlated (e.g., correlation of 0.47 between v,, and g,).
Supplementary Fig. 4 shows scatter plots of mean VFR, mean veloc-
ity, mean radius and path length along input/output flow paths (g, v,
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rp and PL), for all 54271 paths contained in our networks. There is a
positive, weak Spearman’s correlation between 4, and r, (0.24), and a
moderate negative correlation between v, and r, (—0.53). A moderate,
positive correlation between 4y and v, (0.58) and between r, and PL
(0.34) is also seen. Notably, the plots contain large clouds of points
that visually contain several sub-clusters, each with distinctive slopes
and offsets in the scatter plane.

Fig. 3 shows examples of VFR and blood velocity fields recon-
structed in two vascular networks with SpinFlowSim, alongside dMRI
signals. The two networks were segmented on non-cancerous liver
parenchyma of a patient suffering of melanoma (top panel, Net 6)
and on metastatic CRC (bottom panel, Net 12). The figure highlights
that distributions of VFRs and velocities arise across network segments,
owing to their different resistance to flow. The segments with the
highest VFRs do not necessarily feature the highest velocities, due to
differences in terms of segment diameter. The VFR distributions lead
to fast dMRI signal attenuation in both networks, with most of the
signal decayed by b = 150 s/mm?. The signal decay is not mono-
exponential (note the log-scale in the y-axis). Oscillatory patterns are
also seen as well as some diffusion time dependence, with the dMRI
signal decreasing slightly with increasing 4 at fixed b.

Supplementary Figs. 5 and 6 show vascular signals from one re-
alisation of all vascular networks for increasing diffusion times (4 of
10, 100 and 1000 ms; 6 = 0.5 ms; g;, = 3.1 - 107> mm?/s). Signals
were obtained by averaging measurements from 2 (Supplementary
Fig. 5) and 32 (Supplementary Fig. 6) directions. The signals exhibit
oscillations as a function of the b-value. On visual inspections, the
oscillation increase when 4 increases from 10 to 100 ms, and then
decrease for A of 1000 ms, especially when signals are obtained by
averaging over 32 directions (supplementary Fig. 6). When averaging
is performed over only 2 orthogonal directions (Supplementary Fig. 5),
there are examples of networks where the number of oscillations is
largest for 4 of 1000 ms (e.g., networks 7, 9, 11), and several more cases
where the number of oscillations is similar across 4 (e.g., 4, 5, 12, 14).
These residual signal fluctuations are seen for very high levels of signal
attenuation (i.e., 1072 to 1073), and are likely driven by directional
biases. Averaging over a rich set of directions, in general, reduces signal
oscillations (Supplementary Figs. 6 and 7).

3.2. Microvascular property estimation from dMRI

3.2.1. In silico estimation

Fig. 4 reports results from in silico estimation of v,,, v, and ANB
from noisy vascular signals, synthesised according to protocols “TRSE”,
“PGSE”, “richPGSE” and “richPGSEsubset”. There is a moderate to
strong correlation between ground truth and estimated v,,, v, and
AN B values for protocols “PGSEinvivo” and “TRSEinvivo” (minimum
Pearson’s correlation: 0.41 for v, for protocol “TRSE”; maximum cor-
relation of 0.79 for AN B for protocol ‘“PGSEinvivo”). Correlation is
instead strong for protocol “richPGSE” and, to a lesser extent, for the
protocol “richPGSEsubset”, derived from it. We observe, for example,
a Pearson’s correlation of 0.81 and 0.73 for metric AN B, estimated
respectively from protocol “richPGSE” and “richPGSEsubset”. As an
example, Supplementary Fig. 8 illustrates the complete set of synthetic
signals generated for protocol “TRSEinvivo” and “PGSEinvivo” across
the 15 segmented networks. The figure highlights that the signal decay
spans several orders of magnitude: variations in the microvascular
characteristics of the networks lead to remarkably different vascular
dMRI signals. In Supplementary Fig. 8, a small number of networks ex-
hibits considerably less signal decay than other networks — for example,
Networks 4, 8 and 10. As apparent from Table 1, these feature among
the highest mean capillary length L, and mean path length PL,, and
among the lowest mean velocity v,,.
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3.2.2. In vivo estimation

Fig. 5 shows the estimated vascular signal in different ROIs of
one healthy volunteer per MRI scanner. Some of the features seen
in synthetic signals can also be observed in in vivo measurements, as
for example: a trend towards signal decrease with increasing diffusion
time, seen in the spleen and liver ROIs (protocol “TRSEinvivo”); oscil-
lations as a function of the b-value, as in the spleen and in the kidney
cortex ROIs (protocol “PGSEinvivo”). Signal oscillations in the liver are
instead compatible with fluctuations at the noise floor level.

Fig. 6 shows IVIM metrics f,, and D* alongside v,,, v, and AN B in
the liver and spleen of healthy volunteer 1 (1.5T scanner). On visual
inspection, f;, and D* are systematically higher in the liver than in the
spleen. This contrast is mirrored by v,,, v, and AN B, which are as well
higher in the former organ than in the latter. Fig. 7 reports the same
maps, but for volunteer 4, scanned on the 3T system. Spatial trends
agree with those observed on the 1.5T scanner. For example, the liver
shows the highest f,, and v,,, while the kidney medulla exhibits higher
values of all of fy,, D*, v,,, v, and AN B compared to the kidney cortex.
Fig. 8 reports instead mean and standard errors of all metrics within
several ROIs (liver, kidney medulla and cortex, and spleen), and in all
healthy volunteers. Mean and standard deviation are also reported in
Table 2. Inter-organ differences are seen, as for example higher D*, v,,,
v, and AN B in the liver, compared to the spleen. Trends of inter-subject
differences are also seen. E.g., in healthy volunteer 1, higher values
of all of f,, D*, v,, v, and ANB in the kidney medulla than in the
kidney cortex are seen. However, in healthy volunteer 2, D* is higher
in the cortex than in the medulla, and differences between medulla and
cortex among all other metrics are less marked. Values of all metrics
from healthy volunteer 3 are in between those from healthy volunteers
1 and 2. Those from healthy volunteer 4, scanned on the 3T system
with a different protocol, are qualitatively consistent with those from
the 1.5T system.

Fig. 9 shows representative microvascular maps in cancer. The fig-
ure refers to adrenal gland metastases of a patient suffering from rectal
cancer (patient 8), and includes the visualisation of maps in surround-
ing, non-cancerous tissues, as in the liver and spleen parenchymas.
Supplementary Fig. 9 shows instead the vascular dMRI signal estimated
within such metastases, which exhibits a trend towards decrease as the
diffusion time increases. In the adrenal tumours, both IVIM metrics
fy and D* as well as microvascular v,, v, and ANB show intra-
tumour contrasts. For example, we observe a core of lower f,, and
D* in both metastases. This spatial trend is mirrored by metrics v,,,
v, and AN B: the lower v,,, v, and AN B point towards slower and less
variable blood velocity in the core of the tumour, and predict blood to
travel through fewer vessel segments, as compared to the outer ring.
Overall, v,, v, and AN B exhibit similar contrasts among each other,
but certain differences are also seen e.g., voxels with high v,, that do
not necessarily show the highest AN B values. The metastases show low
overall vascularisation, with f},, D*, v,,, v, and AN B all lower than the
values seen in the liver, being more comparable to values seen in the
spleen.

Table 3 reports patient demographics and mean and standard de-
viation of all vascular metrics within tumours. The metrics highlight
inter-tumour differences in terms of dMRI-derived vascularisation met-
rics. For example, breast cancer metastases feature the highest vascular
signal fraction f;,, among all tumours. Conversely, the highest D* is
seen in a lung cancer adrenal gland metastasis (patient 11), which also
features the highest v,, v, and ANB across the whole cohort. The
lowest D* is instead seen in liver metastasis of rectal cancer (patient
8), a trend that is mirrored by v,, and AN B, which in this case are
the lowest across all tumours. As compared to values reported in Table
2, tumours appear less vascularised than the liver, featuring a lower
fy . Capillary flow in the tumours also appears slower than in the liver
but faster, for example, than in the spleen. For example, D*, v,,, v, and
AN B vary in ranges that are qualitatively comparable to those seen for
the kidney medulla on the healthy volunteers.
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Table 2

Summary of healthy volunteers’ demographics (age in years, sex) and trends of microvascular metrics f},, D*, v,
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v, and AN B within the manually-segmented ROIs (mean and

'm>

standard deviation). For sex, F indicated female, while M male. For the acquisition on the 1.5T system, routine IVIM metrics f,, and D* were obtained at fixed diffusion time, on

the dMRI scan with the shortest TE.

Scanner Volunteer ROI v,, [mm/s] v, [mm/s] AN B [segments] fo D* [p.mz/ms]
1, 35) Liver 14.95 (8.39) 16.5 (7.94) 55.0 (39.66) 0.42 (0.17) 23.79 (31.1)
Kidney medulla 9.59 (5.82) 10.99 (6.69) 30.05 (24.13) 0.65 (0.16) 12.88 (4.3)
Kidney cortex 5.99 (1.65) 5.95 (1.68) 13.42 (3.91) 0.53 (0.04) 8.3 (0.97)
Spleen 7.09 (8.64) 8.88 (10.34) 46.09 (63.39) 0.09 (0.06) 22.89 (32.19)
2 (F, 34) Liver 14.74 (8.37) 16.14 (8.23) 54.3 (40.75) 0.25 (0.11) 18.78 (19.92)
1.5T (TRSE) Kidney medulla 8.25 (8.98) 9.16 (9.7) 26.68 (30.07) 0.28 (0.21) 7.46 (5.73)
Kidney cortex 6.95 (5.69) 7.88 (7.13) 21.79 (18.06) 0.24 (0.09) 9.97 (4.1)
Spleen 8.24 (6.39) 10.27 (8.07) 26.62 (18.61) 0.12 (0.05) 7.54 (3.39)
3 (M, 25) Liver 11.24 (8.23) 13.64 (8.9) 47.72 (49.67) 0.37 (0.19) 16.52 (14.41)
Kidney medulla 10.77 (7.95) 12.51 (8.73) 44.41 (46.23) 0.48 (0.18) 18.45 (26.38)
Kidney cortex 4.34 (2.57) 5.09 (2.99) 14.97 (7.77) 0.25 (0.07) 9.27 (4.11)
Spleen 6.28 (5.47) 7.98 (5.9) 22.94 (21.2) 0.14 (0.07) 15.89 (23.7)
4 (M, 32) Liver 12.12 (8.46) 15.72 (9.24) 43.64 (33.28) 0.45 (0.16) 16.67 (21.05)
3T (PGSE) Kidney medulla 9.81 (6.41) 12.73 (7.95) 30.12 (23.61) 0.62 (0.16) 15.91 (14.32)
Kidney cortex 5.67 (3.47) 7.71 (4.61) 17.91 (10.65) 0.45 (0.08) 8.07 (2.13)
Spleen 4.31 (3.63) 6.12 (5.47) 15.81 (9.33) 0.28 (0.1) 7.01 (3.21)
Table 3

Summary of patients’ demographics and key clinical data (primary cancer type, location of the imaged tumours, patients’ sex and age, in years) and trends of microvascular metrics
fv, D*, v,, v, and AN B within the manually-segmented tumours (mean and standard deviation). For sex, F indicated female, while M male. Routine IVIM metrics f,, and D*

were obtained at fixed diffusion time, on the dMRI scan with the shortest TE.

ID Primary cancer Tumour(s) location Sex Age v,, [mm/s] v, [mm/s] ANB [segments] fv D* [pmz/ms]
Pat. 1 Endometrial Uterus F 65 7.34 (8.11) 8.41 (8.38) 28.86 (37.71) 0.11 (0.12) 14.44 (22.35)
Pat. 2 Melanoma Liver F 84 7.12 (9.14) 7.76 (8.71) 31.45 (43.12) 0.20 (0.24) 27.16 (43.33)
Pat. 3 Gastric Soft tissues M 62 7.78 (8.90) 8.53 (8.71) 34.88 (46.89) 0.09 (0.09) 21.09 (35.53)
Pat. 4 Melanoma Liver, lung, pleura F 61 10.72 (9.21) 11.97 (9.23) 42.24 (45.49) 0.19 (0.17) 24.05 (33.60)
Pat. 5 Melanoma Liver M 76 9.96 (8.05) 11.26 (7.93) 39.84 (41.39) 0.04 (0.14) 19.62 (21.99)
Pat. 6 Lung Liver M 55 5.76 (8.33) 6.64 (8.26) 26.88 (40.85) 0.14 (0.13) 15.51 (30.47)
Pat. 7 Gastric Stomach F 68 5.80 (7.27) 7.10 (7.52) 24.76 (28.91) 0.25 (0.18) 13.62 (22.17)
Pat. 8 Rectal Adrenal glands M 61 4.80 (7.14) 5.78 (7.58) 20.80 (32.32) 0.27 (0.18) 10.13 (20.32)
Pat. 9 Gastric Liver F 70 7.49 (8.43) 8.69 (8.51) 31.35 (40.54) 0.22 (0.18) 20.58 (35.76)
Pat. 10 Colon Liver F 48 6.77 (8.05) 7.86 (8.21) 28.21 (38.83) 0.22 (0.15) 17.50 (30.04)
Pat. 11 Lung Adrenal glands M 62 13.37 (9.42) 15.15 (9.85) 55.18 (52.69) 0.26 (0.15) 34.10 (44.59)
Pat. 12 Breast Liver F 33 11.15 (10.75) 11.94 (10.48) 54.71 (60.86) 0.39 (0.24) 14.40 (27.20)
Pat. 13 Lung Adrenal glands M 78 7.77 (8.75) 8.88 (8.97) 32.96 (44.13) 0.15 (0.13) 22.85 (36.79)

Supplementary Fig. 10 reports Spearman’s correlation coefficients
between all possible pairs of vascular metrics, as obtained across the 13
cancer patients. IVIM D* is significantly, positively correlated with all
of v,,, v, and ANB (r, = 0.55, p = 0.049 with v,; r, = 0.57, p = 0.044
with v r; = 0.64, p = 0.019 with AN B). No significant correlations
are instead seen between f, and any of v,, v, and ANB. D* and
fy are weakly, negatively correlated between each other (r, = —0.25,
p=0394).

4. Discussion
4.1. Summary and key findings

This work presents SpinFlowSim, an open-source simulator of blood
flow based on pipe network analysis. The simulation framework, tai-
lored for the laminar flow regime at the micro-capillary level, en-
ables the synthesis of DW signals for any desired input dMRI gra-
dient waverform. We demonstrate SpinFlowSim on 15 microvascular
networks, reconstructed from biopsies in a variety of liver cancers
and in non-cancerous liver parenchyma. These allowed us to simulate
micro-perfusion IVIM signals for realistic dMRI protocols, in the low b
regime. The signals exhibit complex, non-mono-exponential behaviour,
pointing towards the co-existence of spin pools experiencing different
flow regimes, compatible with signal patterns observed in vivo. The
simulation of synthetic signals paired with corresponding sets of mi-
crovascular characteristics enabled the practical estimation of these
properties from any input dMRI measurement set, given simulations of
the corresponding acquisition protocol. We showcase the approach in
silico and on in vivo scans of healthy volunteers and cancer patients,
obtaining patterns of microvascular metrics that are plausible given
known anatomy and cancer pathophysiology.

12

4.2. Simulation framework

Our simulator relies on a well-established computational approach
for laminar flow characterisation in capillaries. This links the pressure
drop across a capillary to the VFR passing through it, via a flow
resistance proportionality factor (Schmid et al., 2015; Van et al., 2021).
In this study, as a first proof-of-concept, we borrowed an empirical
expression for this resistance from Blinder et al. (2013), and used
the freely available PySpice (Salvaire, 2023) package to convert the
VFR estimation problem into the analysis of a passive electric circuit.
Our strategy, computationally efficient, retrieves the VFR distribution
across all segments of a vascular network. These are used to estimate
the mean blood velocity in each capillary and, finally, the trajectories of
flowing spins, by numerical integration of the velocity field over time.
By superimposing arbitrary dMRI gradient wave forms to spins flowing
in networks reconstructed from histology, our framework enables the
synthesis of realistic IVIM signals, without making assumptions on the
specific flow regime in which measurements take place (e.g., diffu-
sive/ballistic Kennan et al., 1994; Scott et al., 2021). Our approach
offers a practical way to characterise the salient characteristics of
micro-capillary perfusion, and its relationship to dMRI. It may therefore
play a key role in the development of innovative dMRI methods for
vascular characterisation with unprecedented specificity to physiology,
urgently needed for non-invasive cancer characterisation.

4.3. Vascular networks
We studied HE and CD31-stained histological images from liver

tumour biopsies, obtained from cancer patients suffering from ad-
vanced solid tumours. From these data, we manually reconstructed 15
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2D vascular networks, on which we simulated blood flow by varying
the input VFR and the inlet/outlet positions. We characterised the
networks in terms of the underlying blood velocity distribution (v,, and
v, parameters), and by introducing a metric quantifying the average
number of capillary branches spins flow through, referred to as AN B.
Overall, our simulations generated a total of 1500 network realisations,
which provide insight into microvascular blood perfusion.

The most important observation is that the networks exhibit blood
velocity and VFR distributions, sizes, number of segments, number
of input/output paths, characteristic path and segment lengths, and
AN B values that can vary considerably from each other. For example,
the mean velocity v,, ranges from approximately 4 to 25 mm/s. The
wide variation of microperfusion metrics is exemplified, for example,
by Net 11 and 12 in Table 1, which feature a mean v,, of 19 and
5 mm/s, despite exhibiting a similar mean capillary length of circa
60 pm. This finding suggests that, for the typical diffusion times that
can be probed in clinical settings (15-65 ms approximately), spins in
the vascular compartment likely experience flow regimes that can vary
considerably from subject to subject. On the one hand, this implies
that hypothesising a specific regime in IVIM modelling (e.g., diffusive
versus ballistic Kennan et al.,, 1994; Scott et al.,, 2021), may not
suffice to capture the full complexity of blood micro-perfusion in real-
world cohorts. On the other hand, these trends suggest that multiple
descriptors may be required to characterise in full the topology of a
vascular network. For example, networks featuring larger sizes do not
necessarily feature more segments (e.g., network 5 vs. 8), showing
that non-trivial relationships between different network parameters
exist. These results motivate the development of novel microperfusion
dMRI methods, which attempt to retrieve network features with higher
biologically specificity than traditional IVIM metrics such as D*.

Our simulations also suggest that remarkably different patterns of
vascular dMRI signals are to be expected, even for short, clinically-
feasible IVIM dMRI protocols, as exemplified by two examples in Fig.
3. Our simulated signals exhibit complex patterns as a function of the
b-value and the diffusion time, e.g., fast decay, typical of the diffusive
regime, as well as oscillatory behaviours, as instead expected in the bal-
listic regime (note that the PGSE signal for a set of uniformly distributed
straight capillaries, characterised by the same blood velocity v, is s =
sinc(y v G § 4) Scott et al., 2021). Moreover, they also feature a clearly
non-mono-exponential behaviour as a function of b, pointing again
towards the co-existence of different flowing spin pools within the same
network, potentially characterised by different flow regimes. Some of
the oscillations can be explained by unaccounted directional biases of
our networks, given that averaging over two directions may not suffice
to fully compensate for the directional dependence of the signal, espe-
cially when the decay is strong (Supplementary Figs. 5, 6 and 7). This
implies that our synthetic signals may be slightly exaggerating complex
features compared to what could be observed in vivo. Nevertheless, our
pilot analysis suffices to demonstrate that numerical approaches such as
SpinFlowSim may lead to more accurate characterisation of unexplored
properties ofvascular dMRI signals — e.g., concerning flow anisotropy
or apparent pseudo-diffusion and kurtosis tensors, as illustrated in
Supplementary Fig. 11 for the apparent pseudo-diffusion tensor in an
exemplificative case —, ultimately opening up new opportunities for
the development of more specific biomarkers of micro-perfusion.

4.4. Microvascular property estimation

We also investigated whether it is possible to use the synthetic
signals generated through SpinFlowsim to inform the non-invasive es-
timation of microvascular properties. For this purpose, we interpolated
the full set of paired synthetic signals and microvascular parameters,
obtaining numerical forward models that can be fitted through stan-
dard NNLS approaches. We specifically investigated the feasibility of
estimating v,,, v, and AN B.

m»
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Firstly, we studied v,,, v; and AN B estimation on noisy in silico
signals. We considered 4 protocols: two matched those of available in
vivo dMRI scans, and were based on DW TRSE and standard PGSE (pro-
tocols “TRSEinvivo” and “PGSEinvivo”). An additional PGSE protocol
(“richPGSE”) implemented a very rich acquisition, sampling several
b-values as well as diffusion times, while the fourth protocol was a
subset of the rich acquisition (“richPGSEsubset”). All protocols point
towards the feasibility of estimating v,, v, and AN B: we observed
strong correlations between ground truth and estimated v,, and AN B,
and moderate correlations for v,. As expected, performances were the
highest for the richest protocol, with correlations as high as 0.81 for
the AN B metric, yet still acceptable for the shorter protocols (e.g., cor-
relation of 0.63 for ANB and the TRSEinvivo protocol and of 0.80
for PGSEinvivo, which features more b-values than TRSEinvivo). These
promising results, obtained without requiring any explicit analytical
modelling of the signal, highlight the potential utility of simulation-
informed microvascular property estimation, motivating its testing in
vivo.

Following in silico experiments, we moved on and tested whether
U Uy and AN B can also be estimated in vivo. For this purpose, we
analysed dMRI scans acquired according to two dMRI protocols on four
healthy volunteers and in 13 cancer patients. We estimated vascular
dMRI signals and visualised them in different ROIs, observing complex
signal features that are compatible with those observed in synthetic
signals. These included, for example, signal oscillations as a function
of b in areas such as the spleen, suggestive of low capillary velocity
and ballistic flow regime, or diffusion time dependence. These complex
signal behaviours, which cannot be captured in full with simple mono-
exponential functions of the form e¢~P", justify the investigation of
advanced models of the dMRI vascular signal. To this end, we fitted
U Uy and AN B alongside standard IVIM f,, and D*, and assessed
trends qualitatively in several organs in the healthy volunteers, and in
the patients’ tumours.

In healthy volunteers, all metrics show high level of variability on
visual inspection, which is confirmed by cross-organ trends in Fig.
8. The variability, qualitatively comparable between f},/D* and v,,,
v, and AN B, is in line with the well-known challenge of estimating
microvascular property accurately with dMRI (Barbieri et al., 2020).
This finding suggests that more robust parameter estimation procedures
may be needed than those used here (e.g., Bayesian fitting or deep
learning Barbieri et al., 2016a, 2020), for the effective deployment of
simulation-informed fitting in clinical settings. However, despite the
variability, metrics show trends that are compatible with known physi-
ology, and are consistent across two MRI scanners, which use different
field strengths (1.5T and 3T) and different diffusion encoding strategies.
For example, in healthy volunteers the liver shows much higher f,,, D*,
U» U and AN B than in the spleen. This finding is plausible considering
that the liver is a highly vascularised organ, a blood reservoir receiving
approximately 25% of the cardiac output, despite representing only
2.5% of the body weight (Lautt, 2010). We also observe higher v,,,
v, and AN B in the kidney medulla than in the cortex, a finding that
may be reflecting their different vascularisation. Regarding kidneys, we
do not observe a clear trend in terms of cortex-medulla differences in
standard IVIM f}, and D* (e.g., f} is higher in the medulla than in the
cortex for both healthy volunteers, while D* is in one case higher, and
in the other lower). This is in line with recent studies, which have found
high variability and strong inter-subject/inter-machine differences of
kidney IVIM (Barbieri et al., 2016a; Ljimani et al., 2018; Stabinska
et al., 2023).

Finally, we also demonstrated the feasibility of simulation-informed
microvascular quantification in a pilot cohort of 13 cancer patients
suffering from advanced solid tumours. While this demonstration only
represents a first, exploratory proof-of-concept, it serves to highlight
that contrasts seen in v,,, v, and AN B are physiologically plausible,
and consistent with patterns seen on f}, and D*. For example, reduced
U, Ug and AN B is seen in areas of low f,, and D* compatible with
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reduced perfusion, expected in the tumour core (Karsch-Bluman et al.,
2019; Herman et al., 2011), exemplified by Fig. 9. In vivo, v,,, v, and
AN B are positively correlated among each other, and they correlate
moderately to strongly to IVIM D*. These correlations agree with the
correlations observed in simulations (compare Supplementary Fig. 3
and Supplementary Fig. 10), and may indicate that v,,, v, and AN B,
while providing complementary information to each other, are sensitive
to similar characteristics of the network morphology. For example, the
strong correlation between v,, and v,, indicating that higher variability
in blood velocity has to be expected as the mean velocity increases, may
be a signature of heteroscedasticity of the blood velocity distribution
across capillaries.

All in all, our in vivo results demonstrate the feasibility of
simulation-informed microvascular mapping in dMRI. While further
confirmation and more detailed metric characterisation is required in
future studies, realistic flow simulations informed by histology may
increase the accuracy of dMRI microvascular signal models. Ultimately,
these may provide innovative, biologically-specific indices of micro-
perfusion, urgently sought for the non-invasive evaluation of cancer
neo-angiogenesis, vascular heterogeneity and in treatment during the
design of anti-angiogenic drugs.

4.5. Potential applications of simulation-informed microvasculature map-
ping

Potential applications of the technique span both cancer diagno-
sis/detection as well as monitoring, once a cancer is found. For ex-
ample, the characterisation of liver tumours that cannot be biopsied
is still an unsolved issue in radiology. The non-invasive character-
isation of tumour vascularity could provide unique information to
radiologists for the differential diagnosis of infiltrative hepatocellular
carcinoma from other conditions, such as intrahepatic cholangiocarci-
noma or other liver diseases, e.g., fibrosis, steatosis or other vascular
disorders (Vernuccio et al., 2021; Wang et al., 2022). Regarding mon-
itoring, SpinFlowSim-based parameter estimation may provide useful
descriptors of cancer microvasculature in the context of antiangiogenic
treatments.

In essence, the applications of SpinFlowSim microvasculature map-
ping are similar to those typically envisioned for more common IVIM,
with the major difference that SpinFlowSim is designed to boost the bi-
ological specificity of the voxel-wise metrics towards capillary microp-
erfusion. As opposed to standard IVIM-like approaches, our simulation-
informed framework can account for the exact gradient timings used in
the acquisition, and thus implicitly deal with diffusion-time dependence
and with flow regime transitions, notoriously difficult to model ana-
lytically. This has the potential of delivering metrics that are directly
related to the underlying dynamical processes of microvascular per-
fusion in tissues, mitigating scanner-dependent or protocol-dependent
biases, unlike less specific IVIM D* or related metrics.

4.6. Methodological considerations and limitations

In this article, we show the potential utility of flow simulations to
inform dMRI signal modelling and analysis. We provide a first demon-
stration, based on a simplified simulation framework as a preliminary
proof-of-concept. For example, we rely on an empirical expression for
the resistance to flow across a capillary, borrowed from a model of
cortical perfusion in the mouse primary sensory cortex (Blinder et al.,
2013). While this model accounts for salient features of blood flow
resistance in capillaries (e.g., the effect of an average hematocrit and
erythrocyte-wall interactions), a more realistic characterisation of the
capillary resistance would be obtained by accounting for the Fahreeus-
Lindqvist’s, the Fahraus’ and the phase separation effects (Schmid
et al.,, 2015; Van et al., 2021). This would have required the simulation
of the propagation of actual erythrocytes through the network, until a
steady-state is reached, so that a per-capillary hematocrit (and hence,
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effective blood viscosity) can be calculated. Here we did not simu-
late erythrocyte propagation, being this computationally demanding.
Nevertheless, we acknowledge that it would enable more realistic
representations of flow patterns within micro-capillary networks. We
plan to include erythrocyte flow in future work, and also extend
SpinFlowSim to account, for example, for oscillatory pressure patterns
and vessel deformation, and for fluid exchange between capillaries and
the interstitial space. Another possible development is related to the
simulation of open networks, i.e., networks that are not fully contained
within a synthetic voxel. In its current version, SpinFlowSim enables
the simulations of such networks by discarding specific, undesired spin
trajectories, for instance by thresholding spin positions (see Supple-
mentary Fig. 12 for an example). Nevertheless, we acknowledge that
further optimisation of the toolbox is required to allow for a more agile
simulation of these cases.

Furthermore, we acknowledge that for this first demonstration,
we simulated vascular dMRI signals only on 2D capillary networks.
While SpinFlowSim is designed to work with generic 3D networks,
here we focussed on 2D representations due to the availability of 2D
data (i.e., HE and CD31-stained biopsies). We accounted for this by
averaging synthetic dMRI signals generated for two, orthogonal, in-
plane gradient directions. However, in future we plan to increase the
fidelity of our flow simulations by reconstructing 3D networks.

Related to the point above, the vascular networks reconstructed
from histology for this article were obtained at the capillary level.
Therefore, our synthetic signals may not be representative of larger
vessels, including smaller feeding arterioles and small veins or venules.
This implies that maps of v,,, v, and AN B from our approach has to be
taken with care in presence of larger vessels. In future, we plan to ex-
pand our vascular signal dictionary to include realisations of larger ves-
sels, and thus improve the generalisability of our simulation-informed
fitting.

We also acknowledge that the overall size of our networks is smaller
than that of actual capillary beds that are contained in in vivo dMRI
voxels, as these would be at least one order of magnitude larger. This
may introduce correlations among spin trajectories that would be oth-
erwise blurred in the case of flow through more intricate, disordered,
and larger networks. For the same reason, the inter-network variability
observed in this study is likely to overestimate the true in vivo biological
variability, where vascular networks are larger and hence likely more
homogeneous. Exploratory analysis of data from Table 1 reveals a
moderate-to-strong correlation between the standard deviation of ANB
and the network size (Spearman’s correlation of -0.667, p = 0.0067),
while only a weak correlation between the standard deviation of v,
and v, with the network size (Spearman’s correlation of -0.220, p =
0.432 and of 0.072, p = 0.780 respectively). This finding suggests that
the apparent variability of at least some of our metrics, as well as
the amount of signal oscillations, could be reduced if larger networks
were to be considered. In future work, we plan to increase the realism
of our numerical dMRI models by incorporating additional vascular
characteristics so far neglected, e.g., larger and more complex capillary
branches; networks that are not fully contained within a voxel; or
presence of feeding arterioles and output venules, as also mentioned
above. All of these can significantly alter the network topology and its
VFR patterns, resulting in considerable changes of the vascular dMRI
signals, as illustrated in two exemplificative cases in Supplementary
Fig. 12 and Supplementary Fig. 13.

Regarding the practical simulation of spin trajectories, we point
out that for realistic input VFR and network topologies, some of the
flowing spins reach the outlet before the simulation has been finalised.
In general, we did not find an obvious solution on how to best deal
with such spins. For example, in related work (Van et al., 2021), these
would be discarded for the computation of the dMRI signal. In this
first implementation, we decided to send such spins through a copy
of the network whose inlet had been shifted and made coincide exactly
with the original network outlet. This ensures that even those parts of
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the network that are close to the outlet contribute to the dMRI signal
for a considerable portion of the simulation. Examples of the effect of
this condition on spin trajectories are shown in Supplementary Video
1 and Supplementary Video 2, showing flow through two networks
over 72 ms of simulation, in which respectively 2.62% and 23.04% of
the spins are sent to the network copy. While this design allows for
full conservation of mass during the simulation, we acknowledge that
it may also exaggerate correlations among spins. In future work we
plan to compare systematically different approaches to deal with spins
reaching the network output and, more generally, with comparable
vascular simulation engines (Van et al., 2021; Lashgari et al., 2025).
As far as the correlation among properties of our synthetic networks
are concerned instead, we acknowledge that some of the reported
correlations require further explanation, e.g., the negative correlation
between r,, and v,,, which at a first glance does not appear to match
Eq. (2). This finding has to be interpreted by noting that the VFR
or velocity through a capillary segment are related to the overall
resistance of the local network element to which the segment belongs.
In other words, a 1:1 relationship v « r? (or ¢ « r*) from Egs. (1),
(2) and (3) can only be expected when comparing capillary segments
that receive the same input flow and that are arranged in parallel: two
capillaries with radii », > r; and same length L, arranged in series,
would feature v, < v, since it must hold that ¢, = ¢,. The fact that
when a negative correlation between mean velocity and mean radius
along all flow paths is seen in Supplementary Fig. 4, points towards
a potential higher predominance of serial configurations, rather than
parallel. Notably, in Supplementary Fig. 4 not even the set of VFRs
g, and blood velocities v, along flow paths are perfectly correlated,

despite being the condition ¢(x,y,z) = % met exactly in each

point (x,y,z) of a capillary. These findings highlight that different
proportionality factors among pairs of flow metrics can exist when
comparing different flow paths, implying that both positive or negative
correlations may be observed, depending on the network topology.

Another point to acknowledge is that in this study we focussed on
the characterisation of vascular dMRI signals, and devised a simulation-
informed fitting procedure requiring pure vascular signals as input. For
this reason, the analysis of in vivo signals required disentangling vascu-
lar from extra-vascular tissue signals, since low b measurements include
contributions from both. This was achieved by extrapolating an ADC fit
performed on b-values with negligible vascular signal contribution, and
thus required identifying a b-value threshold. An approach of this type,
i.e., splitting the vascular-tissue signal characterisation in two steps,
is sometimes referred to as segmented IVIM fitting (Gurney-Champion
et al.,, 2018; Wang et al., 2021). While segmented fitting reduces the
variability of vascular metrics, since it avoids the challenging, joint
estimation of vascular and tissue properties (Barbieri et al., 2020), it
may lead to biases in fj estimates, since f,, may depend, at least
slightly, on the b-value threshold. In future, we plan to improve the
simulation-informed fitting performed here, by employing more ad-
vanced estimation techniques for the joint computation of vascular and
tissue properties.

Regarding the vascular signal measurement in vivo, we point out
that our acquisitions featured 3 orthogonal gradient directions. Simi-
larly to what was discussed for in silico signals, we acknowledge that
such a reduced scheme may not suffice to fully resolve the directional
dependence of the vascular signal. Richer acquisitions schemes would
be required to characterise in full the complexity of vascular mea-
surements in vivo, e.g., through the computation of apparent vascular
tensors (Notohamiprodjo et al., 2015; Hilbert et al., 2016; Voorter et al.,
2025).

Lastly, we acknowledge that the results reported here should be
confirmed by future studies. These would require the acquisition of
data from additional healthy volunteers and from larger patient co-
horts, and should include diffusion images from different MRI scanners
and from more advanced dMRI protocols. Here, in patients, we used
a simple acquisition scheme in the low b regime (b = 0 and b =
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{50,100} s/mm? at 3 diffusion times; protocol “TRSEinvivo”). However,
the accurate characterisation of the complex signal patterns arising
from microvasculature, require denser b samplings, e.g., to capture
oscillatory patterns as a function of 4. In this article, we included a
healthy volunteer scan featuring a richer b-value protocol in the [0;
100] s/mm? range (protocol “PGSEinvivo”), demonstrating oscillatory
signal patterns in vivo in organs such as the spleen. Moreover, re-
sults from in silico experiments show that this protocol allows for a
better estimation of the microvascular parameters v,,, v, and AN B,
compared to the protocol “TRSEinvivo”. These findings highlight the
importance of the design of b-value sampling scheme for accurate
microvascular parameter estimation in cancer patients in vivo. Simi-
larly, higher image quality and increased sensitivity to micro-perfusion
could also be achieved, for example, by improving the robustness of
the dMRI acquisition with cardiac/respiratory gating, or by employing
flow-compensated (Wetscherek et al., 2015) gradient wave forms, or
advanced b-tensor encoding (Nilsson et al., 2021).

5. Conclusions

SpinFlowSim, our open-source, freely-available python simulator of
blood micro-perfusion in capillaries, enables the synthesis and charac-
terisation of realistic microvascular dMRI signals. Perfusion simulations
in vascular networks reconstructed from histology may inform the non-
invasive, numerical estimation of innovative microvascular properties
through dMRI, whose feasibility is demonstrated herein in vivo in
healthy subjects and in cancer patients.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.media.2025.103531.

Data availability

SpinFlowSim is made freely available as a GitHub repository at the
permanent address: https://github.com/radiomicsgroup/SpinFlowSim.
The repository includes the 15 vascular networks presented in this
study that can be used to generate synthetic vascular signals for
simulation-informed model fitting. The code for simulation-informed
fitting is freely available as part of BodyMRITools at the address: https:
//github.com/fragrussu/bodymritools (script mri2micro_dictmlLpy). Raw
in vivo human MRI scans cannot be made freely available at this stage
due to ethical restrictions.
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